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A b s t r a c t Objective: Currently, when cytopathology images are archived, they are
typically stored with a limited text-based description of their content. Such a description
inherently fails to quantify the properties of an image and refers to an extremely small fraction of
its information content. This paper describes a method for automatically indexing images of
individual cells and their associated diagnoses by computationally derived cell descriptors. This
methodology may serve to better index data contained in digital image databases, thereby
enabling cytologists and pathologists to cross-reference cells of unknown etiology or nature.

Design: The indexing method, implemented in a program called PathMaster, uses a series of
computer-based feature extraction routines. Descriptors of individual cell characteristics
generated by these routines are employed as indexes of cell morphology, texture, color, and
spatial orientation.

Measurements: The indexing fidelity of the program was tested after populating its database
with images of 152 lymphocytes/lymphoma cells captured from lymph node touch preparations
stained with hematoxylin and eosin. Images of ‘‘unknown’’ lymphoid cells, previously
unprocessed, were then submitted for feature extraction and diagnostic cross-referencing analysis.

Results: PathMaster listed the correct diagnosis as its first differential in 94 percent of recognition
trials. In the remaining 6 percent of trials, PathMaster listed the correct diagnosis within the first
three ‘‘differentials.’’

Conclusion: PathMaster is a pilot cell image indexing program/search engine that creates an
indexed reference of images. Use of such a reference may provide assistance in the diagnostic/
prognostic process by furnishing a prioritized list of possible identifications for a cell of uncertain
etiology.

n J Am Med Inform Assoc. 2000;7:404–415.

As digital image cytometry becomes more widely ac-
cepted by pathologists, image databases are growing
at an impressive rate.1 In the pathology domain, the
majority of acquired images are currently stored with
a limited text-based description of their content. As
image databases expand, it is becoming increasingly
apparent that these simple text-based descriptions are
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inadequate for the proper cataloging of images. As a
consequence, valuable diagnostic and prognostic in-
formation contained in such databases remains un-
usable.

Attempts to derive more practical descriptors for each
image by simply applying existing domain-indepen-
dent image processing and analytical software have
met with little success, most likely because only a lim-
ited number of non-domain-specific descriptors were
computed. Furthermore, in these domain-indepen-
dent approaches, no attempt was made to subclassify
(segment) image regions into components such as
background, cytoplasm, nucleus, and nucleolus.2,3

Rather, the entire image was processed without regard
to its individual constituents. This approach lacks the
required sophistication that a domain specific algo-
rithm can provide to properly subclassify object de-
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scriptors and ignore irrelevant or incidental image
data. By creating and employing such a program, cy-
tometrists should be able not only to derive relevant
object descriptors for image cataloging and report re-
trieval but also to cross-reference images of unknown
cell types to assist in identification.

PathMaster is a program, currently undergoing de-
velopment and refinement, that computes discrimi-
nants that can reject many potential false positive
matches by encoding image data with the fidelity re-
quired to retain the majority of a cell’s features. The
ability to search for instances of the same (or similar)
image events depends on metrics for comparing im-
age objects and properties (e.g., shape, texture, color,
and object relationships) that can match human judg-
ments of similarity. Without this provision, the images
that a program retrieves will generally not be those
desired by the human user. This does not necessitate,
however, that computations emulate human vision
and reasoning, but rather that factors of similarity
must generally be correlated.4 Indeed, there is suffi-
cient evidence to substantiate the existence of ‘‘sub-
visual information,’’ that is, information in an image
that either the human observer disregards or is inca-
pable of adequately assessing. Although these fea-
tures are not visually apparent, they may function as
the basis for image classification methods, providing
that the results are equivalent to those assigned by
pathologists.4 If these categories are clinically useful,
differences in detection methods between computer
and human vision can be complementary. Such dif-
ferences in method may generate additional classifi-
cations that can not be easily evaluated by human vi-
sion and can therefore supplement the existing
pathology grading systems.4

As a consequence, we propose that one solution to the
image database searching problem is the use of what
some have called ‘‘semantics-preserving image com-
pression,’’ that is, compact numeric representations
that contain data sufficiently accurate and complete
for image comparison.5

This paper describes a ‘‘semantics-preserving’’ feature
extracting and comparing program. PathMaster was
designed to analyze images of individual cells for im-
age database cross-referencing. The design criteria re-
quire a user to capture a high-power (603 objective)
digital image of a ‘‘suspicious’’ cell or cell of unknown
lineage and subsequently submit that image for a sim-
ilarity match. The similarity match includes a search
of the entire PathMaster image database. In each im-
age-to-image comparison, features of the two cells
are compared and differences are calculated. The
‘‘weights’’ of these differences are user-programmable

and allow irrelevant or less important disparities in
features to be ignored. Likewise, weights may be ad-
justed to amplify disparities of features that are (or
that the user considers to be) more useful for discrim-
inating between various cell populations. Once the
comparisons have been completed, the difference
scores are tabulated and ranked. A list of prioritized
diagnoses and their associated images are then re-
turned to the user.

