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A b s t r a c t Objective: To design a pattern recognition engine based on concepts derived
from mammalian immune systems.

Design: A supervised learning system (Immunos-81) was created using software abstractions of T
cells, B cells, antibodies, and their interactions. Artificial T cells control the creation of B-cell
populations (clones), which compete for recognition of ‘‘unknowns.’’ The B-cell clone with the
‘‘simple highest avidity’’ (SHA) or ‘‘relative highest avidity’’ (RHA) is considered to have
successfully classified the unknown.

Measurement: Two standard machine learning data sets, consisting of eight nominal and six
continuous variables, were used to test the recognition capabilities of Immunos-81. The first set
(Cleveland), consisting of 303 cases of patients with suspected coronary artery disease, was used
to perform a ten-way cross-validation. After completing the validation runs, the Cleveland data
set was used as a training set prior to presentation of the second data set, consisting of 200
unknown cases.

Results: For cross-validation runs, correct recognition using SHA ranged from a high of 96
percent to a low of 63.2 percent. The average correct classification for all runs was 83.2 percent.
Using the RHA metric, 11.2 percent were labeled ‘‘too close to determine’’ and no further
attempt was made to classify them. Of the remaining cases, 85.5 percent were correctly classified.
When the second data set was presented, correct classification occurred in 73.5 percent of cases
when SHA was used and in 80.3 percent of cases when RHA was used.

Conclusions: The immune system offers a viable paradigm for the design of pattern recognition
systems. Additional research is required to fully exploit the nuances of immune computation.
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The immune system, much like the central nervous
system, is capable of performing complex information
processing tasks. At the very highest level it recog-
nizes foreign molecules, referred to as antigens, and
clears them from the organism. While performing this
essential task, it learns the structure of the antigen and
retains a memory of its amino acid sequence for future
encounters. Over the last 15 years, a good deal of
work has been done developing computer models
that mimic various aspects of the immune system and
are capable of performing practical information pro-
cessing tasks. Even with the progress that has been
made building artificial immune systems, much re-
mains to be done to fully exploit this rich paradigm.
In this paper a type of artificial immune system (Im-
munos-81) is proposed, which has powerful pattern
recognition and classification features yet is easy to
build and train. Prior to a discussion of design and
performance of Immunos-81, a review of pertinent
features of mammalian immune systems is offered
along with an overview of existing artificial immune
system implementations. For a more extensive discus-
sion of the immune system, see Benjamin et al.1

Background

Overview of the Immune System

The main information processing activities of the im-
mune system occur as the result primarily of the in-
teractions of two types of cells—antigen-presenting
cells (APCs) and lymphocytes. Lymphocytes exist in
two forms, B cells and T cells. T cells (so called be-
cause they develop to maturity in the thymus gland)
direct the response to protein antigens. The creation
of mature T cells is a fairly random process. Progen-
itor cells migrate to the thymus from the bone mar-
row. There they undergo a two-stage selection pro-
cess. The first, positive selection, acts on the entire
maturing T-cell population, and only cells that dem-
onstrate functional surface receptors capable of rec-
ognizing major histocompatibility (MHC) molecules
continue maturing; the remaining cells undergo apop-
tosis (programmed cell death). Those that survive this
process are then exposed to ‘‘self’’ antigens. Cells that
demonstrate a response to self antigens are then neg-
atively selected and permitted to die. As many as 98
percent of T cells do not make it through this two-
stage selection process. Still, approximately 106 ma-
ture T cells are released into the circulation every day.
Each T cell carries a unique set of surface receptors
that are capable of recognizing antigens.

B cells mature in the bone marrow and carry immu-
noglobulin (IgM and IgD) on their surfaces. All im-

munoglobulins on a given cell are identical and are
capable of binding antigen. B cells are produced at a
rate similar to T cells. The two types of lymphocytes
are distributed differently in the body. Ninety percent
of T cells circulate, whereas 90 percent of B cells are
found in secondary lymph tissue (e.g., lymph nodes,
spleen). Antigen-presenting cells (e.g., macrophages,
dendritic cells, Kupffer cells) are found throughout
the body—some are fixed; others, such as macro-
phages, roam freely.

