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ABSTRACT

Conformational ensembles of biopolymers, whether
proteins or chromosomes, can be described us-
ing contact matrices. Principal component analysis
(PCA) on the contact data has been used to in-
terrogate both protein and chromosome structures
and/or dynamics. However, as these fields have de-
veloped separately, variants of PCA have emerged.
Previously, a variant we hereby term Implicit-PCA (I-
PCA) has been applied to chromosome contact ma-
trices and revealed the spatial segregation of active
and inactive chromatin. Separately, Explicit-PCA (E-
PCA) has previously been applied to proteins and
characterized their correlated structure fluctuations.
Here, we swapped analysis methods (I-PCA and E-
PCA), applying each to a different biopolymer type
(chromosome or protein) than the one for which they
were initially developed. We find that applying E-PCA
to chromosome distance matrices derived from mi-
croscopy data can reveal the dominant motion (con-
certed fluctuation) of these chromosomes. Further,
by applying E-PCA to Hi-C data across the human
blood cell lineage, we isolated the aspects of chromo-
some structure that most strongly differentiate cell
types. Conversely, when we applied I-PCA to simula-
tion snapshots of proteins, the major component re-
ported the consensus features of the structure, mak-
ing this a promising approach for future analysis of
semi-structured proteins.

INTRODUCTION

The functions of large classes of biopolymers are related
to their structural stability and conformational dynamics,
from small scale conformational changes of proteins re-
sponding to chemical and physical stimuli to large scale
genome structure reorganization. While the 3D structure of

biopolymers is often represented by the Cartesian coordi-
nates of each point along the polymer, other structure repre-
sentations, such as contact matrices, can facilitate analyses
of the configuration and motion of biopolymers in desirable
situations. The structural features of a folded polymer can
be captured by recording the contacts formed between dif-
ferent regions of the molecule. This information can then be
organized in a contact matrix form in which the linear con-
stituents (e.g. amino acid residues or genomic positions) of
the polymer are labeled along the rows and columns of the
matrix.

In protein studies, such contact information is typically
derived from a 3D structure (obtained from either exper-
iments and/or computer simulations), defining a ‘contact’
formed when one region of the amino acid chain is within
a certain distance of another region (1,2). For chromo-
somes, a similar distance threshold approach can be em-
ployed when high resolution microscopy data (showing
the path of a chromosome in 3D space) are available (3).
Even more commonly, chromosome contact matrices are
measured directly using chromosome conformation cap-
ture experiments (4,5). This approach chemically captures
contacts between chromosome regions using formaldehyde
crosslinking followed by DNA digestion and proximity lig-
ation. Then, in the genome-wide version of the technique,
Hi-C, contacts are identified by high throughput sequencing
of ligated DNA pairs (6). In most Hi-C experiments, the re-
sulting chromosome contact matrices report the frequency
of contacts between pairs of chromosome loci within a pop-
ulation of cells. Single-cell Hi-C techniques are also emerg-
ing (7–9), resulting in contact maps at the single-cell res-
olution, which are directly analogous to the contact maps
of protein snapshots described above. Even Genome Archi-
tecture Mapping, which uses sequencing of cryosectioned
nuclei to identify colocalized chromosomal regions, results
in linkage matrices, which are then treated as chromosome
contact matrices (10).

Contact matrix descriptions of polymer configurations,
and the ensuing statistical analyses of the matrices, have
proven to be tremendously useful for the study of protein
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and chromosome structures. The first chromosome con-
tact matrices generated by Hi-C immediately revealed major
principles of chromosome folding. In particular, a ‘plaid’
pattern on the contact map was found to represent the
spatial compartmentalization of active and inactive regions
(also termed the A and B compartment) along the chromo-
some (6). This pattern has been mathematically isolated and
quantified using a version of Principal Component Anal-
ysis (PCA) (11) in which each row of the contact matrix
is treated as a set of stochastic variables (details described
below) (6). As increasing numbers of contact matrices are
published in different cell types and conditions, PCA has
continued to be frequently used to analyze the chromosome
spatial compartmentalization from Hi-C data (12,13) and
linkage matrices from Genome Architecture Mapping (10).
Meanwhile, PCA has been extensively used to characterize
protein conformational dynamics, especially directly using
the Cartesian coordinates of the system (14–16). In recent
years, PCA has also been applied for the statistical anal-
ysis of other degrees of freedom (DOFs), such as torsion
angles (17) and residue-residue contacts (18) in the protein
system. Particularly, treating each individual contact as a
degree of freedom, PCA assisted researchers in identifying
regions of protein with concerted dynamics of contact form-
ing and breaking (18–24).

Even though the underpinning data structure of con-
tact matrices is identical, because protein and chromosome
structure analyses have largely been developed in separate
communities of researchers thus far, there has been little
comparison of the analysis methods used to study these
contact matrices. Particularly, no comparison between dif-
ferent approaches to similar analyses (such as PCA) has
been made. A unified viewpoint and comparison of the
analyses performed using contact matrices in these different
biological systems will facilitate the further development
of these research areas. Here, we formally describe the dif-
ferences between the divergent contact correlation analyses
that have been used to date almost exclusively on either pro-
teins or chromosomes. By swapping approaches and apply-
ing both versions of PCA to both chromosome and protein
systems, we elucidate the advantages, disadvantages, and bi-
ological insights about protein and chromosome structure
that can be determined by each method. We term the PCA
method previously developed for chromosome contact ma-
trices ‘implicit contact correlation analysis’ (I-PCA) and the
method previously developed for proteins ‘explicit contact
correlation analysis’ (E-PCA). Analysis details and an in-
depth comparison between I-PCA and E-PCA are provided
in the Materials and Methods section.