Background

A range of projects have applied digital image cytom-
etry in different clinical domains. For example, digital
image cytometry is used to screen Pap smears.6,7 In
this method, cells on a slide preparation are scanned
with a microscope equipped with a digital camera
and are subsequently analyzed. The results of the
analysis are used to classify cells as normal or abnor-
mal and, in the latter case, prompt the pathologist for
further evaluation. Image analysis has also been em-
ployed to extract prognostic determinates for breast
cancers,8 prostate cancers,9 ocular melanomas,10 and
idiopathic cardiomyopathies.11 Multiparametric image
cytometry has been used to measure lymphocyte nu-
clear size, shape, texture, and DNA content. With
these measurements alone, investigators are able to
distinguish between the early stages of mycosis fun-
goides and eczematous dermatitis with an accuracy of
94 percent.12

Quantitative nuclear texture analysis has been used to
detect recurrences in transitional cell carcinoma with
a 97 percent sensitivity. This compares with the 50 to
75 percent sensitivity of standard urine cytology.
There is little doubt that extraction of quantitative fea-
tures from cell images will alter the method by which
neoplasms are graded and subclassified.14

As efforts continue to limit the rising national cost of
health care, pathologists are being asked to make ac-
curate diagnoses from more limited procedures, such
as fine-needle aspirates, that produce samples con-
sisting predominantly of desegregated cells. Since
these samples lack the architectural information of
standard histologic sections, pathologists need to de-
velop new methods designed to extract diagnostic in-
formation from these smaller specimens. Examination
of subvisual structural data obtainable from compu-
tational analysis of digitized high-resolution images
of cells is one such approach. As a result, it is impor-
tant that the science of digital cytometric analysis be
adapted, extended, and refined to exploit fully the
current state of the art in digital image analysis.
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F i g u r e 1 PathMaster is composed of an aggregate of
independent algorithms that are orchestrated by a Visual
Basic graphical user interface (GUI). NOTE: MS indicates
Microsoft; DLLs, dynamically linked libraries.

F i g u r e 2 The extraction and comparison of cell fea-
tures are accomplished by several conversion and ana-
lytic routines. Since intensity values of these matrixes
vary with both the incident light intensity (Io) and the
optical density of the specimen, each intensity matrix is
converted to an optical density matrix. Cell descriptors
that are extracted include colorimetric, multi-resolution
textural, and domain-specific morphologic parameters.
Descriptors are then used as coordinates to map the char-
acteristics of each cell to a position in feature space.
When an unknown cell is submitted for evaluation, the
distance between its position and the positions that char-
acterize other cells in feature space are calculated. These
distances are used to generate an ordered list of matches.

Materials and Methods

PathMaster’s Design

PathMaster contains a cytology-specific feature ex-
traction program written as an aggregate of indepen-
dent but orchestrated algorithms, which includes a Vi-
sual Basic graphical user interface, a Microsoft Access
object linking and embedding server, and a group of
C11 dynamically linked libraries (Figure 1). For this
study, PathMaster was executed on a Pentium 200
MMX machine.

In operation, a user currently submits a digital image
of a single cell to be cross-referenced or identified
(Figure 2). Once submitted, features of the cell image,
including those of color, morphology, texture, and
spatial relationships, are extracted. These features are
then compared with and scored against those of cells
stored in the PathMaster database. A list of cell images
and their associated reports is then generated in an
order indicating best to worst match.

The extraction and comparison of features occurs by
the use of several conversion and analytic routines,
the first of which processes the submitted intensity
image. The user must acquire the image in a manner
compatible with data already contained in the image
database. To that end, an acquisition protocol was
adopted. This protocol, designed to control for a va-
riety of user-dependent variables, requires that all im-
ages be captured at a fixed optical resolution (603
objective) with a digital resolution of 3,072 3 2,320
pixels 3 24-bit color. This combination of optical and
digital resolutions increases texture resolution while
providing an adequate depth of field. Once captured
and submitted, the intensity image is resolved into its
red, green, and blue components (Figure 3). These
components are thereafter processed as individual
gray-level matrixes.

