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Abstract

Fundamental questions remain about the application of omics in environmental risk assessments, 

such as the consistency of data across laboratories. The objective of the present study was to 

determine the congruence of transcript data across 6 independent laboratories. Male fathead 

minnows were exposed to a measured concentration of 15.8 ng/L 17α-ethinylestradiol (EE2) for 

96 h. Livers were divided equally and sent to the participating laboratories for transcriptomic 

analysis using the same fathead minnow microarray. Each laboratory was free to apply 

bioinformatics pipelines of its choice. There were 12 491 transcripts that were identified by one or 

more of the laboratories as responsive to EE2. Of these, 587 transcripts (4.7%) were detected by 

all laboratories. Mean overlap for differentially expressed genes among laboratories was 

approximately 50%, which improved to approximately 59.0% using a standardized analysis 
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pipeline. The dynamic range of fold change estimates was variable between laboratories, but 

ranking transcripts by their relative fold difference resulted in a positive relationship for 

comparisons between any 2 laboratories (mean R2 > 0.9, p < 0.001). Ten estrogen-responsive 

genes encompassing a fold change range from dramatic (>20-fold; e.g., vitellogenin) to subtle 

(∼2-fold; i.e., block of proliferation 1) were identified as differentially expressed, suggesting that 

laboratories can consistently identify transcripts that are known a priori to be perturbed by a 

chemical stressor. Thus, attention should turn toward identifying core transcriptional networks 

using focused arrays for specific chemicals. In addition, agreed-on bioinformatics pipelines and 

the ranking of genes based on fold change (as opposed to p value) should be considered in 

environmental risk assessment. These recommendations are expected to improve comparisons 

across laboratories and advance the use of omics in regulations
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INTRODUCTION

The use of biological indicators for environmental regulations, risk assessments, or 

monitoring programs requires careful investigation of the experimental method to generate 

reliable and reproducible data. Interlaboratory assays are conducted to validate the 

effectiveness and reliability of a method and to demonstrate how an established protocol 

performs under different conditions. In the context of ecotoxicology and environmental 

monitoring, interlaboratory comparisons have been conducted for physiological endpoints 

such as testosterone, 17β‐estradiol (E2), and 11‐ketotestosterone plasma steroids1,2; 

ethoxyresorufin‐O‐deethylase 3, 4; plasma vitellogenin 5; as well as acute and short‐term 

chronic whole‐effluent toxicity test methods 6.

The ability to generate consistent and reliable data widens applicability and improves 

predictability. More than 60 fish species are used in Canada’s Environmental Effects 

Monitoring program 7, 8, and each species can show divergent biological responses to 

endpoint perturbation 9. Because of this inherent species variability, a 25% or 2 standard 

deviation change from “normal” or baseline data in most whole‐organism endpoints is the 

recognized environmental effects monitoring threshold which triggers a change in the 

intensity, frequency, or focus of monitoring to further evaluate potential impacts at a 

particular site 10. This magnitude of response was found to be consistent using a variety of 

approaches to define a “critical effects size” 11, although the definition of “unacceptable” 

change in physiological measurements can be developed via a multistakeholder negotiation 

process 12.

To date, the inherent variability in physiological endpoints, the inability to narrowly define 

an ecologically relevant threshold level, and species differences in distribution and 

sensitivity limit their utility in large‐scale monitoring programs. The acceptable 

standardization of endpoints commonly used as biomarkers in endocrine‐disrupting 

compound assessments has been a struggle for nearly 2 decades 13. However, despite 
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variability, physiological endpoints (e.g., plasma vitellogenin) can be successfully linked to 

ecologically relevant endpoints (e.g., fecundity) using modeling approaches from laboratory 

experiments 14. Such a linkage requires consistent measurement of physiological endpoints 

because the predictive model is driven by the magnitude of physiological change.

A concerted effort by researchers to incorporate omics‐based tools in environmental risk 

assessment is under way, and stakeholders continue to debate the criteria needed to facilitate 

the acceptance of omics approaches into a regulatory framework. For molecular endpoints, 

challenges related to reproducibility, variability, and interpretation have been well 

documented in both laboratory studies 15, 16 and field studies 17. To include molecular 

tools more broadly in monitoring and risk assessment, it is necessary to standardize and 

validate methods via interlaboratory studies, to better develop an understanding of the 

magnitude of change which is meaningful, and to better understand baseline variability 17.

Transcriptomic studies generally identify a list of differentially expressed genes related to 

specific biological processes that are responsive to a treatment. The successful identification 

of impacted genes relies heavily on the minimization of technical variation. For example, 

many nonbiological variables have been identified that can influence interlaboratory 

comparisons of microarray data, such as sample processing, batch effects, platform type, 

microarray labeling, hybridization, filtering, data acquisition and normalization, and analysis 

18–22. Standard operating procedures and the introduction of reporting standards (minimum 

information about a microarray experiment) 23 have aided in the cross‐comparison of 

microarray‐generated data. The comparison of a list of differentially expressed genes and the 

reproducibility of this list across laboratories appear to be major goals of interlaboratory 

studies and support the notion that the list of differentially expressed genes is consistent 

among laboratories. Evidence that the standardization of microarray protocols can result in 

high levels of technical reproducibility, both within and between laboratories, has been 

demonstrated by the MicroArray Quality Control study 20.