In this study, we first apply E-PCA (previously devel-
oped for proteins) to chromosome contact matrices. We
begin by analyzing chromosome structure data that more
closely mimics protein structure snapshots: 3D coordinates
of chromosome structures within individual cells traced
by microscopy (3). Using detailed snapshots of individ-
ual chromosome structures as input to E-PCA may reveal
molecular fluctuation at a single cell level, parallel to pre-
vious analysis of dynamics using E-PCA on protein snap-
shots. Notably, however, the only PCA analysis performed
in the original analysis of this chromosome snapshot data
was MI-PCA (a variant of I-PCA, defined below, as usu-

ally performed on Hi-C maps) on the mean spatial distance
matrix to show that spatial compartments revealed by imag-
ing matched previous reports from Hi-C data. Our E-PCA
results reveal the primary correlated fluctuation modes of
chromosome structure across individual cells. We further
explore the utility of the E-PCA method for chromosome
structure analysis by applying it to chromosome contact
matrices from ensemble Hi-C data collected across a group
of related blood cell types (25). Our results show that E-
PCA can highlight dominant modes of chromosome struc-
ture changes between cell types. We demonstrate the results
of applying I-PCA and MI-PCA contact analyses to protein
conformations using two nuclear hormone receptor com-
plexes as examples. Swapping methods (applying E-PCA
to chromosomes and I-PCA to proteins) allows us to find
analogies and contrasts between methods and to reveal new
aspects of these biopolymer systems.

MATERIALS AND METHODS

Our statistical analysis has two stages: acquisition of con-
tact matrices and statistical analysis of these matrices. Thus,
we first describe how one can obtain the contact matrix en-
semble ui j from three main resources studied here (i. TAD
imagining of chromosome, ii. Hi-C method of chromosome,
iii. simulation of protein) for downstream covariance anal-
yses. We then compare covariance analysis approaches (E-
PCA versus I-PCA) on these ensembles of contact matrices
obtained.

Distance matrices from TAD imaging data

The first type of contact matrices we studied is derived from
microscopic detection of labeled TAD positions along chro-
mosomes (chr21 and chr22), obtained directly from (3). In
the experiment of Wang et al. (3), Topologically Associat-
ing Domains (TADs) identified by previous ensemble Hi-
C experiments (26) were used as structural subunits along
chromosomes and were labeled with fluorescent probes in
IMR-90 fetal lung fibroblast cells. After imaging fluores-
cent probes specific to certain loci along chromosomes, the
authors of this study reported Cartesian coordinates of N
TAD labels along chromosomes from a set of T individual
cells. From this data, we constructed a symmetric matrix of
3D distances between each pair of TADs, li j , resulting in
m = N(N − 1)/2 independent nonzero distance variables,
whereas the N diagonal variables li i are always 0. If needed,
one could further convert li j into a discrete contact matrix
ui j by defining a minimum distance cutoff that should be
called a ‘contact’. Here, instead of converting distances into
discrete values via a cutoff, we directly used the set of T dis-
tance matrices li j as input to the E-PCA covariance analysis.

Hi-C contact matrices across the blood cell lineage

The second type of contact matrices we studied here is from
Hi-C experiments performed on nine blood cell-types, ob-
tained from (25) and Hi-C data on GM12878 cells (27).
Specifically, the nine different cell types selected from the
blood cell lineage were: (i) neutrophil, (ii) monocyte, (iii) M0
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macrophage, (iv) naı̈ve B-lymphocyte, (v) naı̈ve CD4+ T-
lymphocyte, (vi) naı̈ve CD8+ T-lymphocyte, (vii) erythrob-
last, (viii) megakaryocyte (25) and (ix) lymphoblast cell line
GM12878 (27). Using a proximity ligation approach, Hi-
C directly measures the frequency of contacts made be-
tween any two regions in the genome within a popula-
tion of cells. Thus, for population ensemble Hi-C chro-
mosome structure data, the value of ui j is the number of
cross-links between two genomic loci detected in the pop-
ulation (6). For the blood cell types, approximately 80 mil-
lion formaldehyde crosslinked cells of each cell type were
used to probe interacting regions of chromosomes. Restric-
tion enzyme digestion followed by ligation between inter-
acting pieces of DNA created a library of chimeric DNA
molecules representing all contacting chromosomal regions.
By high-throughput paired end DNA sequencing, the num-
ber of contacts between each pair of chromosomal loca-
tions was measured. With permission from the PCHI-C
Consortium that generated this data and the European
Genome-phenome Archive, we downloaded the raw pairs of
interacting DNA sequences and mapped them to their ge-
nomic positions, resulting in one contact matrix for each cell
type containing raw counts of pairwise contacts between
all chromosomal positions. Before using this contact ma-
trix for E-PCA and I-PCA analyses, we selected bin sizes
to coarse-grain the contact data and performed normaliza-
tion and filtering to remove known experimental biases as
previously described (12). To analyze a 17 Mb section of
chr10, we binned the contacts into 250 kb bins. We normal-
ized these matrices by the expected number of random con-
tacts at each genomic distance, as described previously (28).
To make a direct comparison to the TAD imaging matrices,
we also summed Hi-C contacts within the same genomic
positions measured in the TAD imaging study, further nor-
malizing the number of contacts to account for the varying
sizes of regions used for imaging.

