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Abstract

Mitochondria perform essential roles as crucial organelles for cellular and systemic energy 

homeostasis, and as signaling hubs, which coordinate nuclear transcriptional responses to 

the intra- and extra-cellular environment. Complex human diseases, including diabetes, 

obesity, fatty liver disease and aging-related degenerative diseases are associated with 

alterations in mitochondrial oxidative phosphorylation (OxPhos) function. However, 

a recent series of studies in animal models have revealed that an integrated response 

to tolerable mitochondrial stress appears to render cells less susceptible to subsequent 

aging processes and metabolic stresses, which is a key feature of mitohormesis. The 

mitochondrial unfolded protein response (UPRmt) is a central part of the mitohormetic 

response and is a retrograde signaling pathway, which utilizes the mitochondria-to-

nucleus communication network. Our understanding of the UPRmt has contributed to 

elucidating the role of mitochondria in metabolic adaptation and lifespan regulation. 

In this review, we discuss and integrate recent data from the literature on the present 

status of mitochondrial OxPhos function in the development of metabolic diseases, 

relying on evidence from human and other animal studies, which points to alterations 

in mitochondrial function as a key factor in the regulation of metabolic diseases and 

conclude with a discussion on the specific roles of UPRmt and mitohormesis as a novel 

therapeutic strategy for the treatment of obesity and insulin resistance.

Introduction

Mitochondria are double membrane-bound organelles 
that resemble α-proteobacteria, from which they are 
thought to have originated by endocytosis more than 1 
billion years ago (Gray  et al. 2001). As the powerhouses 
of the cell, mitochondria generate most of the energy 
through oxidative phosphorylation (OxPhos), a process 
in which electrons are passed along a series of OxPhos 

subunit proteins embedded in the inner mitochondrial 
membrane (Huttemann  et  al. 2007). Apart from cellular 
respiration and energy synthesis, mitochondria are also 
required for the metabolism of nucleotides as well as 
biosynthesis of amino acids and lipids.

The discovery in the early 1960s that mitochondria 
have their own DNA and translation system stimulated an 

Journal of Molecular 
Endocrinology  
(2018) 61, R91–R105

Key Words

ff mitochondria

ff oxidative phosphorylation

ff mitochondrial unfolded 
protein response

ff diabetes

ff insulin resistance

-18-0005

361

https://doi.org/10.1530/JME-18-0005
http://jme.endocrinology-journals.org	 © 2018 The authors

Published by Bioscientifica Ltd.
Printed in Great Britain

This work is licensed under a Creative Commons 
Attribution 4.0 Unported License.

mailto:minhos@cnu.ac.kr
https://doi.org/10.1530/JME-18-0005
http://jme.endocrinology-journals.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R92H-S Yi, J Y Chang et al. UPRmt and mitohormesis in 
metabolic diseases

61 3:Journal of Molecular 
Endocrinology

increase in articles related to mitochondria and oxidative 
phosphorylation from the late 1960s to 1980 (Figs 1 and 
2). Mitochondrial ATPase was initially purified from beef 
heart mitochondria and its action as a coupling factor was 
also demonstrated (Penefsky  et  al. 1960, Pullman  et  al. 
1960). Moreover, the positional papers regarding the 
evidences for electron transport-linked proton pumps 
and oxidative phosphorylation were published in the 
1970s (Figs 1 and 2) (Guerrieri & Nelson 1975, Brand et al. 
1976, Wikstrom & Krab 1979). These intensive works on 
mitochondrial OxPhos complex contributed to launching 
the golden era of mitochondrial research from the 1960s 
to late 1970s.

Recently, a second renaissance in mitochondrial 
biology is emerging due to the recognition of the 
mitochondria as a central regulator in metabolic 
homeostasis and longevity. In 1998, 46 mitochondrial 
proteins were reported by 2D gel electrophoresis of purified 
human placental mitochondria, and the mitochondrial 
proteins were also identified by peptide mass 
fingerprinting (Fig.  1) (Rabilloud  et  al. 1998). Five years 
later, in 2003, state-of-the art mass spectrometry-based 
proteomics enabled us to discover more mitochondrial 
proteins in yeast, mice and humans (Mootha et al. 2003a, 
Sickmann  et  al. 2003, Taylor  et  al. 2003). These data 
have been consolidated in the MitoCarta, an inventory 
of mammalian mitochondrial genes and provides 
integrated datasets of mitochondrial protein localizations 
in various tissues through mass spectrometry and  

large-scale GFP tagging/microscopy (Pagliarini  et  al. 
2008). In addition, a series of recent studies revealed the 
complete structure of the mammalian respiratory chain 
complex and mitochondrial ribosomes by single-particle 
cryoelectron microscopy (Brown  et  al. 2014, Gu  et  al. 
2016, Englmeier et al. 2017). Thus, new technologies for 
discovery of uncharacterized mitochondrial proteins are 
promoting the development of mitochondrial biology 
(Fig. 1) (Kazak et al. 2013, Rhee et al. 2013). To date, the 
successful efforts to understand the mitochondrial OxPhos 
complex and to catalog the mitochondrial proteome have 
established the relevance of mitochondrial dysfunction in 
a broad spectrum of metabolic diseases.

By far, one of the most significant discoveries during 
this second renaissance has been the identification of 
the mitochondrial unfolded protein response (UPRmt), 
a retrograde stress response induced by mitochondrial 
proteotoxic stress. The UPRmt was discovered in the late 
1990s and is an area of increased scientific interest for 
research on aging and metabolic diseases (Figs 1 and 2) 
(Martinus et al. 1996, Ryan et al. 1997). Although initially 
characterized in mammalian cells, mechanistic insight on 
the UPRmt was gleaned from studies in worms and flies. 
Recently, the mechanism of UPRmt regulation was partially 
revealed in mammals as well as worms (Haynes  et  al. 
2010, Nargund  et  al. 2015, Chung  et  al. 2017b). Thus, 
many researchers are trying to define the role of UPRmt 
in mammalian cells and tissues, and its possible role 
in mitohormesis. The mitochondrial chaperones and 
proteases predicted to be involved in the regulation of 
mitochondrial proteostasis may have an essential role 
in the modulation of metabolic diseases in mammalian 
cells and mice. While many review articles focused on the 
role of UPRmt in lower organisms, a review focusing on 

Figure 1
Scientific interests in mitochondria from 1950 to 2016. The articles were 
identified in PubMed using the term ‘mitochondria’ for each year from 
1950 to 2016. The articles were expressed as the total number of 
mitochondria articles out of all articles, as well as mitochondria articles as 
a percentage of all articles in PubMed. The essential milestones and 
discoveries in the field of mitochondrial research are described by the 
year of publication.