To our knowledge, only 2 studies in ecotoxicology have conducted an interlaboratory study 

for microarray data (though it is acknowledged that other fields have conducted similar 

cross‐laboratory comparisons). Gene expression profiles of HepG cells exposed to 

benzo[a]pyrene were characterized by 2 individual laboratories using 2 different 

platforms24. Although the study was limited by a small sample size, it concluded that there 

existed a significant correlation in the identified differentially expressed transcripts in both 

laboratories following benzo[a]pyrene exposure as well as congruence in treatment‐specific 

effects, despite data variability. Building on this, 6 laboratories with experience in 

microarray analysis conducted a study that exposed amphipods to cyfluthrin‐spiked or 

control sediments 25. The conclusion of that study was that a subset of genes could be 

consistently identified as differentially expressed across laboratories, despite variability in 

factors such as ribonucleic acid (RNA) quality.

The objective of the present study was to evaluate the reproducibility of data collected from 

microarray analysis across multiple laboratories using the fathead minnow (Pimephales 
promelas), a widely utilized North American toxicological model in both laboratory 

ecotoxicology testing 26 and established monitoring programs developed by Canada’s 
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Environmental Effects Monitoring program 8 and the US Environmental Protection Agency 

27. Our questions centered on the ability of independent laboratories to generate comparable 

differentially expressed gene lists as well as to identify a suite of biomarkers of exposure 

exhibiting different magnitudes of response, despite differences in data processing and 

bioinformatics analyses. To this end, fathead minnows were exposed to a low, measured 

dose (∼15 ng/L) of 17α‐ethinylestradiol (EE2) because this pharmaceutical is measured in 

North American water systems (typically detected in the low nanograms per liter range) 28–

30. Livers were subsampled and expression profiles compared among 6 laboratories using 

platforms from the same production batch. The reasons for the use of this pharmaceutical 

were as follows: 1) EE2 is a model compound for inducing estrogenic effects in fishes 31–

34, specifically in the hepatic transcriptome in a number of small‐bodied fish species 35–37; 

2) EE2 has been widely studied using transcriptomics 35–38, and thus, there is a strong body 

of literature that can be leveraged for future comparisons; 3) EE2 has been demonstrated to 

affect physiological parameters such as steroid levels 39, 40 and vitellogenin 31, 40, as well 

as fecundity, secondary sexual characteristics, and gonadal somatic index (GSI) 40. It is also 

associated with population‐level impacts in fathead minnows in wild populations 41. Thus, 

the nexus between transcriptomic, physiological, and reproductive impacts using this 

pharmaceutical are most pertinent to monitoring programs.

METHODS

Experimental animals and EE2 exposure

All experimental procedures were approved by the Animal Care Committee (protocol no. 

2013‐3s‐09) and carried out at the Canadian Rivers Institute at the University of New 

Brunswick, Saint John, NB, Canada. Carbon‐filtered, dechlorinated city water was used for 

waterborne exposures. Reproductively mature, lab‐reared male fathead minnows aged 1.5 yr 

were housed in 400‐L fiberglass holding tanks at a density of approximately 60 fish per tank 

under a 16:8‐h light:dark photoperiod. The temperature of the holding tanks was kept at 24 

to 26 °C, and dissolved O2 was 95 to 100%. Fish were fed ad libitum 1 or 2 times a day. We 

acknowledge that fish were older than those used in laboratory toxicity testing (∼6 mo); 

however, the response of these animals to EE2 was dramatic and as expected, and the 

objective was to assess reproducibility of the transcriptome data among laboratories from the 

same liver.

17α‐Ethinylestradiol (catalog no. E4876; CAS no. 57‐63‐6, ≥98% purity) was purchased 

from Sigma. A stock solution of 1 mg/mL EE2 in ethanol was diluted to a final nominal 

concentration of 25 ng/L EE2 and 0.00025% ethanol. Control dose (vehicle control) without 

EE2 contained 0.00025% ethanol. There were 10 control and 11 treatment 18‐L glass 

aquaria, each with one male fish, all of equal size. The same temperature, photoperiod, 

oxygenation, and feeding conditions as stated previously also apply for the exposure and 

were measured daily. Fish were fed after the completion of each water change. Test waters 

were renewed at 24, 48, and 72 h by total draining of the tank (100% water change); and the 

experiment was terminated after 96 h.
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Water chemistry

Water samples were collected from 3 randomly chosen tanks for both control and EE2 

treatments as fresh preparations of solutions (i.e., immediately after water change) on days 2 

and 4. Samples were stored in brown glass bottles with Teflon caps in the dark at 4 °C until 

chemical analysis, which occurred approximately 1 mo later. Measurements of EE2 were 

performed in triplicate using an enzyme‐linked immunosorbent assay (ELISA) kit (Abraxis) 

following the manufacturer’s instructions. Briefly, 1 L of the water was concentrated on 

ODS‐C18 columns (AccuBond II; Agilent Technologies), eluted with dichloromethane, and 

evaporated to dryness with nitrogen and a heated water bath. Samples were then 

reconstituted with methanol followed by water, resulting in 2.5 mL of a 10% methanol 

solution (400‐fold concentration factor). The working range of this sandwich ELISA is 0.05 

to 3 μg/L. Interassay and intra‐assay coefficients of variation (CVs) using positive controls 

are typically 9.9 and 4.5%, respectively.