Protein contact matrices from computational simulations or
NMR data

The third type of contact matrices ui j that we studied here is
from protein conformations, mostly from atomistic molec-
ular dynamics simulations of nuclear receptor complexes.
The detailed system setup and simulation protocol was re-
ported previously (23). The simulation was performed at
constant temperature (300 K) and pressure (1 atm) for 200
ns using NAMD (29), where we recorded conformations ev-
ery 1 ps. In the current protein study, system size N is the
number of amino acid residues and T is the number of sim-
ulated conformations. For a given conformation, we con-
struct a contact matrix ui j of size N × N. We deemed a par-
ticular contact formed (ui j = 1) if any atoms belonging to
residues i and j are closer than the cutoff 4.2 Å (ui j = 0
otherwise). Other more elaborate improvements of contact
matrix definition include using continuous contact energy
(22) and coarse-graining the contacts (23). Additionally, we
constructed contact matrices using an NMR ensemble (T =
the number of NMR models) from hen lysozyme (PDB ID
1E8L). As with the simulated conformations, a contact was
recorded between two amino acid residues if the distance
between them fell below the 4.2 Å cutoff.

Figure 1. An illustration of contact correlation analysis methods. Here,
identical input information, an ensemble of contact matrices, is being di-
gested two different ways. In explicit contact correlation analysis (E-PCA),
specific contacts are treated as independent variables and their covariance
matrix is calculated using the whole contact matrix as one sample (dot-
ted red line). On the other hand, implicit contact correlation analysis (I-
PCA) treats rows of the contact matrix (a contact pattern between one
constituent of the polymer and the rest of the polymer) as independent
variables and calculates the covariance matrix using each row as one sam-
ple (dotted red line).

A comparison between I-PCA and E-PCA approaches

Both I-PCA and E-PCA begin with contact matrices of size
N × N (for a polymer comprised of N constituents: amino
acids or genomic bins, for example). Once contact matri-
ces are obtained, a covariance matrix of the contact vari-
ables can be calculated. Then, PCA of the covariance ma-
trix reveals major properties of the contact pattern. The es-
sential difference between E-PCA and I-PCA is how the
stochastic contact variables are defined. In E-PCA analy-
sis, explicit contacts (contacts between two explicitly labeled
regions of the biopolymer, i and j ) are treated as indepen-
dent variables ui j . E-PCA tracks the correlation between
these N2 contact elements ui j (as shown in the dashed red
square in Figure 1) across T snapshots or samples, and the
size of covariance matrix is N2 × N2 in principle, as illus-
trated in Figure 1. Practically, due to symmetry, only the
N × (N + 1)/2 unique contacts are used. Thus, the covari-
ance matrix for E-PCA explicitly provides correlation infor-
mation among four regions (i , j , k, and l) of the biopoly-
mer, Ci jkl = 〈(ui j − 〈ui j 〉)(ukl − 〈ukl〉)〉, that is, when i and
j form a contact, whether k and l are likely to form a contact
(Figure 1). Here <> indicates an ensemble average.

On the other hand, I-PCA has less stochastic contact
variables, labeled as ui , as shown in the red rectangle (one
row or column) of Figure 1. For a polymer with N units,
one has only total N stochastic variables. The contact vari-
able ui registers whether a contact between a labeled region
i and another untagged region of the polymer is made. Each
contact matrix has N rows and thus contributes N sample
points, while in E-PCA, by contrast, each entire contact ma-
trix contributes to 1 sampling point. The covariance matrix
of I-PCA, Ci j = 〈(ui − 〈ui 〉)(u j − 〈u j 〉)〉, reveals the corre-
lation between the interaction pattern between i and the rest
of the polymer vs. the interaction pattern of j with the rest
of the polymer (Figure 1).

A notable difference between E-PCA and I-PCA is the
number of contact degrees of freedom. As shown in the
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cartoon illustration shown in Figure 1, in a 4 × 4 matrix,
I-PCA examines the correlation between four contact vari-
ables, each representing the contact pattern of one biopoly-
mer element (e.g. genomic bin) with the rest of the poly-
mer. E-PCA, on the other hand, examines the correlation
between sixteen contact variables across many related con-
tact matrices, where each variable is an explicit contact be-
tween two sites along the biopolymer. In general, for a to-
tal T contact matrices of size N × N, E-PCA identifies N2

contact variables (more precisely, N(N + 1)/2) and total T
sampling data points while I-PCA identifies total N con-
tact variables and total T × N data points. When I-PCA
is applied to a system with only one population-averaged
contact map (T = 1; as in a population Hi-C experiment),
we term the approach ‘mean implicit contact correlation
analysis’ (MI-PCA). MI-PCA can be applied to systems
with many contact matrix snapshots by first obtaining the
mean contact matrix of T matrices and then performing I-
PCA on this mean matrix. Thus, MI-PCA has N contact
variables and only N data points. Since the computational
complexity of obtaining Ci jkl is in the order of O(N4), and
the computation time increases in proportion to the quartic
power of the system size N, we also term E-PCA a four-
point correlation analysis. Thus, E-PCA is more computa-
tionally demanding than I-PCA. On the other hand, I-PCA
is beyond a two-point correlation analysis, since the corre-
lation examined using I-PCA is not about the direct con-
tacts formed between i and j . Although the size covariance
matrix of I-PCA is N × N, the computational complex-
ity of I-PCA is rather O(N3), since each matrix contributes
N sampling points (rows). These technical differences of
choosing stochastic variables dictate the natures of the anal-
yses. As we demonstrated below, both methods have dras-
tically different results, despite having identical data as the
entry point.