Intensity images (matrixes) are not in the best form to
process mathematically. Among other complications,
intensity images vary not only as a function of spec-
imen optical density but also as a function of incident
intensity. To control for variations in illumination, in-
tensity images are converted to individual red, green,
and blue optical density maps (Figure 4). To complete
this conversion, the user must submit an incident in-
tensity map or ‘‘background’’ image of the field of
interest.

To properly process a cell image, it is first necessary
to designate and effectively separate (segment)
regions of background, cytoplasm, nucleus, and nu-
cleolus (Figure 5). Image segmentation is achieved by
creating a 2-bit mask overlay of the image. The re-
sulting four levels of gray designate individual
regions of interest.

Of the various segmentation methods available, man-
ual segmentation using the advanced selection tools
of Adobe PhotoShop is perhaps the most reliable. The
average time required by the experienced user to seg-
ment an image is less than one minute. Using the seg-
mentation mask, the computer generates up to three
binary isolation masks (one each for the cytoplasm,
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F i g u r e 3 Intensity images are resolved into their red, green, and blue (RGB) components for analysis. During analysis,
each RGB component is addressed as a gray-level matrix.

F i g u r e 4 Intensity values of an image vary with both the incident light intensity and the optical density of the
specimen. To control for variations in incident intensity, the RGB component matrixes of an image are converted to
optical density matrixes. These matrixes are used for all subsequent cytometric calculations.
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F i g u r e 5 Image segmentation. Binary isolation masks are generated for each region, including cytoplasm, nucleus,
and nucleolus. Isolation masks are used by processing routines to identify individual segments to be analyzed.

F i g u r e 6 Mean optical density of nucleus. Optical density descriptors are computed for all three (RGB) color channels.
The mean optical density is calculated across all three channels and is expressed as a percentage of the total density.
The nucleus of this specimen is densest to green light.
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Table 1 n

Examples of Descriptors Extracted from Each
Segment and Subsegment of an Image

Segment Descriptors

Cytoplasm Mean optical density, RGB
Area
Perimeter
Contour

Fourier decomposition
Geometric primitive best fit

Markov texture, r ε [1, 5], RGB
Statistical moments, RGB

Nucleus Mean optical density, RGB
Area
Perimeter
Ratio of nuclear area to cytoplasm

area
Eccentricity
Contour

Fourier decomposition
Geometric primitive best fit

Markov texture, r ε [1, 5], RGB
Statistical moments, RGB

Nuclear subsegments Markov texture, r = 1, RGB
Statistical moments, RGB

Nucleolus Mean optical density, RGB
Area
Perimeter
Nucleolus/nucleus area ratio
Eccentricity
Contour

Fourier decomposition
Geometric primitive best fit

Markov texture, r = 1, RGB
Statistical moments, RGB

NOTE: r values indicate the window size of the gray-level
co-occurrence matrix expressed in horizontal pixels.

nucleus, and nucleolus). These binary masks provide
the means by which the computer can isolate each
region for analysis.

The efficiency of several recently published auto-
mated cell segmentation methods15 are currently be-
ing investigated. One such method has been success-
fully employed to generate computer-determined cell
boundaries of prostate cells. This segmentation algo-
rithm, once adapted for use with PathMaster, may re-
liably and efficiently eliminate the need for manually
traced cell boundaries and the associated interob-
server variation.

Analysis of a cell includes the extraction of region-
specific features, also referred to as object descriptors.
PathMaster extracts four types of descriptors, includ-
ing those of morphology, optical density, texture, and
object-relative spatial relationships. Descriptors are
calculated separately for each segment. For example,
the mean optical density to red, green, and blue light
is calculated separately for the cytoplasm, nucleus,
and nucleolus (Figure 6). The current descriptor types
used by PathMaster are listed in Table 1.