Experiment termination

At the conclusion of the exposures, fish were anesthetized using 250 mg/L buffered tricaine 

methanesulfonate (Sigma), and fish fork length and weight were recorded. Blood samples 

were collected from the caudal sinus into heparinized hematocrit tubes (Fisher Scientific) for 

plasma vitellogenin analysis and centrifuged at 2000 g for 10 min, with the resulting plasma 

being stored at −20 °C for vitellogenin quantification. Fish were then euthanized by spinal 

severance. Liver and testis weights (±0.01 g) were recorded to calculate morphometric 

parameters to ensure that there were no differences between treatment groups in GSI (gonad 

wt/body wt × 100) or liver somatic index (LSI; liver wt/body wt × 100). Each fish liver was 

then immediately subdivided into 7 equally sized pieces, and each subdivided liver was 

flash‐frozen in individual Eppendorf® 1.5‐mL centrifuge tubes on dry ice. Multiple pieces of 

hepatic tissue were harvested from alongside the intestine and scooped into a single pile. 

Thus, tissue pieces were mixed as effectively as possible prior to distribution into the 

separate tubes. Tissues for gene expression analysis were stored at −80 °C until RNA 

extraction. Eight control fish and 8 treated fish were chosen at random to be analyzed by 

every laboratory for the microarray analysis; one remaining set was kept as a backup. 

Therefore, every laboratory received a liver subsample from each of 8 control and 8 exposed 

fish, totaling 16 liver subsamples to be used with 2 slides containing 8 × 60K probes 

(detailed in the Microarray processing and analysis by each individual laboratory section).

Plasma vitellogenin levels

Plasma vitellogenin was measured at the University of New Brunswick’s Saint John 

Laboratory using a commercial fathead minnow vitellogenin ELISA kit (Cayman Chemical; 

no. V01018401). Control samples (n = 8) were diluted 1:1000 and 1:1 000 000, while 

treatment samples (n = 8) were diluted 1:100 000 and 1:1 000 000 using the provided 

dilution buffer. Two treatment samples were too concentrated to obtain an absorbance 

reading and were not used. All samples were analyzed in duplicate, and the CV between 

duplicates was <20% (average CV 3%). The working range and level of detection of this 

sandwich ELISA are 0.05 to 50 ng/mL and 0.02 ng/mL, respectively.
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Participating laboratories

Sixteen liver samples (8 control and 8 exposed) were shipped on dry ice by courier in 

numbered (blinded) vials to 6 laboratories with experience in microarray analysis. 

Participants were asked to check the integrity of the parcel, the presence of dry ice, and the 

status of the samples immediately on receipt. Each laboratory was given specific instructions 

on sample processing, detailed in each of the following sections. Microarrays were also 

provided to each laboratory. The custom 60K probe fathead minnow array Agilent platform 

used was GPL15775 42. Flexibility was given in the standard operating procedures to 

realistically model variation present in sample preparation and microarray analysis that is 

currently present across ecotoxicology laboratories.

RNA isolation and RNA integrity

Each laboratory extracted RNA from liver tissue using a phenol and guanidine 

isothiocyanate–based method (e.g., TriZOL®; TriReagent, STAT60) according to the 

manufacturers’ protocols, and pellets were reconstituted based on visual inspection of the 

pellet. Total RNA was quantified and purity was assessed using the Thermo Scientific 

NanoDrop by each laboratory. The integrity of the RNA was assessed by each laboratory 

using the method of their choosing. The RNA integrity values for all 6 laboratories, as well 

as the method used, are found in Table 1.

Microarray processing and analysis by each individual laboratory

Each laboratory labeled 100 ng total RNA (laboratory 4 was an exception; 58.5 ng RNA in 

1.5 μL was used because of low yields in some samples) and hybridized for 17 h at 65 °C 

with 2 washes. The Agilent One‐Color Microarray‐Based Gene Expression Analysis (Low 

input quick Amp Labeling Kit and RNA Spike in Kit) protocol was followed per the 

manufacturer’s instruction. Each laboratory was asked to scan and report parameters for a 

60K microarray. This microarray consists of 65 528 targets, and of these, there were 32 155 

unique gene symbols and 20 265 targets on the platform with full gene names. All 

microarray data have been deposited to the Gene Expression Omnibus at the National Center 

for Biotechnology Information as a super series (GSE 81544). One laboratory submitted its 

data independently to the Gene Expression Omnibus (GSE 70807). The letters in the Gene 

Expression Omnibus submission do not correspond to the laboratory designations in the 

present study.

After each laboratory had performed microarray hybridization using different data‐
processing and analysis methods, sample identifications were released. There were no 

restrictions on algorithms or methods for microarray analysis because a goal of the project 

was to assess congruency in the number, identification, fold change, and p value of gene 

probes identified as differentially and not differentially expressed between control and 

treatment groups across laboratories. Each laboratory used a variety of methods to analyze 

the data. Details on the data processing and analysis conducted by individual laboratories are 

provided in Supplemental Data, Table S1. Both raw and normalized data were then 

forwarded by each laboratory to laboratory 1 (the coordinating laboratory).