RESULTS

Explicit contact correlation analysis reveals correlated vari-
ations in chromosome structure between individual cells

E-PCA has previously been used to examine correlated fluc-
tuations across many snapshots of protein structures. In the
early days of 3D chromosome conformation studies, there
were not enough sets of data available on different individ-
ual chromosome structures to make this analysis possible
for chromosomes. Now, with increasing numbers of Hi-C
datasets, single-cell Hi-C, and high-resolution microscopy
data, we can apply E-PCA to chromosome structure data.

For our first application of E-PCA, we examined an
ensemble of structural data on human chromosome 21
(chr21) obtained by high resolution microscopy (3). These
microscopy data provide the 3D spatial coordinates of each
TAD along chr21 in 120 cells (only 47 cells having full data
and are being used here, i.e. T = 47). The original analy-
sis of this data used MI-PCA on the average chromosome
structure to define the ‘A’ and ‘B’ compartments (positive
and negative elements of eigenvector PC1) and to demon-
strate that active and inactive chromatin compartmentaliza-
tion is detected with microscopic chromosome tracing just
as it is found with ensemble average Hi-C data. One com-
partment (‘A’) turns out to contain the relatively active, gene
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Figure 2. The eigenvalue distribution for various covariance matrices stud-
ied in this work. The main systems we consider (TAD imaging for chromo-
some 21, Hi-C from chromosome 10, and the protein complex RXR:TR)
are shown in solid lines and comparison systems (TAD imaging from chr22
and the protein complex RXR:CAR) are shown in dashes.

rich regions of the chromosome while, the other (‘B’) is gen-
erally inactive and gene poor (6,30). We applied E-PCA to
this data to study correlated structural fluctuations across
the snapshots of chromosomes from single cells.

For chr21, 34 TAD positions were measured for each
cell (N = 34). We first constructed a matrix of pair-
wise distances between each combination of TADs along
the chromosome, giving m = N(N − 1)/2 = 561 pair-
wise distance variables (Methods). We then constructed the
covariance matrix of distances across all 47 cells Ci jkl =
〈(li j − 〈li j 〉)(lkl − 〈lkl〉)〉, where li j is the distance between
TAD i and j , and <li j> its ensemble average. We performed
E-PCA on this covariance matrix of distances. For compar-
ison, we also displayed in Supplemental Information (SI)
the results of I-PCA for the same data set (SI Figure S1).

How quickly the top eigenvalues of the covariance matrix
decrease with the ranking index provides an overall idea of
how degenerate the dataset is. When a conformational en-
semble has only a few major modes of fluctuation, the first
few eigenvalues will dominate the distribution and on the
other hand, if many eigenvalues are nearly equally high, we
can conclude that there are many different motions in the
ensemble of structures. The eigenvalues of this and other
systems we examined are shown in Figure 2. To facilitate an
effective comparison across different types of matrices, we
normalized these eigenvalues by their trace (the sum of the
eigenvalues). Specifically, for this chr21 microscopy data (3),
we have examined the eigensystems of E-PCA, I-PCA, and
Cartesian covariance matrices. Regardless of the method
used, all eigenvalues drop to zero after the 46th eigenvec-
tor, reflecting that we have only 47 conformations (cells). Al-
though we focus on reporting the results of chr21 below, our
study of chr22 TAD imaging data revealed similar features
which demonstrated the robustness of our conclusions.

The top three principal components (PCs, eigenvectors
of the covariance matrix) of E-PCA are displayed in a
two-dimensional symmetric matrix known as displacement
matrix di j , as shown in Figure 3A–C. Each displacement
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Figure 3. E-PCA applied to chr21 TAD imaging data reveals modes of
chromosome fluctuation across individual IMR90 cells. The displacement
matrix view of PC1, PC2, PC3 of E-PCA are shown in (A–C). PC1 from
MI-PCA on the same system is shown as a bar-graph at left and TAD ele-
ments are colored according to general domains detected by E-PCA. The
corresponding 3D representations are shown in (D–F), where the values of
displacement matrix elements bi j are used to color cylinders that connect
TADs i and j . Less significant relationships (cutoff is |bi j | < 0.06) are not
shown. The reference 3D path of the 34 TADs (the configuration detected
for a chosen cell, cell #1) is shown in (G) along with a reference for the
genomic position of each TAD probe. Explanation was made in SI for the
selection of cell #1 as the reference.

matrix represents a specific mode of fluctuation around the
mean, dij ∼ δuij = uij − <uij>. Each conformational ensem-
ble only has one mean contact matrix <uij> but displays
many orthonormal modes of fluctuation. The displacement
matrix shows how each explicitly expressed contact con-
tributes to the given mode of fluctuation. When a partic-
ular contact, say one between i and j , shows strong blue
(a highly positive value of di j ), the dynamics of that con-
tact are highly significant for this mode of fluctuation. Ad-
ditionally, the contact dynamics of blue regions are corre-
lated, i.e. the contacts form and break in sync with each
other. Similarly, the strongest red (negative) regions are also
highly correlated with each other in their fluctuations, but
opposite (anti-sync) from the blue regions. When one red
contact is formed, other red contacts are likely to be formed
as well, while blue contacts are likely to be broken. The cor-
responding three-dimensional rendition of eigenvectors is
shown in Figure 3D–F where strong fluctuation relation-
ships between different parts of chromatin are rendered as
colored cylinders. Note that we choose to use the 3D coordi-
nates of the first cell to display TAD positions instead of an
average (see Supplemental Information for further explana-
tion). Both the 2D displacement matrix plot and 3D render-
ing of the E-PCA eigenvectors provide essential information
on the biopolymer’s structural changes as concerted modes
of contact forming and breaking, or in the current case us-
ing a distance matrix, positions moving toward and away
from each other.