Descriptors of texture include statistical, Markov, and
Fourier descriptors.14 Statistical features include mean
optical density, normalized variance (which ap-
proaches 0 with uniform optical density histograms),
normalized skewness (which approaches zero for
symmetric histograms), and kurtosis (which ap-
proaches 3 when histograms are gaussian).14

Regional Markov descriptors of cytoplasm, nucleus,
and nucleolus are assessed at multiple resolutions by
varying the window size, r, with which the gray-level
co-occurrence matrix (GLCM) is compiled. The value
of an element in the GLCM located in the xth column
of the yth row is an estimate of the probability that
the gray-level x will co-occur with a gray-level y at a
fixed distance r. Each GLCM is compiled using a
method that provides for rotational invariance.16

PathMaster analyzes nuclear texture to a greater ex-
tent than it does the texture of other segments. In ad-
dition to extracting features from the entire nucleus,
the program also subsegments the nucleus into
regions of high and low optical densities. Ranges of
high and low optical density are defined using the
mean optical density of the nuclear region as a thresh-
old for division (Figure 7). Assessed Markov princi-
ples include energy, entropy, inertia, correlation, local
homogeneity, prominence, and shade.14

Two-dimensional power spectra of texture are gener-
ated with a fast Fourier transform. These spectra are
condensed into four frequency bands to simplify com-
parisons. Only those harmonics that are identified as

useful by the Nyquist sampling theorem are included
in the comparison.

Once all descriptors are obtained, they are used as
coordinates to map the characteristics of each cell to
a position in feature space. Figure 8 depicts an ex-
ample of two-dimensional space. Each point in space
may uniquely characterize a cell. For example, when
plotted against features 1 and 2, cells A and B map to
the positions in space marked A and B. When an un-
known cell is submitted for evaluation, the distance
between its position and the position of other cells in
feature space is computed. A series of cell images and
their associated reports are then generated in an order
indicating their distance from the unknown cell.
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F i g u r e 7 Subsegmentation (blue channel). PathMaster subdivides the nucleus into regions of both high and low
optical density. Ranges of high and low optical density are defined using the mean optical density (MOD) as a referent.

Problem Domain Selection

Once PathMaster was completed, a problem domain
was required for testing. Our test domain selection
criteria were based on several factors, including the
domain’s level of diagnostic difficulty, the time re-
quired to render definitive diagnoses, and specimen
availability. Diagnosis and classification of lymphoma
can be a challenging task for pathologists, especially
when they have only touch preparations immediately
available for inspection. These considerations, in con-
junction with the abundance and variety of touch
preparations available in our department, led us to
select lymphoma touch preparations as a test domain.

Digital Image Library

As an initial test of PathMaster’s approach, a digital
image library consisting of 152 images of individual
lymphoma cells (84 percent of the total images), re-
active lymphocytes, and ‘‘normal’’ lymphocytes were
compiled from lymph node touch preparations
stained with hematoxylin and eosin (H&E). Material
used in touch preparations was sampled from a va-
riety of different patient cases and lymph node resec-
tions. On average, six cell images were acquired from
each case. Diagnoses obtained by light-microscopic
examination of H&E-stained material were substan-
tiated using immunologic based stains, flow cytome-

try, or molecular gene rearrangement studies, or a
combination of these. Cell images acquired from three
patient cases with equivocal diagnoses were excluded
from compilation.

Samples of lymphomas composed of more than one
cell type (e.g., mixed lymphoma) included represen-
tative cells from each cellular component. Cells intrin-
sic to the lesion in question, however, need not be the
only source of diagnostic information. ‘‘Incidental’’ re-
active cells may, in fact, provide more diagnostic cy-
tologic information than those that make up the le-
sion.12 Thus, it was not always essential that the
nature of the individual cell that was imaged be iden-
tified with absolute certainty.

Satisfactory touch preparations are a challenge to pre-
pare. Their quality can be compromised by multiple
flaws, including excessive preparation thickness, hem-
orrhage, crushed nuclei, naked nuclei, staining arti-
facts, and cell overlap. The majority of these flaws can
be addressed by altering the weight profile used to
score a search. For example, naked or fragmented nu-
clei may be used in a search providing that weights
assigned to both cytoplasmic parameters and nuclear
morphologies are zeroed. Staining artifacts may be
addressed in a similar fashion by zeroing weights as-
signed to optical density features.
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F i g u r e 8 A simplified example of
two-dimensional feature space. De-
scriptors are used as coordinates to
map the characteristics of each cell
catalogued in a database to a po-
sition in two-dimensional feature
space (‘‘known’’ cell types). The po-
sition in feature space that character-
izes the cell to be cross-referenced is
also plotted (‘‘unknown’’ cell type).
‘‘Distances’’ between the unknown
and known cell types are computed.
A list of similar cell types and their
associated reports are then generated
in an order indicating their distance
from the unknown cell type.