Feswick et al. Page 6

Environ Toxicol Chem. Author manuscript; available in PMC 2018 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Microarray analysis by laboratory 1

Laboratory 1 was selected as the relative benchmark for interlaboratory comparisons to 

determine the relative contribution of data processing to the variability in the response. Each 

individual data set from a laboratory was analyzed separately and identically by laboratory 

1. Spot intensity and CV data were calculated by first normalizing the within‐experiment 

microarrays using quantile normalization. To reduce the effect of noise across arrays and to 

standardize the limit of detection among laboratories, data sets were filtered to the average 

intensity of the eighth Agilent spike across all spots and arrays ([+]E1A_r60_a107 [spike 

8]). The rationale for using this spike‐in was that, on viewing all quality control reports for 

all of the laboratories, it consistently marked the final point in linearity of the dynamic 

range. The limits of detection for intensity, based on 560 array targets, were as follows: 

laboratory 1 = 4.34, laboratory 2 = 5.25, laboratory 3 = 5.26, laboratory 4 = 4.87 (one array 

was removed because of poor hybridization), laboratory 5 = 6.5 (one duplicate array was 

removed from the final analysis), and laboratory 6 = 5.01. Prior to an analysis of variance on 

normalized data (JMP Genomics; V6), all control spots were removed from each 

experimental data set, leaving 61 057 targets. A false discovery rate was set at 0.05.

RESULTS

17α‐Ethinylestradiol in the water

The mean concentration (± standard error of the mean) of EE2 in the tanks was 15.67 ± 4.71 

ng/L. There was no detectable EE2 in the control water samples.

Morphological and physiological endpoints

There were no significant differences in body weight, body length, GSI, or LSI between the 

control and EE2‐treated group (Table 2). Plasma vitellogenin levels of EE2‐treated males 

were 4.0 ± 12.7 μg/mL for control and 21 666 ± 1821 μg/mL for EE2‐treated fish after 96 h, 

and fathead minnow responded as expected to the exposure.

Expression results across laboratories

All laboratories submitted data from RNA extraction/purification methods and RNA quality 

assessment and stated the method that was used to normalize the microarray intensity data 

(Table 1; Supplemental Data, Table S1). Laboratory 5 had to omit 2 control samples because 

of low RNA quality, and instead, 2 replicate samples were hybridized again as technical 

replicates to confirm that there was >98% reproducibility in signal intensity per target on the 

microarray between technical replicates (data not shown). Only one technical replicate was 

chosen at random to represent the single biological replicate. All labeled samples used by 

each laboratory met the minimum criteria for hybridization per Agilent guidelines (yields 

>0.825 μg and specific activity >6.0 pmol Cy3 per microgram complementary RNA). Each 

laboratory submitted data containing the number, identifier, fold change relative to controls, 

and p value of all gene probes to laboratory 1.
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Characterization of probe variability across laboratories

To standardize the analysis approach and to determine how much variability was a result of 

the hybridization and scanning protocols, technical variability for both mean target probe 

CV(a measure of interassay variability) and intensity was determined for both control and 

treatment samples for each laboratory based on the common analysis workflow performed 

by laboratory 1. Each laboratory showed a comparable level of variability (Figure 1A). 

Overall, in each group, the liver transcriptome showed a CV (expressed as percentage) that 

ranged from 6 to 8%. Likewise, the mean log2 spot intensity of all targets on the microarray 

ranged from 6.0 to 8.0 (Figure 1B).

Each laboratory, using the statistical methods of its choice, submitted a list of differentially 

expressed probes (false discovery rate of 0.05). A total of 641 differentially expressed 

probes (duplicates removed) were identified as being in common by all 6 laboratories 

following their own analyses. This number was largely influenced by laboratory 3, whose 

post hoc corrected p values resulted in a significant reduction in the number of probes 

identified (only 165 were reported); therefore, non–false discovery rate–corrected data (2375 

probes) were used for laboratory 3 in subsequent comparisons. The decision to include data 

from laboratory 3 in the study, despite their influence on data variability and congruency 

across laboratories, was because of the goal of the present study, namely, to assess 

microarray variability across established ecotoxicology laboratories regularly employing this 

technology. Despite the variability in methods used, 50.6% of nonduplicate probes (using a 

false discovery rate of 0.05) were shared on average between each laboratory and laboratory 

1, ranging from 30 to 77% overlap (Table 3). When laboratory 3 is excluded, the number of 

nonduplicate probes shared between each laboratory and laboratory 1 increases by 5 to 

55.6%. Unsurprisingly, the number of probes any given laboratory shared in common with 

laboratory 1 is positively correlated with the number of probes identified. That is to say, the 

more probes identified, the more likely that some of those probes will be identified by 

another laboratory.

Congruence in the identification of identical differentially expressed genes

Across the 6 laboratories, 12 491 differentially expressed genes (duplicates removed) were 

identified as responding to the EE2 treatment, out of a total of 22 010 genes on the array. 