The dominant eigenvector from E-PCA analysis of chr21
TAD imaging, E-PC1, shows a prominent and simple inter-
domain motion (association and dissociation) between two
large-scale domains (TAD 1–28 and TAD 29–34), indicated
by the strong blue region formed in Figure 3A. The intrado-
main motions are primarily absent with small anticorre-
lated features (subtle red regions), i.e. when each domain
is slightly more packed (indicated by the shortening of the
distances between intradomain TADs, subtle red), the two
domains dissociate (indicated by the lengthening of the dis-
tances between interdomain TADs, strong blue), and vice
versa. The matrix for eigenvector PC2 in Figure 3B, on the
other hand, shows intricate interactions between four in-
dependent regions (Domain 1: TAD 1–15, which belongs
to the ‘B’ compartment, colored by magenta; Domain 2:
16–22, ‘A’, cyan; Domain 3: 23–28, ‘B’, green; and Domain
4: 29–34, ‘A’, yellow) defined by their correlated dynamics.
Interestingly, these domains with correlated interaction dy-
namics generally correspond well with the average domain
compartmentalization identified by the top PC of MI-PCA
(shown as a bar graph label in Figure 3A). Indeed, the in-
teractions contributing most strongly to PC2 (darkest red)
are between neighboring domains, 2 and 3, that are, on av-
erage, spatially separated from each other in the ‘A’ and ‘B’
compartments respectively. When these two domains (2,3)
move closer together, so does another pair of domains (1,2).
This might be thought of as a concerted ‘stretch and com-
press’ motion within the first three regions of TADs. When
the three domains stretch further away from each other, an
anti-correlated interaction tends to be formed between the
telomeric domain (TAD 29–34) and small local segments
of the three domains (blue regions of the heatmap). Con-
versely, when the first three domains become aggregated,
the last domain wants to break away. The first two PCs
suggest that dynamic changes in chr21 structure largely oc-
cur within inter-compartment contacts (‘A’-‘B’ type of con-
tacts, such as 1–2, 2–3, and 1–4) with relatively little fluc-
tuation contribution from intra-compartment contacts (‘A’-
‘A’ or ‘B’-‘B’ type, such as 1–3). In Figure 3C, the mode of
motion reported by eigenvector PC3 is much more local-
ized. Similar to the interpretation of PC2, the classification
of four regional domains (TAD 1–15, 16–22, 23–28, 29–34)
can be utilized to describe these interactions.

Overall, this E-PCA method reveals information about
the dynamics of chromosome compartmentalization within
individual cells, rather than just reporting an average spa-
tial segregation. It allows us to begin to address persistent
questions within the chromosome conformation field, such
as how certain interactions or folding patterns relate to one
another dynamically. These correlated movements could be
related to the fact that different genes can be regulated in
sync. To alleviate the concern that our results could be af-
fected by the small sample size of chromosome conforma-
tions, we split the 47 sampling points (individual cells) into
two halves (first 23 and last 24) and performed E-PCA anal-
yses on each half. We found a covariance between the nor-
malized top eigenvectors of 0.834, which indicates the mo-
tions detected are genuine, and are not resulting from ran-
dom noise of a small sampling size (SI Figure S2).
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Key differences in 3D chromosome structure between cell
types are captured by explicit contact correlation analysis

The above analysis shows that E-PCA is useful to analyze a
set of chromosome contact or distance matrices from single-
cell data. However, population-averaged Hi-C data is the
only available structural information in many situations.
Can contact PCA help us detect chromosome conforma-
tion changes using a set of average contact maps from differ-
ent cell types or conditions? MI-PCA has been used toward
this goal, and, by comparing vectors of PC1 values from
MI-PCA, previous work has identified regions of chromo-
somes that, for example, switch their association from the
‘A’ compartment to the ‘B’ compartment on average in dif-
ferent cell types (13,25,31–34). A previous study has applied
an E-PCA approach to single cell Hi-C data from different
cell types and found that the resulting PC projections do
tend to distinguish between cell types (9). Here, we inves-
tigate whether E-PCA can differentiate cell types based on
population average Hi-C maps and, beyond simple classi-
fication, what the structural fluctuations defining these dif-
ferences are. We applied E-PCA to chr21 (as studied in the
TAD imaging data) and the first 17 Mb of chr10 across Hi-C
data from nine related human blood cell types (25,27) (Fig-
ure 4A). We chose this chr10 region as a representative ex-
ample from a mid-size chromosome with no major repet-
itive regions and strong A/B compartmentalization. Hi-C
data was binned at 250 kb, to emphasize the compartment
level of genome structure, and processed and normalized as
previously described ((12,28), Materials and Methods Sec-
tion and SI). Other regions or levels of resolution could be
chosen based on the particular biological focus or genes of
interest.

For this blood cell lineage data, the eigenvectors show the
dominant chromosome conformational differences across
cell types, whereas in the TAD imaging data, the conforma-
tional differences occur within an ensemble of cells of the
same type. Since there are only 9 cell types, thus the number
of contact matrices T = 9, only the top 8 eigenvectors and
corresponding eigenvalues are nontrivial (Figure 2). Still,
the statistics for this eigensystem is robust, since each Hi-C
data point is not obtained from a single instant snapshot of
the chromosome, but rather from an ensemble of millions
of cells.