Although feature vectors derived from each cellular
component were stored in the database individually,
each cell pattern vector was tagged to indicate that
they originated from the same case. This provision
will allow for the comparison of cell clusters from
each case in the future.

Cell image compilation included the extraction and
database storage of more than 300 cell features ob-
tained from region-specific morphologic and optical
density measurements as well as a region-specific
multi-resolution texture analysis.

Image acquisition was accomplished using a digital
imaging workstation equipped with a Kontron
ProgRes 3012 camera, which was used in conjunction
with an Olympus Vanox AHBS3 photomicroscope
specifically designed for higher-quality imaging and
photomicrographic work. The microscope was
equipped with 43, 103, 203, and 403, plan-apochro-
matic objectives and one 603 DPlan objective.

Feature Weights

Only a subset of the total features extracted were com-
pared. We collectively refer to features employed in a
search and their assigned weights as a ‘‘weight pro-
file.’’ Although the weight profile used for each query
is fully user-programmable, PathMaster has been
equipped with several default and user-selectable pre-
programmed profiles.

Default and user-selectable profiles were constructed
only after an extensive analysis of their discriminating
power. This assessment included an eigenvalue anal-
ysis. Only those features that were deemed to be of
adequate discriminating power (P < 0.1) were as-
signed non-zero weights. The number of features as-
signed non-zero weights is dependent on the specific
search criteria favored by the user. In the majority of
weight profiles used, this number varied between 15
and 20.

Preliminary Testing of PathMaster’s Performance

PathMaster’s performance was assessed on the basis
of its ability to select cells from the database that were
similar to those submitted for analysis. The concept
of ‘‘similarity,’’ however, can be an ambiguous one.
The mathematical definition of similarity employed
by PathMaster specifies a range of values for the Eu-
clidean norm of weighted feature vector differences.
Once such scores are obtained, a list of similar cell
types and associated data are generated in an order
indicating their ‘‘distance’’ from the unknown cell
type.

Results

Although more than 300 features were extracted from
each lymphoma cell, only a subset of these were of
sufficient discriminating power to be used in image
cross-referencing. In the preliminary testing described
in this paper, features with the greatest utility in-
cluded those of chromatin texture. Markov descrip-
tors of texture were assessed at multiple resolutions
by varying the window size, r, with which the GLCM
was compiled.16 The importance of each descriptor as
an index was dependent on the resolution at which it
was assessed (Figure 9). How to use these descriptors
optimally is a subject of ongoing research. As de-
scribed later, we have already expanded the number
of computed features to more than 2,000 and are con-
tinually refining our mathematical approach for com-
parison.

In initial test trials, PathMaster consistently provided
differential lists of lymphoma diagnoses that were
compatible with the submitted query image (the un-
known cell). Two formal tests were performed, using
a total of 50 images (not included in the image library)
of both mantle cell and small cell lymphomas. When
tasked to analyze these cells, PathMaster listed the
correct diagnosis as its first differential in 94 percent
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F i g u r e 9 The statistical significance of dif-
ferences between Markov descriptors of man-
tle cell nuclear texture and small cell lym-
phoma nuclear texture varies as a function of
r, the radius with which the gray-level co-oc-
currence matrix was compiled. The P values of
a Student t test are displayed. The r values are
expressed as horizontal pixel distances. In the
key, ‘‘Homo’’ indicates homogeneity.

of trials. In the remaining 6 percent of trials, Path-
Master listed the correct diagnosis within the top
three differentials. The results of these tests are shown
in Tables 2 and 3.

Discussion

PathMaster was created as a cytology-specific utility
to index and search databases containing images of
individual cells. Although this paper discusses the
program’s performance in the context of lymphoma
touch preparations, PathMaster has been specifically
designed to index and cross-reference images of var-
ious cell types, including lymphoma cells, thyroid
cells from FNAs, and other cell types encountered in
cytology.