Figure 2
Total number and percentage of ‘Mitochondria,’ ‘Oxidative 
phosphorylation,’ ‘UPRmt’ and ‘Metabolic disease’ articles in PubMed from 
1950 to 2016.
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the effects of UPRmt on metabolic diseases are scarce in 
mammals.

In this review, we discuss the recent remarkable 
progress in understanding the role of mitochondrial 
OxPhos perturbations on systemic energy metabolism 
that may be relevant in the treatment of obesity and 
diabetes. We also describe the effects of UPRmt on cellular 
and systemic physiology during the conditions of 
mitochondrial dysfunction and proteotoxicity. Lastly, we 
discuss the UPRmt and mitohormesis as new therapeutic 
targets for treatment of metabolic diseases.

OxPhos function in a variety of 
metabolic diseases

OxPhos, as a main platform for energy production in 
eukaryotic cells, consists of two major components 
including the phosphorylation of ADP to ATP using 
energy from the chemiosmotic proton gradient, as 
well as the oxidation of molecules generated during 
the breakdown of glucose. Five multimeric complexes 
embedded in the inner mitochondrial membrane 
comprise the OxPhos system. Complexes I-IV are 
multi-subunit enzymes, which work to generate an 
electrochemical proton gradient across the mitochondrial 
inner membrane, which is used by the complex V (ATP 
synthase) to produce ATP (Chaban  et  al. 2014). Thus, 
dysfunction of the mitochondrial OxPhos system not 
only is correlated with mitochondrial genetic disorders 
but also complex human diseases such as metabolic and 
neurodegenerative diseases. Therefore, understanding the 
systems and functions of OxPhos allows us to unravel not 
only the significance of mitochondrial respiratory chains 
but also the novel therapeutic options in the etiology and 
progression of metabolic diseases.

OxPhos function and metabolic diseases

Metabolic diseases including type 2 diabetes mellitus 
(T2DM) and obesity are closely associated with the 
alteration of gene expression involved in OxPhos. The 
skeletal muscle of patients with T2DM showed a decrease in 
expression of a global set of genes of the OxPhos pathway 
(Sreekumar  et  al. 2002, Mootha  et  al. 2003b). High-fat 
diet decreases the expression of the genes necessary for 
OxPhos, mitochondrial proteins and mitochondrial 
biogenesis in humans and mice (Sparks et al. 2005). The 
rate of mitochondrial OxPhos activity in skeletal muscle 
were 30% lower in insulin-resistant subjects compared to 
control subjects (Petersen  et  al. 2004). Additionally, the 

intramyocellular triglyceride content in the soleus muscle 
was 80% higher in the subjects with insulin resistance 
(Petersen et  al. 2004). Impairment in OxPhos function 
induced by deficiency of Crif1, an integral mitoribosomal 
factor for the insertion of nascent OxPhos polypeptides 
into the inner mitochondrial membrane, in beta cells 
triggers progressive failure of insulin secretion and 
cellular proliferation (Kim  et  al. 2015). Beta-cell-specific 
knockout of Tfam, a transcription factor of mtDNA-
encoded OxPhos polypeptides, promotes hyperglycemia 
by impaired secretion of insulin from islets in response to 
glucose stimulation (Silva et al. 2000). Haploinsufficiency 
of pentatricopeptide repeat domain 1 protein, known as 
a regulator of mitochondrial gene expression, reduces 
mitochondrial respiratory complex biogenesis and 
function, thus resulting in obesity and insulin resistance 
(Perks  et  al. 2017). These data suggest that impaired 
OxPhos has been associated with the development of 
insulin resistance, the decrease of insulin secretion from 
beta cells, and the dysregulation of fatty acid metabolism 
in mice and humans.

However, multiple lines of evidences indicate that 
there may not be a causal relation in all circumstances. 
For example, Asian Indians with insulin resistance 
have similar skeletal muscle mitochondrial OxPhos 
capacity as nondiabetic controls. In addition, regardless 
of diabetic status, Indians have higher OxPhos capacity 
than Northern European Americans, indicating that 
mitochondrial OxPhos dysfunction cannot account for 
all insulin resistance in Asian Indians (Nair  et al. 2008). 
Further, mitochondrial OxPhos capacity can be altered by 
fuel intake, oxidative load, epigenetics and environmental 
factors (Patti & Corvera 2010). Therefore, whether 
impaired mitochondrial oxidative activity causes insulin 
resistance or results from insulin resistance is not certain 
and requires further research.

It is well established that reactive oxygen species 
(ROS) is an important mediator of metabolic dysfunction 
(Rani  et  al. 2016). Mitochondria are the primary site of 
ROS production, most notably due to premature leakage 
of electrons from complexes I and III of the electron 
transport chain. Thus, it is unsurprising that reduction 
of mitochondrial ROS leads to an improved metabolic 
phenotype. The Mediterranean diet showing health-
promoting effects reduces the expression of OxPhos genes, 
thereby leading to reduction of ROS in peripheral blood 
mononuclear cells (van Dijk  et  al. 2012). Mitochondria-
derived ROS is also associated with massive macrophage 
accumulation in adipose tissue, leading to exacerbation of 
insulin resistance and systemic inflammation (Han 2016). 
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Several studies showed that caloric restriction, which 
induces protection from aging and metabolic diseases, 
prevents the decline in mitochondrial respiratory 
function (Hempenstall  et  al. 2012, Lanza  et  al. 2012). 
However, caloric restriction also decreases the expression 
of the genes involved in OxPhos and oxidative stress in 
peripheral blood mononuclear cells and skeletal muscle 
(Kayo et al. 2001, Crujeiras et al. 2008, Lanza et al. 2012). In 
addition, intracellular ROS produced by OxPhos pathway 
is associated with hyperglycemia and is important in 
the pathogenesis of diabetic nephropathy (Huang  et  al. 
2006). Muscle- or liver-specific deletion of mitochondrial 
flavoprotein apoptosis inducing factor results in 
OxPhos deficiency, but leads to the improvement of  
glucose tolerance and insulin sensitivity in mice 
(Pospisilik et al. 2007).