Here, PC projection is used distinguish chromosome con-
formations of one cell type from another. PC projections
cast each conformation onto the PCs and render the confor-
mations using the new coordinates spanned by the eigenvec-
tors of the covariance matrices. The PC projection of each
cell type onto E-PC1, 2 and 3 clearly reflects known rela-
tionships and differences between cell types (Figure 4A and
B). From this projection alone, we can see that E-PC1 tends
to segregate the myeloid lineage cells (macrophage, mono-
cyte and neutrophil; all have low values of E-PC1 projec-
tions) from the lymphoid lineage cells (which have higher
values of E-PC1 projections). E-PC2 and E-PC3 further
segregate within these major classes, distinguishing, for ex-
ample, macrophages from neutrophils. Meanwhile, highly
related cell types like nCD8 and nCD4 cluster near each
other on all three PC axes. The displacement matrices for
E-PC1 and E-PC2 (shown in Figure 4C, analogous to Fig-

ure 3A–C) show the interaction patterns that most distin-
guish these sets of cell types. Similar to the observations
from the TAD imaging data above, the major features of
E-PC1 relate to the A and B compartment segregation iden-
tified by MI-PCA (depicted under the displacement matrix
in Figure 4C). However, unlike MI-PCA, which focuses on
the average associations of a genomic region with A or B
and how that mean association changes between cell types,
E-PCA reports on the correlated changes in the A/B com-
partmentalization of regions across the cell types. For E-
PC1, the strongest positive values represent interactions be-
tween A and B compartment bins while the strongest neg-
ative values often represent interactions between regions of
the same compartment identity. This result suggests that the
strongest differentiator between cell types is the strength of
compartment segregation. Indeed, representative raw Hi-
C contact matrices from cell types with high and low val-
ues of E-PC1 projections (Figure 4D) show that cells like
neutrophils and macrophages have a stronger segregation
of A and B compartment regions (seen as a plaid pat-
tern in the contact map) compared to cells like megakary-
ocytes and GM12878 lymphoblasts. E-PC2 shows that be-
yond strength of compartmentalization overall, there are
more specific patterns of interaction within these broader
domains that further distinguish between cell types. For
example, across cell types, higher local interactions within
10p14 correspond to lower distant interactions between this
region and neighboring regions, and vice versa. We find that
these major fluctuation modes are similar, whether or not
the Hi-C data is first normalized to remove the generic de-
cay of interactions over increasing genomic distance, as is
often done before performing MI-PCA on Hi-C data (6) (SI
Figures S3 and S4)

E-PCA analysis of chr21 Hi-C data (SI Figure S5) iden-
tified dominant modes of fluctuation between blood cell
types that were similar to the fluctuations across individ-
ual IMR90 cells from the TAD imaging results of the pre-
vious subsection. As with IMR90 imaging data, E-PC1
for these blood cell types shows the separation of chr21
into two large-scale domains. The higher resolution ‘sub-
compartment’ classifications (A1, A2, B1 and B2) available
for GM12878 (35) show that one of these domains belongs
to A1 while the other is more interspersed with B1 and B2.
Future comparisons of E-PCA results with mean structure
results such as compartment, sub-compartment, and TAD
structures may reveal how the basic structure of a chromo-
some relates to its dynamics.

Implicit contact correlation analysis reveals consensus fea-
tures of protein conformational ensembles

Besides using contact analysis for characterizing chromo-
some conformations, this type of analysis has been promi-
nent for studying protein folding and structures. As noted
above, E-PCA was developed for studying protein confor-
mation dynamics and I-PCA (particularly, MI-PCA) for
chromatin structural analysis. Here, we demonstrate what
I-PCA can reveal about protein structure and/or dynamics.
I-PCA considers two types of deviations between samples:
(i) a static one that emphasizes the difference between dif-
ferent rows of either of the same matrix or different matrices
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Figure 4. E-PCA applied to Hi-C data from 9 different blood cell types provides insight about chromosome structure differences between cell types. (A)
The blood cell lineage from which the Hi-C data are derived, showing developmental relationships. Abbreviations used in subsequent panels are defined.
(B) The projection of each cell type’s Hi-C contact map onto E-PC1, 2 and 3. Cell types segregate in this space according to lineage relationships. (C) The
displacement matrix for E-PC1 and E-PC2, showing the 17 Mb region of chromosome 10 from which the sample Hi-C data was drawn. (D) Representative
original input Hi-C contact matrices for this same region of chr10 for cell types with high and low E-PC1 or PC2 projections, visibly showing the contact
pattern differences between these categories of cell types.

(snapshots), and (ii) a truly dynamic one, the variance of the
same row in different matrices. The former term dominates
over the latter, linearly increasing with the matrix size N.
MI-PCA, on the other hand, only captures features of the
static structure.

Two sets of molecular dynamics simulations of protein
complexes were used in this study. The system setup details
have been reported previously for E-PCA analysis (20,21)
and are described in the Materials and Methods section.
Here, we focused on conformations from a long-time simu-
lation of the wild-type complex (23). Both protein systems
we considered contain a dimer of the ligand binding do-
mains of nuclear hormone receptors. One system is a dimer
complex between retinoid receptor (RXR) and thyroid re-
ceptor (TR), whereas the second system is a complex be-
tween the same RXR and another nuclear receptor, con-
stitutive androstane receptor (CAR). Including associated
ligands, the RXR(9c):TR(t3) system has total N = 493
residues with the internal indices as the following: RXR =
1–232; TR = 233–491; 9c = 492; t3 = 493 (unless specified
otherwise). Here ligands 9c (9-cis retinoic acid) and t3 (tri-
iodothyronine) are the corresponding ligands for RXR and
TR respectively. Similarly, the complex RXR(9c):CAR(tcp)
has N = 476 with the following breakdown: RXR = 1–
232; CAR = 233–474; 9c = 475; tcp = 476. A total of T =
200 000 conformations for each of the two complexes were

converted into contact matrices for the I-PCA and E-PCA
methods.