Selecting Appropriate Descriptors

The selection of a fixed weight profile that optimally
discriminates between various lymphomas can ulti-
mately compromise the fidelity of a specific image
match. In some instances a feature that adequately
discriminates between two cell populations, desig-
nated A and B, will be of no value in resolving two
different populations, designated C and D. One so-
lution which circumvents this problem uses ‘‘cell clus-
ter-dependent’’ weight profiles. Such weight profiles
are not constant but rather are functions of a specific
subpopulation of cells that are being compared with
an unknown cell. These weight profiles reflect the im-
portance of each individual feature in a specific pop-
ulation of cells. However, in our initial assessment of
the PathMaster program, a fixed lymphoma-specific
weight profile was used.

Markov descriptors were computed from a GLCM.
The discriminating value of each Markov descriptor
varied as a function of r, the radius with which the
GLCM was compiled (Figure 10). The importance of
each descriptor as an index was dependent on the res-
olution at which it was assessed.

In general, the differences between Markov textural
features becomes less significant as r increases. How-
ever, each texture feature can present as an exception
to this trend. As a consequence, textures are analyzed
at multiple resolutions (multiple r values). Each Mar-
kov feature assessed at any given r is assigned an in-
dependent weight for scoring. In this way, only fea-
tures that are known to be significant may influence
a search.

When compiling with r values less than or equal to 2,
more than 35 percent of the GLCM volume lies in
diagonal matrix elements A(i, i), A(i, i 1 1), and A(i,
i 2 1), where A is the GLCM matrix. We sought to
improve the discriminating power of a subset of the
Markov descriptors by eliminating a significant por-
tion of the GLCM data that were common to both
textures. To achieve this objective, the elements of the
GLCM having coordinates that satisfy the equations y
= x, y = x 1 1, and y = x 2 1 were ‘‘zeroed.’’ The
‘‘modified’’ Markov descriptors were then recalcu-
lated (Figure 11). The discriminating powers of both
the ‘‘standard’’ and modified Markov descriptors are
shown in the figure. Using this GLCM zeroing filter,
significant improvements in discriminating power are
obtained for both correlation and shade. Although
these modified descriptors were not included in the
weight profiles of this study, we intend to incorporate
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Table 2 n

Mantle Cell Lymphoma Index (N = 20)

Lymphoma Type

Differential (%)

First Second Third

Small lymphocytic 05.0 80.0 15.0
Follicular 00.0 10.0 50.0
Mantle cell 95.0 00.0 05.0
Diffuse large cell 00.0 00.0 00.0
Lymphoblastic 00.0 10.0 00.0
Small noncleaved 00.0 00.0 30.0
Normal/reactive 00.0 00.0 00.0

NOTE: Twenty mantle cell lymphoma images were submitted
for analysis and cross-referenced against features contained in
the PathMaster image library. Each of the 29 distinct diagnostic
categories recorded in the image library were redesignated as
one of the six lymphoma types listed in the table. Using these
six categories, 19 of the 20 cell images were matched best to
mantle cell lymphoma. The remaining image was best matched
to small cleaved cell lymphoma.

Table 3 n

Small Lymphocytic Lymphoma Index (N = 30)

Lymphoma Type

Differential (%)

First Second Third

Small lymphocytic 93.3 06.6 00.0
Follicular 03.3 10.0 30.0
Mantle cell 03.3 83.3 13.4
Diffuse large cell 00.0 00.0 00.0
Lymphoblastic 00.0 00.0 00.0
Small noncleaved 00.0 00.0 56.6
Normal/reactive 00.0 00.0 00.0

NOTE: Thirty small lymphocytic lymphoma cell images were
submitted for analysis and cross-referenced against features
contained in the PathMaster image library. Twenty-eight of the
30 cell images were matched best to small lymphocytic lym-
phoma. The remaining images were best matched to follicular
small cleaved cell lymphoma and mantle cell lymphoma.

F i g u r e 10 A, The gray-level co-occurrence matrix
(GLCM) calculated from the red channel intensity ma-
trix, using an r value of 1. B, The same GLCM with its
probability values plotted on a logarithmic scale. C and
D, A filter is applied to zero values of GLCM elements
whose coordinates satisfy the equation y = x, y = x 2 1,
and y = x 1 1.

them in the next version of PathMaster. We are de-
veloping a series of GLCM filters and examining ex-
isting filters that may afford a significant improve-
ment in the discriminating power of several textural
descriptors.