There was a wide range in how many differentially expressed genes each laboratory detected 

(2196–6361; Table 4), based on its own analysis using a post hoc corrected cutoff of ±1.5‐
fold (except laboratory 3 where uncorrected p values were used). For example, laboratory 2 

detected 6152 unique genes (Table 4), of which 80% were shared with laboratory 1 (Table 

5). However, there was a wide range in the percentage of differentially expressed genes any 

given laboratory shared with another (Table 5). Laboratories 1, 2, and 6 were most similar in 

their differentially expressed gene profiles, sharing an average of at least 60% of the same 

differentially expressed genes with the other 5 laboratories. Between laboratories, laboratory 

1 shared the highest percentage of differentially expressed genes with laboratory 2 (4040 

genes in common; 79.8% of laboratory 2’s differentially expressed genes). Supplemental 

Data, Table S2 also presents the same analysis but when the data are analyzed by standard 

approach. The influence of using a fold change cutoff of 3.0 on the number of genes both 

unique and shared across laboratories is presented as Supplemental Data, Table S3.
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Each laboratory identified a subset of differentially expressed genes that no other laboratory 

detected (“unique differentially expressed genes”). This number varied widely, for example, 

laboratory 4 identified the lowest number of unique differentially expressed genes at 48, 

whereas laboratory 3 identified the highest number of unique differentially expressed genes 

at 2741 (Table 6). Across all laboratories, the number of unique differentially expressed 

genes detected totaled 5364, which represents almost 43% (5364/12 491) of all differentially 

expressed genes responding to the estrogenic treatment. When examined as percentages, 

only 2.2% of the differentially expressed genes reported by laboratory 4 were unique genes 

that no other laboratory identified. Thus, one or more of the other laboratories identified the 

significant majority of transcripts in its list. Similarly, laboratories 1, 2, 3, 5, and 6 reported 

the following percentages of unique genes: 6.7, 10.6, 43.1, 15.1, and 16.1%. All 6 

laboratories identified the same 587 differentially expressed genes (which was 4.7% of the 

total 12 491 differentially expressed genes detected in one or more laboratory), and 43% 

(5364) of the expressed genes were uniquely detected by only one laboratory. The 

proportion of differentially expressed genes that were shared by all 6 laboratories ranged 

from 9.2% for laboratory 3 to 26.7% for laboratory 4. Laboratory 3 contributed 21.9% 

unique differentially expressed genes to the 12 491 differentially expressed genes reported 

and thus contributed the most to “differentially expressed gene noise.” It is unclear whether 

differentially expressed gene “noise” is reflected by the number of unique genes detected or 

whether the increased detection represents increased sensitivity. Resolving the issue of 

sensitivity versus noise may require a comparative pathway analysis or validation with other 

methods such as quantitative polymerase chain reaction to more clearly evaluate whether 

increased detection improves the analysis or confuses the issue, but in either case, it is clear 

that individual gene responses must be interpreted with caution.

Congruence in the magnitude of response of differentially expressed genes across 
laboratories

The mean fold change of differentially expressed genes for both increasing (Figure 2A) and 

decreasing (Figure 2B) transcripts relative to the control group demonstrates significant 

differences across laboratories in overall results. However, when data are reported as median 

fold changes (Figure 2C,D) distributions of average differentially expressed gene fold 

changes across laboratories were not more similar. Using unadjusted p values for laboratory 

3 and a post hoc corrected cutoff of ±1.5‐fold for all other laboratories, the fold change 

distribution of differentially expressed genes for both increasing (Figure 2E) and decreasing 

(Figure 2F) transcripts demonstrates that the majority of genes fall within the 1.5 to 3.0 fold 

change range.

Congruence in the identification of a suite of known E2‐responsive transcripts

To assess the performance of using microarrays to identify known biomarkers of estrogenic 

exposure in aquatic species, 10 estrogen‐responsive genes or “E2‐responsive standards” 

were selected. These E2‐responsive genes were identified using published literature on the 

expression profiles in the liver of zebrafish following estrogenic treatments 36, 43 as well as 

input from the Comparative Toxicogenomics Database 44 following searches for transcripts 

responsive to estrogens. We targeted 10 genes from this list and searched for these within the 

data sets collected from the 6 laboratories, with the intention of investigating transcripts that 
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showed a broad dynamic range for both fold change and direction of change. These genes 

included 1) those that may show relatively low response to estrogens, for example, 

apolipoprotein A‐I‐1 (APOA1), apolipoprotein Eb (APOE), c‐FOS, and block of 

proliferation 1 (BOP1); 2) a relatively intermediate response to estrogens such as insulin‐like 

growth factor 1 (IGF1), x‐box binding protein 1 (XBP1), and estrogen receptor 1 (ESR1); 

and 3) a relatively high response to estrogens such as reticulon 1a (RTN1A), vitellogenin 1 

(VTG1), and VTG3. There was strong congruence across laboratories for estimating the fold 

changes of these known E2‐responsive transcripts, regardless of whether a common analysis 

for differentially expressed genes was used (Figure 3A) or whether each laboratory used an 

independent analysis of its choice (Figure 3B). Four laboratories were successful at 

identifying all 10 E2‐responsive genes as differentially expressed. Laboratory 3 missed 3 of 

these genes, and laboratory 4 missed one; and this corresponded to the laboratories with the 

least number of differentially expressed genes identified after a post hoc correction of the 

data (i.e., may reflect the low number of differentially expressed genes identified initially).