Figure 5 shows the top four eigenvectors of I-PCA for the
protein complex RXR:TR, both in the line representation
and in a 3D cartoon representation. The top eigenvector
(Figure 5A) shows a concerted anticorrelation between two
monomers of the complex and naturally separates the com-
plex as two halves (domains). One can also observe a cer-
tain level of symmetry between the monomers from I-PC1
of Figure 5. This is expected, given that the ligand binding
domains of the nuclear hormone receptors share the same
fold. The second eigenvector, I-PC2 also largely splits the
complex into two halves, though the splitting planes are dif-
ferent. I-PC2 separates the bottom half (N-terminus, H1,
H8, H9, half of H10, indicated by blue) and the top half (C-
terminus, H6, H7, half of H10, indicated by red). Similarly,
as shown in Figure 5C, I-PC3 is yet another two-domain
split while this time the front vs and the back. I-PC4 sep-
arates an interior core of the complex (center of H10 and
H7) and the outside surface (the rest). Note that the top
four eigenvectors are all large scale, global modes of fluc-
tuation. To evaluate how robust our I-PCA results are, we
also examined a second complex, RXR:CAR. One can see
the corresponding top two eigenvectors show overall simi-
larities, which indicates, at the large scale, the observed fea-
ture is robust. There are subtle differences observed: in I-
PC2, for example, the absolute values of the eigenvector are



8150 Nucleic Acids Research, 2018, Vol. 46, No. 16

A

B

C

D

I-PC1

I-PC2

I-PC3 I-PC4
E

0 100 200 300 400 500
Residue index

-0.2

-0.1

0

0.1

0.2
RXR TR, CAR

RXR:TR
RXR:CAR

I-
PC

2

F

0 100 200 300 400 500
Residue index

-0.2

-0.1

0

0.1

0.2
RXR TR, CAR

I-
PC

1 

0 100 200 300 400 500
Residue index

-0.2

-0.1

0

0.1

0.2

I-
PC

3,
4

RXR TR

PC3
PC4

RXR:TR
RXR:CAR

0 100 200 300 400 5000

100

200

300

400

500

TR

RXR

0 100 200 300 400 500
Residue index

-0.1

0

0.1

H2 H4H1 H3 H5 H6 H7 H8 H9 H10H11H12

PC
1 

I-PC1
MI-PC1
1 frame PC1

Figure 5. The I-PCA and MI-PCA results for protein conformations. (A)
The top eigenvector, I-PC1 for RXR:TR and RXR:CAR are shown in the
left panel, while the 3D view of the same information (for the RXR:TR
case) is shown on the right panel. Here the values of the elements of eigen-
vector I-PC1 are displayed by color on a cartoon representation of the pro-
tein complex. (B) The corresponding information for eigenvector I-PC2.
(C) The eigenvectors I-PC3 and I-PC4 for RXR:TR complex. (D) The
mean contact matrix of RXR:TR. (E) The contact matrix of one frame.
(F) The comparison of I-PCA, MI-PCA and 1-frame PCA.

larger for TR than RXR in the RXR:TR complex, while
in complex RXR:CAR, CAR is more subdued than RXR.
This would suggest that there is a more spatially extended
RXR structure and a more compact CAR structure.

MI-PCA only considers a single contact matrix and does
not study the dynamic correlations between any contact
events. As mentioned in the introduction, it has been the
best-known analysis method to determine the spatial sep-
aration of chromosome compartments. It is interesting to
see what MI-PCA can reveal about protein conformations.
Here, we applied MI-PCA to protein systems using the
mean contact map (shown in Figure 5D). For a comparison,
we also tested the MI-PCA analysis using a single frame,
replacing the mean contact matrix with one instant con-
tact map (Figure 5E). Surprisingly, the MI-PCA and, to
a lesser extent, 1-frame PCA result in a very similar PC1
and PC2 as were obtained using I-PCA on the full set of in-
dividual snapshots for the RXR:TR system (Figure 5F, SI
Figure S6). Larger differences between I-PCA and the cor-
responding MI-PCA results were apparent for subsequent
eigenvectors; in particular, differences between MI- and I-
PCA results were observed in the CAR part of PC2 for the
RXR:CAR system (SI Figure S7). These results echo the

similarities between I-PCA and MI-PCA across the Hi-C
data of nine cell types (SI Figure S3). Similarity between
I-PCA and MI-PCA, especially for the top eigenvectors,
indicates the I-PCA analysis largely reveals the consensus
features of the conformational ensemble, despite being a
method analyzing of covariance fluctuation and the inclu-
sion of individual snapshots. This focus on consensus fea-
tures arises from the fact that each row (or column) of the
contact matrix is treated as an independent entity in this
method. The total variation between rows of the same con-
tact matrix is far more significant than the difference be-
tween the same rows of different contact matrices. One can
expect a high similarity between MI-PCA and I-PCA for
a highly structured biopolymer, especially when N is large,
but we expect that the level of similarity would decrease
for semi-structured biopolymers such as chromosomes and
intrinsically disordered proteins. Besides protein ensembles
generated from simulations, an NMR conformational en-
semble of lysozyme was used to support our conclusion that
I-PCA and its variants are largely consistent and reveal the
consensus features of the ensemble (SI Figure S8).