Thus, the relationship between mitochondrial OxPhos 
function and metabolic diseases is highly complicated 
and is also likely to be context dependent. Although 
mitochondrial OxPhos capacity has been considered as 
a key factor underlying aging and metabolic diseases, 
the attenuation of OxPhos function may be a useful 
therapeutic strategy for obesity and insulin resistance. 
More in-depth mechanistic insight can be gained from 
studies on the OxPhos quality control systems.

The role of mitochondrial chaperone systems 
in metabolism

As the majority of mitochondrial proteins are encoded by 
the nuclear genome and imported into the mitochondria 
in an unfolded state, mitochondrial chaperones play an 
important role in maintaining normal mitochondrial 
function. In conditions of increased mitochondrial 
proteotoxic stress, the mitochondrial unfolded protein 
response (UPRmt) is activated and upregulates a specific 
set of genes, of which the mitochondrial chaperone 
system is involved (Aldridge et al. 2007). In this context, 
the mitochondrial chaperone systems are required for 
facilitating protein-folding within the mitochondria 
(Fig. 3). While HSP60 plays a prominent role in the UPRmt 
response, other mitochondrial chaperones are yet to be 
fully explored in this context.

The heat shock protein 60 (HSP60) has been studied 
extensively and is established as a marker of the UPRmt 
induction in lower organisms. HSP60 is reduced in the 
hypothalamus of obese or diabetic mice and humans, 
which is associated with central insulin resistance 
and mitochondrial dysfunction. The role of leptin 
on mitochondrial function and insulin sensitivity in 

hypothalamus is dependent on mitochondrial HSP60, 
suggesting that the hypothalamic mitochondrial 
chaperone system has an important effect on systemic 
energy homeostasis in obesity and metabolic diseases 
(Kleinridders  et  al. 2013). Moreover, heat shock protein 
family D member 1 (Hspd1) knockdown decreased 
mitochondrial respiration, levels of respiratory subunits 
and mtDNA levels in the murine hypothalamic cell line 
(Kleinridders et al. 2013). Furthermore, myocardial HSPD1 
increases in high-fructose-fed rats, which is associated with 
prevention of hyperglycemia and severe cardiac injury 
(Chen  et  al. 2009). siRNA-induced Hspd1 knockdown 
also increased intracellular protein aggregation and 
oxidized proteins in renal tubular cells, which may 
contribute to diabetes-induced renal tubular dysfunction 
(Aluksanasuwan  et  al. 2017). Thus, abnormal regulation 
of HSP60 may decrease the capacity of mitochondrial 
function and the UPRmt response, which potentially 
links the UPRmt to metabolic disorders. However, more 
extensive studies would be required, especially in 
mammalian systems, to firmly establish a causative role 
for UPRmt dysregulation in the etiology and progression 
of diseases.

Several studies have revealed that the mitochondrial 
HSP90s play a key role in organelle homeostasis such 
as protein-folding, quality control, redox balance 
and the regulation of metabolic pathways (Chae  et  al. 
2013). The HSP90 chaperone machinery in association 
with HSP70 is also involved in protein-folding and 

Figure 3
Mitochondrial chaperones and proteases. Schematic cartoon describes 
the major factors involved in mitochondrial proteostasis. The chaperones 
and proteases are located in mitochondrial outer and inner membrane, 
intermembrane space and matrix.

https://doi.org/10.1530/JME-18-0005
http://jme.endocrinology-journals.org� © 2018 The authors

Published by Bioscientifica Ltd.
Printed in Great Britain

This work is licensed under a Creative Commons 
Attribution 4.0 Unported License.

https://doi.org/10.1530/JME-18-0005
http://jme.endocrinology-journals.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R9561 3:H-S Yi, J Y Chang et al. UPRmt and mitohormesis in 
metabolic diseases

Journal of Molecular 
Endocrinology

activation of newly synthesized proinflammatory 
signal transducers (Caplan  et  al. 2007). HSP90 
inhibition induced by 17-dimethylaminoethylamino-
17-demethoxygeldanamycin attenuates inflammatory 
signaling pathways including NF-kB, STAT1 and STAT3 in 
diabetic kidneys, thus resulting in amelioration of diabetic 
nephropathy and atherosclerosis by the induction of 
protective HSP70 (Lazaro et al. 2015).

TNFR-associated protein 1 (TRAP1), which belongs 
to the HSP90 family, is also involved in the regulation of 
mitochondrial respiration and glycolysis. Loss of TRAP1 
leads to a reduction in oxidative damage and cell-cycle 
defects by global reprogramming of cellular bioenergetics, 
leading to decreases in aging-related pathologies including 
obesity and tumor formation (Lisanti et al. 2014).

Prohibitin, one of the evolutionarily conserved 
mitochondrial chaperones, has been implicated in adipose 
tissue biology from worms to mice (Merkwirth & Langer 
2009). Overexpression of prohibitin in adipocytes leads 
to an increase in mitochondrial biogenesis and obesity 
development (Ande et al. 2014). However, the metabolic 
phenotypes of obesity induced by overexpression of 
prohibitin in adipocytes are sex specific due to the 
prohibitin translocation from mitochondria to the nucleus 
in response to estrogen (Dong et al. 2013). Overexpression 
of prohibitin in adipocytes impaired glucose homeostasis 
in male mice, but female mice did not show any changes in 
the glucose tolerance test (Ande et al. 2014). This suggests 
that mitochondrial chaperones do not always result in the 
improvement of metabolic phenotype in mice.

Other studies suggest that HSP72 is closely associated 
with insulin resistance and type 2 diabetes. Muscle tissues 
of patients with type 2 diabetes exhibit lower expression of 
HSP72 compared to those of normal controls (Kurucz et al. 
2002). Intramuscular Hsp72 mRNA expression is inversely 
correlated with insulin-stimulated glucose disposal rate 
during a hyperinsulinemic–euglycemic clamp in patients 
with type 2 diabetes (Bruce  et  al. 2003). Overexpression 
of Hsp72 in skeletal muscle increases mitochondrial 
number and OxPhos function, leading to enhanced 
energy expenditure and insulin sensitivity in mice 
(Henstridge et al. 2014). In contrast, Hsp72-deficient mice 
exhibit obesity and insulin resistance, suggesting that 
HSP72 enhances muscle insulin sensitivity by promoting 
fatty acid oxidation and reducing fat storage and adiposity 
in skeletal muscle via the HSP72-Parkin axis (Drew et al. 
2014).