PathMaster is envisioned as a utility with multi-func-
tionality that can assist the pathologist in difficult

cases by generating a prioritized list of differentials. This
list may include differentials already considered by the
pathologist as well as those which he or she may not
have considered originally but, in retrospect, may be
willing to entertain. PathMaster accomplishes its assess-
ment by comparing features that are both visually ap-
parent and visually inapparent to the pathologist. This
ability to analyze features outside the pathologist’s vi-
sual perception may be useful. Such features may func-
tion as the basis for classification methods that can aug-
ment those assigned by pathologists.4

Future Plans

This section discusses several areas in which we plan
to explore the further development of PathMaster.

Extending PathMaster to Other Domains

Although initially restricted to lymphomas, Path-
Master and its image library will be upgraded to as-
sist in the analysis and diagnosis of cytopathologies
in other domains. These are likely to include thyroid
aspirates, urine samples (bladder cancer), bronchoal-
veolar lavage fluid or sputum (bronchogenic carci-
nomas), and peripheral blood smears (leukemias).

Analysis of Case Clusters

Although currently designed to evaluate and search
for individual cells, PathMaster can be modified to
assess and analyze cell clusters. In this mode of op-
eration, PathMaster is given a sample of cells from a
single patient case, which are referred to collectively
as a cell cluster. This cluster may be scored against
other cell clusters that have already been catalogued
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F i g u r e 11 The P values of a subset of ‘‘modified’’ Markov descriptors differ from those of ‘‘standard’’ Markov
descriptors. The statistical significance of several textural descriptors are improved by employing a GLCM filter. FOM
indicates first order moment; Homo, homogeneity; Crrltn, correlation; Prom, prominence.

in the cell pattern matrix. Cluster analysis may pro-
vide insightful information regarding diagnosis or pa-
tient outcome. This method, including information on
how to measure cluster distances as well as several of
its associated protocols, is currently being defined.

Extending the Number of Useful Descriptors

The most recent version of PathMaster now extracts
more than 2,000 descriptors from each cell image. The
majority of these are derived from an extensive multi-
resolution analysis of chromatin texture. This plethora
of descriptors is generated by progressively increasing
the value of r, the radius with which the GLCM is
compiled, and subsequently calculating the corre-
sponding Markov textural features.

The discriminating power of several ‘‘modified’’ Mar-
kov descriptors is being explored. Some of these mod-
ified descriptors demonstrate significant improve-
ments in discriminating power over their standard
counterparts. A complication encountered with the
use of such a large number of descriptors is that
weight profiles that yield significant results in one
search may yield unacceptable results in others. One
solution to this problem utilizes ‘‘cell cluster-depen-

dent’’ weight profiles (described earlier). These mod-
ifications are being implemented and explored in the
newest version of PathMaster.

Histology Quality Control

Several alternative applications for PathMaster are
also being considered. One such alternative applica-
tion addresses a problem encountered in histology
laboratories, that of quality control. Specific errors in
processing histologic preparations may result in
changes in the cellular features of a specimen, includ-
ing those of texture, color, and morphology. As a re-
sult, changes in the cellular features of a quality con-
trol specimen, such as a block of hepatic tissue, could,
if properly quantified, be a potential indicator of pro-
cessing error. Such changes may occur suddenly and
become immediately apparent, or they may occur
over time and be more subtle. Trends in feature
change may be used to predict the impending failure
of a step in tissue processing before it becomes sig-
nificant.

PathMaster may be employed to monitor the staining
features of control cells, and thereby act as a quality
control system providing quantitative measurements
of change. Daily quantitative measurements would
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permit histology laboratories to establish acceptable
limits of tolerance. Measurements beyond these limits
could be used to prompt further investigation by the
histology technologist. A similar method has already
been used to identify hardware failures that result in
a degradation of digital image quality.4

It should be noted that our methodologies are based
on the extraction of a ‘‘large’’ number (300) of cell
features. Although this practice provides greater op-
portunities for exploratory data analysis, it also in-
creases the probability of obtaining significant results
by chance alone. It is essential to understand that only
a limited number of descriptors can be included in
the formula of a classifier (i.e., a discriminator be-
tween populations). For assessment of discriminator
effectiveness, it has been suggested that at least five
independent samples are required for each feature in-
cluded in the formula classifier.13 In multiple pub-
lished studies that discuss cell image analysis, the ra-
tio of the number of samples to the number of features
is less than five. Although the majority of such studies
reported optimistic discriminatory ability between
two populations of cell types, the possibility of mis-
leading results remains significant.17 Thus, the results
presented in this paper must be considered prelimi-
nary only.
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