Traditionally, E-PCA and Cartesian PCA include a PC
projection analysis, rendering the original conformation
sampling points using the newly found top PCs (for the kth

PC in E-PCA, the projection is �i j di j
(k)ui j (t)). Each con-

formation of the biomolecule (snapshot) is displayed on the
new coordinates spanned by the PCs, as previously demon-
strated in Ref. (18–20,36) and in the previous section of this
current work for chromosomes. One can observe the fluc-
tuation of individual conformations and the amplitude of
fluctuation, where PCs themselves are normalized eigen-
vectors and do not provide overall amplitude. We tested
PC projections for I-PCA (�i di

(k)ui (t)) and found that a
direct application of PC projection for I-PCA leads to a
largely ‘spreading-out’ pattern (SI Figure S9A). One rea-
son is that in I-PCA, each conformation (contact matrix)
contributes N sampling points. For total T conformations,
there are N × T points with two types of variance: ‘static’
(variance between different rows) and ‘dynamic’ (variance
of the same row in different matrices) types. When we fur-
ther averaged the PC projections from these N points, we
obtained a largely random distribution with few recognized
features. Perhaps, a more meaningful way to display the
variance is by focusing on the ‘static’ component, i.e., fo-
cusing on PC projections obtained from MI-PCA (SI Fig-
ure S9)

DISCUSSION

With the results we have obtained, we can make a more
detailed comparison between the two methods being used.
Based on how fast eigenvalues decay with increasing rank,
we observe that I-PCA contains fewer modes of fluctuation
whereas E-PCA typically has a slower decay and thus many
fluctuation modes. This makes sense since E-PCA focuses
on the explicit details of contacts being made. However, E-
PCA has a faster initial decay at the top eigenvalues which
means it contains fewer dominant modes, as shown in Fig-
ure 2. From a statistical analysis perspective, both methods
study the same amount of information. E-PCA has more in-
dependent variables and less sampling points, while I-PCA
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has more sampling points (by dividing one contact matrix
to N ‘pieces’) but fewer stochastic variables.

The fact that I-PCA has previously been associated with
chromosome structure analysis reflects the fact that initially,
Hi-C data were scarce, and little was known about the ba-
sic domains of the genome structure. Thus, it was useful in
this system to first focus on the consensus features of an
ensemble. However, our results here suggest that E-PCA is
also useful to study the correlated dynamics of chromosome
structures, particularly as increasing numbers of both en-
semble and single cell Hi-C datasets become available. I-
PCA (PC1) provides a simple dichotomy, separating two
types of domains: those with local contacts increasing (fold-
ing) and local contacts decreasing (unfolding). In contrast,
as was seen in E-PC2 of the TAD imaging data, E-PCA can
provide a detailed description of more complicated motions
involving multiple domains.

Conversely, as I-PCA mainly reveals consensus structural
features, it had not previously been applied within the pro-
tein field, in which structures are often already known and
dynamic fluctuation is often the focus. However, our results
suggest that I-PCA would have useful applications for semi-
structured polymers where the ground state is less defined.
For example, I-PCA is suitable for identifying protein do-
mains and self-interacting regions from simulation data of
intrinsically disordered proteins (37).

E-PCA explicitly tracks the correlated dynamics of poly-
mer contacts, thus revealing detailed correlated motions of
the biopolymer and/or structure variation in the ensemble.
However, E-PCA requires more data points than I-PCA,
and thus a main drawback of E-PCA is the fast rise of the
size of the covariance matrix N4. Such higher order correla-
tion analysis requires more computational resources for the
PCA data reduction task. For this reason, previous work
has involved selecting dynamic contacts or coarse-graining
contacts in the protein system to make the matrix size man-
ageable. The reduced dimensionality of I-PCA, therefore,
may be another feature which gives it value for studying pro-
tein structures, especially for large protein complexes which
contain thousands of amino acid residues.

Regardless of the types of the covariance matrix being
considered, it is always interesting to ask whether these
eigenvectors represent true dynamic motions of the biopoly-
mers under investigation, or whether these are simply a way
of illustrating the difference between different conforma-
tions in the ensemble. The answer has nothing to do with
a particular analysis procedure but rather depends on how
the ensemble data has been generated. In the current work,
the example using protein simulation is clearly an example
of dynamic motions, because the underlying data are time-
related snapshots of one protein complex. In contrast, the
second example of chromosomes involving different blood
cell types is clearly not reporting ‘dynamics’ but instead
the conformational differences between different biological
states. The first example with TAD imaging data is more
ambiguous, as chromosome conformation differences be-
tween cells could reflect either heterogeneous stable confor-
mations or conformations that interconvert within cells at a
physiologically relevant timescale.

An attempt at directly comparing the dynamic motions of
proteins and chromosomes is hampered by the inequivalent

sampling data. Simply judging from the eigenvalue distri-
bution, it would be tempting to conclude that the motion
of chromosomes is largely ‘frozen’ while proteins show a
larger variety of modes of dynamics. However, several fac-
tors make this an unfair comparison: the amount of data
(<100 snapshots in chromatin systems versus >100 000 in
protein systems) used for the current work is highly discor-
dant, the chromosome structure is likely much more hier-
archical than the protein structure, and the results can be
resolution-dependent.

As demonstrated from three distinct types of structural
information (TAD imaging, Hi-C and computer simula-
tion) of biopolymers across scales, PCA of contact informa-
tion can provide a powerful description of structural con-
sensus and fluctuation of proteins and chromosomes. Dif-
ferent types of contact analyses appear to have a preferred
scale: I-PCA is suitable to identify the overall consensus pic-
ture (ground state) such as domains, using large scale, low
resolution data with fewer conformations in hand; whereas
E-PCA highlights the major differences of an ensemble (the
dominant fluctuations around the ground state) when suffi-
cient data is available.
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