Although it is unclear how mitochondrial chaperones 
contribute to the improvement of obesity and insulin 
resistance, recent works indicate a role in the recovery 

of mitochondrial function and biogenesis in mice (Ande 
et al. 2014, Bottinger et al. 2015). However, it should be 
noted that while the mitochondrial chaperone-mediated 
regulation of metabolic homeostasis is established in 
worms and mice, less is known regarding the regulation 
of mitochondrial proteostasis in humans. To date, it is 
unknown as to which key factors regulate the UPRmt in 
mammals. Additionally, knockout models of specific 
mitochondrial chaperones and proteases in mammals 
did not reveal any abnormal mitochondrial proteostasis. 
Therefore, many studies have just shown the transcript 
levels of mitochondrial chaperones and proteases as 
markers of UPRmt induction in vitro and in vivo (Aldridge 
et al. 2007, Haynes et al. 2010, Fiorese et al. 2016). Recent 
studies demonstrated that the ATF4 pathway is activated 
in mammals upon mitochondrial stress and mediates the 
mitochondrial stress response (Quiros et al. 2017). However, 
mitochondrial stress caused by LONP1 knockdown or 
mdivi-1 exposure in mammalian cells does not induce 
prototypical UPRmt, as defined by the induction of HSP60, 
HSP10 and CLPP. This suggests that mitochondrial stress-
mediated activation of the ATF4 pathway is not always 
involved in the regulation of mitochondrial chaperones 
and proteases in mammalian cells.

Role of intrinsic mitochondrial proteases 
in metabolism

In addition to the chaperone system, mitochondria 
also contain evolutionarily conserved mitochondrial 
proteases as crucial elements of mitochondrial quality 
control (Fig.  3). The inner mitochondrial membrane 
protease OMA1 has essential roles in mitochondrial 
quality control and metabolic homeostasis. Deficiency of 
Oma1 leads to increased body weight and fat contents, 
as well as impaired thermogenesis after diet-induced 
obesity in mice. Oma1-deficient mice displayed improved 
glucose intolerance and increased insulin sensitivity on 
a normal chow diet. However, Oma1-deficient mice lost 
these metabolic benefits in the condition of high-fat diet-
induced obesity (Quiros et al. 2012).

The LON protease (also LONP1) is an important 
enzyme in the degradation of oxidized proteins within the 
mitochondrial matrix, which is highly induced in response 
to acute stress. A decline in LON levels is associated 
with aging and chronic stress, thereby promoting the 
development of aging-related diseases by losing the 
ability to induce LON during acute stress (Ngo  et  al. 
2011). LON is also involved in the regulation of hepatic 
insulin resistance and gluconeogenesis. Treatment with  
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LON-specific siRNA induces mitochondrial dysfunction 
such as reduction in cellular ATP contents and 
mitochondrial membrane potential. Deficiency of 
LON protease also causes hepatic gluconeogenesis by 
induction of glucose-6-phosphatase and PGC-1a in 
human liver SK-HEP-1 cells. Overexpression of LON 
protease ameliorates hepatic insulin resistance in the 
cells containing dysfunctional mitochondria (Lee  et  al. 
2011). These data suggest that mitochondrial proteases 
contribute to the improvement of systemic energy 
metabolism via regulation of mitochondrial function and 
quality control.

CLPP, another matrix protease, plays a crucial role in 
the UPRmt. Loss of CLPP causes moderate mitochondrial 
respiratory deficiency by defective mitoribosome assembly 
and a decrease in mitochondrial translation rates 
(Szczepanowska et al. 2016). Depletion of Clpp ameliorates 
cardiomyopathy in heart-specific DARS2-deficient mice via 
increased mitochondrial OxPhos function (Seiferling et al. 
2016). In addition, the expression of CLPP and LON, which 
are major mitochondrial proteases, are used as an indicator 
of UPRmt activation in vivo as well as in vitro (Houtkooper et al. 
2013, Munch & Harper 2016). ATP-dependent 
metalloprotease Yme1l deficiency in cardiomyocytes causes 
dilated cardiomyopathy and heart failure by activation 
of OPA1-mediated mitochondrial fragmentation. Cardiac 
function and mitochondrial dynamics were restored by 
Oma1 ablation in cardiomyocyte-specific Yme1l-deficient 
mice (Wai et al. 2015).

Mitochondrial protease presenilin-associated 
rhomboid-like (PARL) also contributes to the regulation 
of skeletal muscle OxPhos and insulin signaling. PARL 
mRNA expression in skeletal muscle is reduced in elderly 
subjects and patients with type 2 diabetes. The expression 
of PARL in gastrocnemius muscle is correlated with insulin 
sensitivity as assessed by whole-body glucose disposal 
during a hyperinsulinemic–euglycemic clamp. Moreover, 
Leu262Val in PARL is associated with increased plasma 
insulin levels in human subjects (Walder  et  al. 2005). 
Muscle-specific knockdown of PARL results in lower 
mitochondrial energetics and impaired insulin signaling 
as well as malformation of mitochondrial cristae and 
increased oxidative stress in mice (Civitarese et al. 2010). 
This suggests that PARL is an important candidate gene 
for the development of insulin resistance and type 2 
diabetes. Taken together, a network of conserved proteases 
distributed across mitochondrial compartments may 
not only regulate the onset and progression of obesity 
and insulin resistance, but also play pivotal roles in the 
maintenance of mitochondrial function.

UPRmt and mitohormesis in 
organismal models

In contrast to linear models of mitochondrial dysfunction 
and disease progression, studies in the past decade 
have established a new field of research with important 
ramifications for the field of longevity and aging-
related diseases, including metabolic diseases. Although 
mitochondrial perturbation generally leads to metabolic 
dysfunction, mild mitochondrial perturbation in yeast 
showed increased replicative lifespan through a retrograde 
stress response from the mitochondria to the nucleus 
(Kirchman  et al. 1999). This was corroborated in studies 
of Caenorhabditis elegans and Drosophila, where mild 
mitochondrial perturbation led to increased lifespan in 
both models (Dillin et al. 2002, Owusu-Ansah et al. 2013). 
This concept has come to be defined as mitochondrial 
hormesis or mitohormesis, where mild mitochondrial 
perturbation increases fitness and confers a resistance 
to subsequent stresses (Yun & Finkel 2014). Although 
various pathways have been reported to be involved in the 
mitohormetic process, one area of interest is the UPRmt, 
which will be explored in more detail in the following 
sections.