DISCUSSION

The present study aimed to assess the reproducibility of microarray data across 6 

independent laboratories, following a 96‐h EE2 exposure to fathead minnow. The value of 

microarrays in environmental monitoring and risk assessment depends on the ability of 

independent laboratories to reliably distinguish subtle changes in gene expression data 

(differentially expressed genes relative to control) despite both biological and technical 

variability. Notwithstanding those probes exhibiting expected high biological variability, the 

mean probe variability across the transcriptome reported in the present study is consistent 

with that reported by others (5–10% CV) 45, 46 for a single tissue in fish. The overall mean 

signal intensity on the arrays after normalization (i.e., range of intensity across all 60K 

probes) was 6 to 8 depending on the laboratory. This is encouraging, given some flexibility 

in microarray sample preparation (i.e., different reagents for RNA extraction) afforded to the 

participating laboratories.

Data analysis pipelines contributed to data variability, and there was an increase in 

differentially expressed gene overlap across laboratories by approximately 9% when a single 

pipeline was used (an increase to ∼59% from ∼50%). Variability in the analysis also arose, 

in part, from differences in background intensity of the microarrays. Other interlaboratory 

microarray studies have substantiated the numerous sources of data variation and have 

highlighted the role of using standardized protocols in producing highly correlated and 

reproducible data 18, 20–22. It is important to recognize that a high level of concordance of 

differentially expressed genes across platforms and laboratories depends mainly on the 

statistical criteria used to rank and select them; using a fold change or ratio (vs a p value) 

generated the most robust results 20. Using the ranked log ratios of fold changes, we 

confirmed that all laboratories were detecting similar overall transcriptome responses that 

were statistically and highly correlated. In the case of laboratory 3, post hoc corrected 

pvalues resulted in a significant reduction in the number of differentially expressed genes 

(and the number of differentially expressed probes) identified and influenced the results. 

Thus, laboratory 3 appeared to differ most in the bioinformatics approach used to process 

the data. However, all laboratories used different strategies (Supplemental Data, Table S1) 
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for data processing, editing, averaging of probes, and statistical identification of 

differentially expressed genes which influences the p value threshold for a decision on 

whether or not a transcript is differentially expressed.

Analysis of probe variability in each laboratory revealed that there were differences in the 

overall magnitude of response when mean fold change is plotted. These values can be 

heavily influenced by transcripts that have large expression changes relative to the control, 

as in the case of VTG. Thus, the sensitivity of the arrays can vary from laboratory to 

laboratory in the context of fold change. Plotting the median values instead of the mean 

revealed that the laboratories do not differ substantially, and the median fold change for the 

large majority of transcripts is approximately 2‐fold.

The absolute number of differentially expressed genes detected varied considerably across 

laboratories. Of the 22 010 genes on the array, 12 491 differentially expressed genes 

responded to the EE2 treatment. Of these, 587 (4.7%) common differentially expressed 

genes were detected by all 6 laboratories, and 43% (5364) were uniquely detected by only 

one laboratory. It is difficult to examine the differences and similarity in detail, but we did 

examine the ability of each laboratory to detect a suite of core transcripts known to be 

impacted by EE2 exposure (in lieu of number of differentially expressed genes identified) by 

assessing the ability of independent laboratories to identify common “gold standard” 

estrogen‐responsive genes. It is noteworthy that, despite flexibility in the standard operating 

procedures for much of the experimental design, 4 laboratories successfully identified 

significant changes in all 10 gold standards along a continuum of relative fold changes 

(decreasing to increasing). This was true irrespective of whether each laboratory 

independently analyzed the data or whether a single laboratory applied a common analysis. 

The laboratories could very precisely converge on fold change estimates for some 

transcripts, for example, APOE and XBP1, whereas other transcripts showed wider 

variability in fold change estimates across laboratories (e.g., c‐FOS and VTG). Although all 

6 laboratories correctly identified VTG1 and VTG3 as up‐regulated following EE2 

treatment, the magnitude of induction differed significantly between laboratories. Moving 

forward, a recommendation is to incorporate a ranking system of transcript response because 

laboratories will report fold changes differently. Lastly, BOP1 was identified as an estrogen‐
responsive gene that was expressed at a low level in every data set (>2 fold) when analyzed 

by laboratory 1. This suggests that the practice of removing genes based on a fold change 

cutoff may result in removing genes that are responsive to the treatment, although this is a 

trade‐off because transcripts that show lower fold changes are perhaps more likely to be 

false positives. Arbitrary fold change cutoffs for expression data may not be the best 

approach moving forward and will result in discrepancies of differentially expressed genes 

reported among laboratories 47.

The ability to also identify core gene targets with fold changes close to background levels 

suggests that microarrays are capable of measuring a suite of responsive genes with a high 

degree of precision when sensitive transcriptional networks are identified and assessed a 

priori. In this example, all 6 laboratories would have almost perfect consensus in their 

ranking of these 10 E2‐responsive transcripts. For new chemicals, observational 

transcriptome data would need to be collected first to identify responsive transcripts. 
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Databases such as the Comparative Toxicogenomics Database could then be used to hone 

the list of responsive transcripts.

Expression profiling generates important information on the chemical mode of action 48, 49. 