The mitochondrial unfolded protein 
response (UPRmt)

Due to the endosymbiotic origin from α-proteobacteria, 
mitochondria contain their own genome, the mtDNA, 
which only encodes ~1% of the total mitochondrial 
proteome including 13 OxPhos proteins, 22 transfer 
RNAs and 2 ribosomal RNAs (Calvo & Mootha 2010). 
Multiple factors such as absence of protective histone 
molecules and proximity of the mtDNA to the inner 
mitochondrial membrane, where ROS are generated, 
contribute to a higher mutation rate in mtDNA, thereby 
promoting mitochondrial proteotoxicity and a decline 
in mitochondrial function (Krishnan & Turnbull 2010, 
Cha et al. 2015). In this context, the concerted efforts of 
the mitochondrial system of proteases and chaperones are 
pivotal in maintaining protein homeostasis or proteostasis 
within the mitochondria.

Altered mitochondrial proteostasis and dysfunction 
triggers the activation of a retrograde signaling pathway 
from mitochondria to the nucleus that results in the 
upregulation of mitochondrial chaperones and proteases 
to re-establish mitochondrial function. This response is 
known as the UPRmt. The UPRmt was first characterized 
in mammalian COS7 cells, where the presence of 
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mutated ornithine transcarbomylase (deltOT) within 
the mitochondrial matrix resulted in the mitochondrial-
specific upregulation of Hsp60 and Clpp, in the absence 
of endoplasmic reticulum stress (Zhao et al. 2002). Despite 
its origins in mammalian cells, mechanistic insight was 
gained from studies in C. elegans. Most notably, the 
master regulator of the UPRmt in worms was revealed to 
be Atfs1 and reliant on the co-factors DVE1 and UBL5 
(Haynes  et  al. 2007, 2010). A subsequent study by the 
same group found that the UPRmt in worms is regulated 
by two complementary pathways; an Atfs1-dependent 
pathway and ROS-mediated pathway dependent on the 
phosphorylation of the GCN2, a eukaryotic initiation 
factor 2 alpha (eif2α) kinase (Baker  et  al. 2012). This 
suggests that the UPRmt may be regulated in a similar 
fashion to the UPRer, where temporary translation 
inhibition may be accompanied by upregulation of 
chaperones and proteases to re-establish organellular 
homeostasis. Moreover, the reliance on ROS may suggest 
that there may be an interconnection between the UPRmt 
and mitohormetic pathways, as low levels of ROS have 
been implicated in improved cellular fitness and lifespan 
extension in various animal models (Lapointe & Hekimi 
2008, Yang & Hekimi 2010, Owusu-Ansah et al. 2013).

Recent efforts to define this process in mammalian 
models suggests that the UPRmt response may be 
differentially regulated in higher organisms, and likely 
reliant on an integrated stress response (Melber & Haynes 
2018). Due to previous studies which have established 
Hsp60 and Clpp as important factors upregulated during 
the UPRmt, the current gold standard in mammals is 
the detection of these markers under conditions of 
mitochondrial perturbation. However, it should be noted 
that indiscriminate use of these markers may lead to 
inaccurate conclusions as the UPRmt may be regulated 
differently in mammalian models. Nevertheless, the 
UPRmt is essential for the repair and recovery of the 
mitochondrial protein network, leading to proper cellular 
function.

The UPRmt as a mitohormetic response

The concept of UPRmt and mitohormesis has been 
explored previously in the context of longevity studies 
in worms and flies. Mitohormesis was first described 
in a Saccharomyces cerevisiae model, where engineered 
yeast cells lacking mtDNA activated a diverse set of 
Rtg-dependent nuclear genes in a retrograde manner, 
which led to increased replicative lifespan (Kirchman 
et  al. 1999). Later studies in C. elegans established a 

link between the UPRmt and longevity. Early studies 
in 2002 found that perturbation of nuclear-encoded 
mitochondrial oxphos complexes, specifically complexes 
I, III and IV extended worm lifespan (Dillin et al. 2002). 
This was later found to be reliant on the activation of a 
UPRmt machinery, thus suggesting that the mitohormetic 
benefits of mild mitochondrial perturbation was reliant 
on the activation of this pathway (Durieux  et al. 2011). 
Moreover, glucose restriction induces formation of ROS, 
which increases life span through mitohormetic response 
in worms (Schulz  et  al. 2007). Physical exercise-induced 
ROS also improve insulin resistance via mitohormesis in 
human subjects (Ristow  et  al. 2009). Further studies in 
the Drosophila model suggested that the induction of the 
UPRmt and insulin-like growth factor-binding proteins 
(IGFBP) co-regulated the longevity of flies (Owusu-Ansah 
et  al. 2013). Thus, the UPRmt-mediated mitohormetic 
response is conserved from worms to humans.

Due to the longer average lifespan of mouse models, 
longevity studies are likely less common in mammalian 
models than in the lower organisms. Despite this 
limitation, several studies in mice have looked at longevity 
through the genetic ablation of mclk1 and Surf1 (Liu et al. 
2005, Dell’agnello  et  al. 2007). Although the mechanism 
was found to be different, both mouse models showed 
markedly increased lifespan and increased cellular fitness. 
Heterozygous mclk1 mice showed decreased activity 
of complex II and ROS production, which contributed 
to the longevity of the mice, while Surf1 mice showed 
decreased mitochondrial Ca2+ intake and resistance to 
neurodegeneration. Despite the mitochondrial involvement 
in both models and a definite mitohormetic response, 
neither looked at it from the perspective of the UPRmt, thus 
necessitating further studies to establish a causal link.

One aspect of increased longevity is improved 
metabolic performance. Metabolism and mitochondrial 
integrity have been intricately linked with aging and 
longevity ((Lopez-Otin  et  al. 2016). In this regard, one 
way to study the implications of UPRmt activation and its 
effects is through the transient modulation of systemic 
metabolism. A mediator of this response may be signaling 
factors released from tissues or organs with primary 
mitochondrial defects. These mediators are known as 
mitochondrial cytokines or mitokines and are secreted 
in response to mitochondrial dysfunction to re-establish 
systemic metabolic homeostasis. Thus, mitokine action 
and its improvement of metabolic parameters can be 
considered as a type of transient mitohormetic response 
and will be discussed in more detail in the following 
section.
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Putative mitokine factors as a regulator of systemic 
energy metabolism

Previous studies in C. elegans have established a class of 
secretory proteins defined as mitochondrial cytokines or 
mitokines (Durieux et al. 2011). In this study, activation 
of the UPRmt in the brain resulted in the distal activation 
of the UPRmt in the worm gut and was suggested to be 
mediated by an unknown factor, which the authors 
defined as a mitokine. A subsequent study revealed 
that this mitokine was serotonin (Berendzen  et  al. 
2016). In contrast to worm models, mitokines in the 
mammalian context may serve a different role. This may 
be explained by the increased complexity and interorgan 
communication distance that would be required in higher 
organisms, although this would require more in-depth 
studies to prove. Mitokine responses in mammals can be 
considered as critical cell non-autonomous modifiers in 
disease severity and progression. Secretion of mitokines 
can be a critical adaptive response that occurs during a 
specific period of disease progression (Fig. 4). Individual 
mitokines may act as disease markers, and utilization of 
these mitokine factors may serve as potential therapeutics 
for metabolic diseases.

Fibroblast growth factor 21 (FGF21) was reported 
as the first mitokine factor in mice and is induced by 
Atg7-knockout-mediated autophagy deficiency and 
mitochondrial dysfunction. Inhibition of mitochondrial 
function induces ATF4-dependent induction of Fgf21 
expression, leading to amelioration of diet-induced 
obesity and insulin resistance in mice (Kim  et  al. 
2013). Currently, FGF21 is a useful serum biomarker of 
mitochondrial diseases, although skeletal muscle biopsy 
is the gold standard for diagnosis of mitochondrial 
translation and mtDNA maintenance disorders in humans 
(Suomalainen  et  al. 2011). FGF21 induced by decreased 
muscle fat oxidation is dependent on the AMPK and Akt1 
signaling, which promotes the increase of glucose uptake 
in muscle and white adipose tissue browning in mice 
(Vandanmagsar et al. 2016). Moreover, FGF21 provides a 
thermoregulatory defense against hypothermia through 
activation of adipose tissue browning by enhancing 
adipose PGC1α (Fisher  et  al. 2012). Additionally, FGF21 
attenuates diabetic cardiomyopathy by increasing AMPK 
activity and paraoxonase 1 signaling in streptozotocin/
high-fat diet-induced hyperglycemic mice (Wu  et  al. 
2017).

Emerging studies report the role of UPRmt and 
mitohormesis on metabolic diseases across multiple 
species. Administration of nicotinamide riboside, a 

precursor of NAD+ biosynthesis, prevented hepatic fat 
accumulation in high-fat high-sucrose diet-fed mice 
by sirtuin-mediated UPRmt, triggering an adaptive 
mitohormesis in the liver of mice (Gariani  et  al. 2016). 
The UPRmt induced by skeletal muscle-specific OxPhos 
deficiency is also associated with enhanced lipolysis 
and fatty acid oxidation by the induction of growth 
differentiation factor 15 (GDF15), thereby protecting 
against the adverse effects of high-fat diet-induced obesity 
in mice (Chung et  al. 2017b). Moreover, serum GDF15 
levels predict insulin resistance and glucose intolerance 
in nondiabetic subjects and patients with type 2 diabetes 
(Dostalova  et  al. 2009, Kempf  et  al. 2012, Hong  et  al. 
2014). Additionally, GDF15 deficiency aggravates chronic 
alcohol- and carbon tetrachloride-induced liver injury 
by inducing infiltration of neutrophils, monocytes and 
activated T cells in the liver (Chung  et  al. 2017a). It 
should be noted that the relationship between the UPRmt 
and GDF15 induction is merely correlative and requires 
further confirmation in follow-up studies.

Angiopoietin-like 6 is also induced by OxPhos 
dysfunction caused by Crif1 knockout or treatment 
with oligomycin and rotenone in cultured adipocytes. 
Angiopoietin-like 6 enhances Fgf21 transcription via 
activation of ERK–MAPK pathway-mediated Pparα in 
cultured adipocytes and adipose tissue of mice (Kang et al. 
2017). Angiopoietin-like 6 also enhances insulin 
sensitivity and glucose tolerance resulting from increased 
energy expenditure and reduction of body weight in mice 
(Oike et al. 2005).

Recently, several groups revealed that adrenomedullin 
2 (ADM2), an endogenous bioactive peptide belonging 
to the calcitonin gene-related peptide family is an 
inducible gene in response to mitochondrial stress 
caused by inhibition of mitochondrial respiration chain 
in human cancer cell lines. ADM2 has a putative ATF4-
binding site GTTGCATCA, located at a distance of 30 bp 

Figure 4
Schematic model regarding the importance of mitokine response in 
progression of metabolic diseases.
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downstream of the translation start codon within the 
ADM2 gene. Transcription of ADM2 is tightly regulated by 
ATF4 during the integrated stress response, which is also 
associated with tumor angiogenesis by inducing vascular 
endothelial growth factor in the cells (Kovaleva  et  al. 
2016). Moreover, ADM2 levels in plasma are negatively 
correlated with body weight in Chinese subjects. 
ADM2 overexpression in adipocytes or treatment with 
recombinant ADM2 improves metabolic phenotypes by 
inducing beiging with upregulation of UCP1, as well as 
M2 macrophage activation in white adipose tissues in 
high-fat-fed mice (Lv  et  al. 2016). Moreover, treatment 
with ADM2 inhibits obesity-induced insulin resistance 
in mice via suppression of MHCII antigen presentation 
in adipocytes and reduction of the activation of CD4+ T 

cells (Zhang et al. 2016). These data suggest that mitokines 
induced by mitochondrial stress may be a novel target 
for obesity and diabetes. Table 1 summarizes the effects 
of UPRmt signaling components including mitochondrial 
chaperones, proteases and mitokines on metabolic 
phenotypes in mice and humans.