Under Canada’s Environmental Effects Monitoring program, confirmed positive responses 

can enter into an “investigation of cause” phase, and pathway information can provide 

valuable insight into potential modes of action to help focus subsequent studies. However, to 

use transcriptomics in a meaningful and legislatively robust way, it must be able to provide 

thresholds for specific parameters that can be tested across a range of environments, 

conditions, and species. At this point, it may be important for risk assessment and 

environmental monitoring to identify a common subset of transcripts responsive to a 

chemical or mixture, as opposed to leveraging the entire molecular data set. Because of 

variability in responses, a recommendation would be to first agree on a suite of biomarker 

transcripts for a particular chemical, followed by a ranking system based on fold change 50.

To incorporate microarray technology into monitoring programs and risk assessment, there 

needs to be a definition of what constitutes a significant change in expression (1.5‐fold vs 2). 

Because different normalization techniques can significantly alter the gene lists created, a 

decision on a common normalization technique is warranted, and this may influence the 

estimate of fold change. Until then, we recommend using fold change (vs a p value) as the 

ranking criterion for gene selection, with a nonstringent p value cutoff based on analyses 

using human data sets subjected to cross‐laboratory and interplatform comparisons 20. 

Reproducibility among laboratories is also reported to be highest when analysis was based 

on biological themes defined by enriched Gene Ontology categories 22, 51, an area of 

research that warrants further examination in an ecotoxicological context.

CONCLUSIONS

The standardization of transcriptomics and the generation of comparable data via an 

interlaboratory study are necessary steps prior to their inclusion in regulatory or monitoring 

programs. What constitutes a significant change in expression levels must therefore be 

defined. Proper study design will require the identification of a predetermined “magnitude of 

change” (or “critical effect size”) at the molecular level (i.e., transcripts), which could be the 

level of change required to have an effect at the individual and/or population level. Using a 

common suite of genes known to be estrogen‐responsive to various degrees, we 

demonstrated that there can be high success rate across laboratories. Further evidence of 

reproducible and expanded differentially expressed gene lists (or subsets) across laboratories 

at both low and high expression levels is required. We strongly recommend to researchers in 

ecotoxicology that they present data as fold change ranking and place less emphasis on p 
values to generate differentially expressed genes, with the caveat that a single individual is 

not disproportionately driving a biological response. In addition, the generation of biological 

pathways and/or Gene Ontology terms would be beneficial as anchoring points for 

molecular data and to reduce the stochastic noise among individual genes, though this was 

not done in the present study. The role for omics is still at this point best suited for finding 

mechanisms and screening and not for regulatory or monitoring programs because of the 

difficulty in their use for pass/fail decision‐making. Currently, no molecular endpoints are 
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used in Canada’s Environmental Effects Monitoring program, and no established 

methodology exists for using these endpoints in risk assessment. We suggest that we move 

toward a ranking system for triggering action or regulation based on transcriptomic 

responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mean coefficient of variation (CV; ± standard deviation [SD]) of all spots over all 

microarrays (n = 8 biological replicates) within an experimental group. (A) Coefficient of 

variation is plotted separately in the control group and 17α‐ethinylestradiol for each 

laboratory. (B) Mean probe intensity (± SD) in each experimental group. C = control; EE = 

17alpha‐ethinylestradiol exposure.
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Figure 2. 
Metrics of variability and spread of fold changes in differentially expressed genes across 

laboratories. Mean fold change of differentially expressed genes with 95% confidence 

internals (vertical bars) shown for increasing (A) and decreasing (B) transcripts, relative to 

the control group. Median fold change of differentially expressed genes with interquartile 

range (vertical bars) shown for increasing (C) and decreasing (D) transcripts, relative to the 

control group. Fold change distribution of differentially expressed genes for increasing (E) 

and decreasing (F) transcripts, relative to the control group. Uncorrected p value for 

transcripts was used for laboratory 3 instead of corrected p values because the number of 

differentially expressed genes identified following a post hoc correction was small relative to 

the other laboratories. CI = confidence interval; DEG = differentially expressed gene.
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Figure 3. 
Ten estrogen‐responsive genes arranged in order from decreasing to increasing by fold 

change. Each point represents a laboratory. Only those genes that were identified as 

differentially expressed are included in these graphs. Horizontal line represents the median 

expression. Zero represents no fold change relative to control. APOA1 = apolipoprotein A‐I‐
1; APOE = apolipoprotein Eb; BOP1 = block of proliferation 1; ESR1 = estrogen receptor 1; 

IGF1 = insulin‐like growth factor 1; RTN1A = reticulon 1a; VTG = vitellogenin; XBP1 = x‐
box binding protein 1.
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Table 1.

Ribonucleic acid (RNA) integrity values and method used by each laboratory
a

Integrity value

Method used to assess RNA quality Mean ± standard
deviation

Range

Lab 1 Agilent 2100 Bioanalyzer 9.5 ± 0.1 Not given

Lab 2 Agilent 2100 Bioanalyzer 9.7 ± 0.3 9.1–10.0

Lab 3 Agilent 2100 Bioanalyzer 8.7 ± 0.7 7.7–9.7

Lab 4 2:1 ratio of 28S:16S bands on a 1.5%
agarose gel

346.2 ng 16.8–363.1 ng

Lab 5 Bio‐Rad Experion™ Electrophoresis Station 8.5 ± 1.1 Not given

Lab 6 Agilent 2100 Bioanalyzer 9.2 ± 0.3 8.8–9.9

a
The Agilent 2100 gives an RNA Integrity Number, whereas the Bio‐Rad Experion Electrophoresis System gives an RNA Quality Index value. 