Lastly, mitochondrial-derived peptides also have a 
key role in stress resistance as a mitochondrial autocrine, 
paracrine and endocrine signal. Humanin, which is 
translated in the mitochondria (21-amino-acid peptide) or 
the cytoplasm (24-amino-acid peptide), has been shown 
to suppress neuronal cell death caused by Alzheimer’s 
disease and to increase cytoprotective effects against 
stress and disease models (Lee et al. 2013). MOTS-c is also 
a mitochondrial-derived peptide that improves obesity 

Table 1  Effects of UPRmt signaling components on metabolic phenotypes in mammals.

Function Gene name Protein name Metabolic phenotype References

Chaperone Hspd1 HSPD1 Reduction in hypothalamus of obese and diabetic 
subjects; Increase of myocardial Hspd1 in high-fructose 
fed rats; knockdown induces diabetes-mediated renal 
tubular dysfunction

Kleinridders et al. (2013), 
Aluksanasuwan et al. (2017)

Trap1 TRAP1 Decrease of obesity and tumor formation in TRAP1 
knockout

Lisanti et al. (2014)

Phb PHB Overexpression in adipocytes leads to obesity in both 
genders, but impairment in glucose homeostasis only 
in male mice

Dong et al. (2013), Ande et al. 
(2014)

Hspa1a HSP72 Lower muscular Hsp72 expression in patients with 
T2DM. Overexpression enhances energy expenditure 
and insulin sensitivity. Knockout induces obesity and 
insulin resistance

Kurucz et al. (2002), 
Bruce et al. (2003), 
Drew et al. (2014), 
Henstridge et al. (2014)

Protease Oma1 OMA1 Increased body weight and fat content, improved 
glucose tolerance and insulin sensitivity on NCD, but 
loss of metabolic benefits on HFD. Restoration of 
cardiac function in Yme1l1-deficient mice

Quiros et al. (2012)

Lonp1 LON Increased hepatic gluconeogenesis Lee et al. (2011), Ngo et al. 
(2011)

Clpp CLPP Amelioration of cardiomyopathy Seiferling et al. (2016)
Yme1l1 YME1L1 Induces dilated cardiomyopathy and heart failure Wai et al. (2015)
Parl PARL Impaired insulin signaling in skeletal muscle Walder et al. (2005), 

Civitarese et al. (2010)
Mitokine 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gdf15 GDF15 GDF15 levels in serum increase in patients with T2DM. 
Associated with fatty acid oxidation and lipolysis. 
Reduces liver injury by modulating immune cell 
infiltration

Dostalova et al. (2009), 
Kempf et al. (2012), 
Hong et al. (2014), 
Chung et al. (2017a,b)

Adm2 ADM2 Negative correlation with body weight. Overexpression 
in adipocytes induces beiging of white adipose tissue 
as well as M2 polarization of adipose macrophages. 
Recombinant ADM2 inhibits insulin resistance by 
deactivating adipose CD4+ T cells

Lv et al. (2016), Zhang et al. 
(2016)

Angptl6 ANGPTL6 Required for Fgf21 expression in adipocytes. Increases 
insulin sensitivity, glucose tolerance and energy 
expenditure

Oike et al. (2005), Kang et al. 
(2017)

Fgf21 
 
 

FGF21 
 
 

Increases fat oxidation and mitochondrial function. 
Enhances glucose uptake in muscle and browning in 
white adipose tissue. Attenuates diabetic 
cardiomyopathy

Fisher et al. (2012), Kim et al. 
(2013), Vandanmagsar et al. 
(2016), Wu et al. (2017) 

HFD, high-fat diet; NCD, normal chow diet; T2DM, type 2 diabetes mellitus.

https://doi.org/10.1530/JME-18-0005
http://jme.endocrinology-journals.org� © 2018 The authors

Published by Bioscientifica Ltd.
Printed in Great Britain

This work is licensed under a Creative Commons 
Attribution 4.0 Unported License.

https://doi.org/10.1530/JME-18-0005
http://jme.endocrinology-journals.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R100H-S Yi, J Y Chang et al. UPRmt and mitohormesis in 
metabolic diseases

61 3:Journal of Molecular 
Endocrinology

and insulin resistance in mice (Lee  et  al. 2015), but the 
mechanism regarding translation of MOTS-c is not fully 
understood and requires further studies for understanding 
the natural course and tissue specificity of MOTS-c 
expression, as well as the metabolic effects of MOTS-c in 
humans.

Induction of UPRmt in physiological and 
pharmacological models

The UPRmt can be activated in mammals as well as worms 
by physiological and pharmacological perturbations. 
Nuclear transcriptional response is induced when the 
mis-or unfolded proteins within the mitochondrial matrix 
accumulate by a variety of mitochondrial stresses. In worms, 
activation of UPRmt requires the activating transcription 
factor associated with stress-1 (ATFS-1), which is essential 
for regulating an important transcriptional response to 
recover mitochondrial function (Nargund et al. 2015). The 
degraded peptides in matrix by mitochondrial proteases 
were exported into the cytosol via HAF-1, an ATP-binding 
cassette transporter protein (Haynes et  al. 2010). HAF-1 
also modulates ATFS-1-mediated UPRmt activation by 
inhibiting mitochondrial import of ATFS-1 (Nargund et al. 
2012). ATFS-1 was also involved in the maintenance and 
propagation of deleterious mtDNA in a heteroplasmic C. 
elegans strain (Lin et al. 2016). In mammals, the UPRmt and 
mitokine induced by mitochondrial dysfunction requires 
CHOP-mediated p38 kinase activation in skeletal muscle 
(Chung et  al. 2017b). This study also revealed putative 
CHOP-responsive elements in the human promoter of 
GDF15, a putative mitokine factor (Chung et al. 2017b). 
The UPRmt response element was also identified within 
the promoters of both CHOP and C/EBPβ genes in 
mammalian cells (Horibe & Hoogenraad 2007). Moreover, 
activating transcript factor 5 (ATF5), one of the bZIP 
transcription factors, regulates the activation of UPRmt by 
a stress-dependent shift in its cellular localization, thereby 
promoting proliferation and recovery from mitochondrial 
stress in mammalian cells (Fiorese et  al. 2016). These 
data suggest that UPRmt is an evolutionally conserved 
mechanism from worms to mammals.