Other metrics used to assess sample quality as well as details on the methods for analysis are provided in Supplemental Data, Table S1.

Environ Toxicol Chem. Author manuscript; available in PMC 2018 October 01.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Feswick et al. Page 21

Table 2.

Morphometrics (± standard error of the mean) in fathead minnows exposed to control (n = 8) and 25 ng/L 

17α‐ethinylestradiol (n = 8): There were no significant differences among treatments in any endpoints (α = 

0.05)

Control fish 17α‐Ethinylestradiol‐exposed fish

Length (mm) 78.63 ± 2.02 81.63 ± 1.80

Weight (g) 6.07 ± 0.35 6.16 ± 0.36

Gonadal somatic index 1.42 ± 0.20 0.98 ± 0.16

Liver somatic index 1.41 ± 0.18 1.62 ± 0.16
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Table 3.

Number of differentially expressed probes (based on spot identification) identified by each laboratory using its 

own method of normalization (A) and identified using the same analysis pipeline performed by the benchmark 

laboratory, laboratory 1 (B)a

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6

A 9534 11846 9889 3488 6868 9743

B 9534 12244 6598 2498 5927 7044

C 6048 2375b 2886 3934 4632

D 77% 30%b 37% 50% 59%

a
Number of probes in common with laboratory 1 (C), given also as a percentage (D). The targets on the fathead minnow microarray represent both 

duplicate and nonduplicated genes (thus, “probe ID” is the value in Table 3). All data are based on false discovery rate corrected p values.

b
Non–false discovery rate data used.
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Table 4.

Number of differentially expressed genes (duplicate probe identifiers removed) shared between each 

laboratory using its own method of normalization and analysis methods for all genes that were identified as 

different (post hoc corrected)

Shared differentially expressed genes

Laboratory
a 1 2 3

b 4 5 6

1 (5064) X

2 (6152) 4040 X

3b (6361) 2027 2426 X

4 (2196) 1863 1999 927 X

5 (4324) 2551 2822 1918 1305 X

6 (5744) 3443 3830 2172 1852 2378 X

a
Total number of differentially expressed genes (given in parentheses).

b
Non–false discovery rate data used.

X
indicates 100% as data identical.
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Table 5.

Number of differentially expressed genes (duplicate probe identifiers removed) shared between each 

laboratory demonstrating the percentage of genes each laboratory shared with another
a

Percentage of shared differentially expressed genes

Laboratory
b 1 2 3

c 4 5 6 Average

1 (5064) X 65.7 31.9 84.8 59.0 59.9 60.3

2 (6152) 79.8 X 38.1 91.0 65.3 66.7 68.2

3c (6361) 40.0 39.4 X 42.2 44.4 37.8 40.8

4 (2196) 36.8 32.5 14.6 X 30.2 32.2 29.3

5 (4324) 50.4 45.9 30.2 59.4 X 41.4 45.4

6 (5744) 68.0 62.3 34.1 84.3 55.0 X 60.7

a
For example, laboratories 1 and 2 found 4040 genes in common; this number is first divided by the total number of differentially expressed genes 

identified by laboratory 1 (5064) to give a percentage of 79.8. Alternatively 4040 is also divided by the total number of differentially expressed 
genes identified by laboratory 2 (6152) to give a percentage of 65.7. The columns and the rows represent two different ways of comparing 
differentially expressed gene lists between laboratories. Supplemental Data, Table S2 shows the exact same analysis but when the data are analyzed 
with the same analysis pipeline.

b
Total number of differentially expressed genes (given in parentheses).

c
Non–false discovery rate data used.

X
indicates 100% as data identical.
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Table 6.

Number of unique differentially expressed genes, out of the 12 491 total differentially expressed genes 

detected, that any given laboratory shared with one or more other laboratories: Columns represent individual 

laboratories, whereas rows denote the number of laboratories involved
a

Laboratory

1 2 3b 4 5 6 Total differentially
expressed genes

Number of 1 341 653 2741 48 653 920 5364 (42.9%)

laboratories 2 676 1101 1168 97 682 954 2339 (18.7%)

sharing 3 1082 1345 688 174 652 1048 1664 (13.3%)

differentially 4 1274 1334 591 522 784 1143 1383 (11.1%)

expressed 5 1104 1132 586 768 966 1092 1127 (9.0%)

genes 6 587 587 587 587 587 587 587 (4.7%)

Total 5064 6152 6361 2196 4324 5744

a
For example, in row 1, the values represent how many laboratories reported the same unique differentially expressed genes; therefore, row 1 

denotes unique differentially expressed genes found by each laboratory. In row 2, the values represent how many unique differentially expressed 
genes were shared by any specific laboratory (column) and at least one other laboratory, for a total of 2 laboratories sharing differentially expressed 
genes. Row 6 reflects that all 6 laboratories shared 587 unique differentially expressed genes.

b
Non–false discovery rate data used.
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