Pharmacological induction of UPRmt is also 
extensively characterized in mammalian cells. Treatment 
with doxycycline induces mitonuclear protein 
imbalance in cultured cells as well as in tissues from 
mice, thereby triggering the UPRmt to recover the proper 
mitochondrial function (Moullan et al. 2015). Gamitrinib-
triphenylphosphnium (GTPP), a specific inhibitor of the 
mitochondrial matrix heat shock protein 90 (HSP90), 

induces the transcription of HSPD1 and HSPE1 as markers 
of UPRmt in HeLa cells (Munch & Harper 2016). GTPP 
also promotes the accumulation of misfolded proteins 
in the mitochondria, thereby activating SIRT3 and 
its downstream target genes (Papa & Germain 2014). 
Actinonin generates an aberrant accumulation of de 
novo mitochondrial proteins in the inner membrane and 
impairs the turnover of de novo mitochondrial protein 
synthesis (Richter  et  al. 2015). MitoBloCK compounds 
(Mitochondrial protein import Blockers from the Carla 
Koehler lab), a selective inhibitor of the sulfhydryl 
oxidase Erv1 activity, regulates the translocation of redox-
regulated proteins into mitochondria and oxidation of 
Tim13 and Cmc1 (Dabir et al. 2013). Moreover, 2-cyano-
3,12-dioxo-oleana-1,9(11)-dien-28-oic acid (CDDO), an 
inhibitor of the LON matrix protease, triggers the robust 
upregulation of mitochondrial chaperones and proteases 
in C2C12 myotubes (Chung et al. 2017b).

Although various UPRmt inducers have been used in 
experimental studies, these compounds are not free from 
the issues of mitochondrial specificity or poor property. 
However, a variety of studies showing the physiological 
and pharmacological activation of UPRmt signaling 
demonstrates the cell autonomous footprint of the UPRmt, 
which leads to beneficial phenotypic responses such as 
improved metabolic fitness and longevity in worms and 
flies. Moreover, genetic or pharmacologic modulation of 
OxPhos system regulates metabolic phenotypes across 
the animal kingdom through induction of UPRmt and 
mitohormesis (Durieux et  al. 2011, Shao  et  al. 2016, 
Chung et  al. 2017b). Thus, the utilization of these 
pharmacological UPRmt inducers can facilitate further 
studies on the effects of UPRmt and its physiological 
relevance, including metabolic effects.

UPRmt and mitohormesis as new therapeutic 
targets for metabolic diseases

What is the implication of UPRmt and mitohormesis for 
the development of metabolic diseases? Indeed, a modest 
or transient mitochondrial stress provides fundamental 
protection to the host through cell autonomous and 
cell-non-autonomous signaling, leading to prevention 
of metabolic diseases and aging-related disorders. 
The protective function of UPRmt and mitohormesis 
in multiple organisms, including accumulation of 
deleterious mitochondrial genomes, pathogen infection, 
hematopoietic stem cell maintenance and aging has been 
established (Lin & Haynes 2016, Qureshi et al. 2017). The 
UPRmt-mediated metabolic adaptation may serve to rewire 
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cellular metabolism to recover or prevent the metabolic 
deterioration in humans.

Recently, we revealed that OxPhos deficiency in 
skeletal muscle (Chung et al. 2017a) activated UPRmt and 
the induction of mitokines, thereby maintaining systemic 
energy homeostasis in metabolic deterioration during 
diet-induced obesity. Additionally, FGF21, a starvation-
induced hormone, is a well-known mitokine that elicits 
metabolic benefits by increasing fat oxidation and 
improving mitochondrial function in obese subjects (Kim 
et al. 2013, Wall et al. 2015). In addition to its physiologic 
actions, the pharmacologic functions of FGF21 play a 
key role in the maintenance of systemic energy balance 
through modulating feeding behavior and energy 
expenditure (Kim & Lee 2014, Laeger  et  al. 2014). As 
discussed earlier, the mitokines such as angiopoietin-like 
6 and ADM2 may also have the therapeutic value in the 
treatment of obesity and insulin resistance in humans. 
Despite these studies, the relevance of the UPRmt and 
mitohormesis is only beginning to emerge and it is still 
unknown if the mitonuclear communication network and 
cell non-autonomous hormonal factors exert beneficial 
effects in human metabolic diseases.

Conclusions and perspectives

Metabolic diseases, including diabetes, obesity and 
cardiovascular diseases, which are strongly associated 
with mitochondrial dysfunction, have become a global 
epidemic and is a major worldwide health concern. The 
growing prevalence of metabolic diseases induced by 
genetic and environmental factors increases annual direct 
medical costs in the world. Mitochondrial research has 
been mainly focused on the association between OxPhos 
and metabolic diseases as well as basic structural principles 
of OxPhos. Until recently, the molecular and holistic 
approaches toward mitochondrial proteostasis were merely 
developed in the physiologic and pathologic contexts 
from yeast to mammals. In the near future, the UPRmt 
may be an attractive therapeutic target for the treatment 
of metabolic diseases that result from mitochondrial 
dysfunction. Chemical and pharmacologic agents that 
target mitochondrial oxidative phosphorylation and 
proteostasis should be developed and investigated in the 
basic and clinical fields.

We have highlighted the relationship between 
mitochondrial OxPhos and metabolic diseases in multiple 
organisms where the UPRmt and mitohormesis have 
been demonstrated to play a protective role in obesity 
and diabetes. However, important questions remain 

unanswered about the UPRmt and mitohormesis in the 
development and maintenance of metabolic diseases. The 
most important question would be how UPRmt regulates 
the susceptibility of metabolic diseases in mammals. It 
would also be interesting to determine how mitohormesis 
affects systemic energy metabolism, leading to inhibition 
of obesity and insulin resistance.

Although the physiologic roles of the UPRmt and 
mitohormesis in adapting metabolism to recover 
mitochondrial proteostasis and energy homeostasis 
are beginning to emerge, the data provide convincing 
evidences to suggest that UPRmt-mediated cellular or 
systemic protective effects may be beneficial for the 
development of therapeutics for diverse metabolic 
diseases such as diabetes, neurodegenerative diseases 
and aging-related disorders. However, it should be noted 
that while the association between UPRmt/mitohormesis 
and metabolic diseases is well characterized from worms 
to flies, less is known regarding the mechanism of the 
UPRmt and the receptors for mitokines in mammals. It is 
reasonable to predict that mitokines may have autocrine, 
paracrine and endocrine effects on other cell types within 
the tissue. Furthermore, mitokine receptors may be 
present in distant organs, suggesting that mitokines play 
endocrine roles in interorgan communication involved in 
systemic homeostasis.
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