Before T cells can respond to an antigen, the antigen
must be presented in a very specific manner. Antigen-
presenting cells perform this vital function. They in-
gest foreign proteins, break them down and, as a final
step, attach them to MHC molecules prior to display-
ing the antigen-MHC complex on the cell’s surface.
There are two types of MHC molecules. The MHC I
molecules are found on all cells and attract the CD81
(killer) subpopulation of T cells. Cells that express
MHC I molecules with foreign (e.g., virus-infected)
proteins attached are destroyed by the responding T
cells. Antigens bound to MHC II molecules attract
CD41 (helper) T cells, and it is this subpopulation
that interacts with B cells to create a full-blown im-
mune response. Notice that B cells express MHC II
molecules on their surfaces along with immunoglob-
ulins and other important cell surface receptors.

When a B cell or T cell encounters an antigen that has
sufficient affinity for its surface receptors, the cells be-
come activated. However, antigen binding is a nec-
essary but not sufficient condition for promulgation
of the immune response. In addition, a B cell and T
cell that recognize the same antigen must undergo di-
rect physical contact with each another. This contact
involves multiple receptors on the surfaces of both
cells. Once this occurs, the B cell and T cell divide and
the next phase of the response begins. B and T cells,
which interact as previously described, produce prog-
eny, referred to as clones, which express surface re-
ceptors identical to those of their parents. This re-
sponse seems to be proportional to the degree of
affinity of the original receptor for the provoking an-
tigen. Thus, those B- and T-cell pairs that most
strongly bind antigen produce a greater number of
progeny that survive than do those with weaker bind-
ing affinities. B cells thus stimulated undergo an ad-
ditional, remarkable transformation, referred to as
‘‘affinity maturation.’’ Affinity maturation describes
the process by which some progeny of activated cells
produce antibodies (via point mutations on DNA cod-
ing for antigen-binding sites) with an even higher af-
finity for the provoking antigen than that present on
the parent cell. Thus, as the immune response pro-
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gresses, the system learns how to better recognize and
thereby clear invading proteins. The final portion of
the response is denoted by the formation of memory
cells. These are both B cells and T cells that remain in
the system for months or years and are capable of re-
sponding to previously recognized antigens in a much
shorter time and with greater vigor than are newly ac-
tivated cells. The set of all B cells and their attendant
immunoglobulins is referred to as a repertoire.

A few more words concerning antigens are in order.
The antigens that elicit the greatest immune response
are made of proteins. Proteins are large molecules that
are made of smaller units referred to as amino acids.
Proteins exhibit three types of organization, referred
to as primary, secondary, and tertiary structures. Only
primary and tertiary structures are germane to the
current discussion. The actual linear, physical se-
quence of amino acids that make up the protein con-
stitutes the primary structure. The three-dimensional
structure of the protein with all its folds and twists is
what is known as the tertiary structure. Think of a
strand of pearls. Each pearl is an amino acid. The pri-
mary structure is simply the linear order of the pearls
on the strand. Now twist the strand around your fin-
ger. The coil that is formed is the strand’s tertiary
structure (of course, natural proteins have far more
complex tertiary structures). B cells recognize the
three-dimensional aspects of the antigen, whereas T
cells learn the primary structure or amino acid se-
quence. The entire process is an example of an ex-
traordinary adaptive process.

Abstracting Information-processing Ideas from
the Immune System

This brief discussion of the immune system recounts
a number of remarkable features that would seem to
be useful in information processing. Currently avail-
able artificial immune systems tend to focus on a par-
ticular subset of the features found in natural immune
systems, many of which are not incorporated into the
design of Immunos-81. This feature subset will be re-
viewed before the design of Immunos-81 is presented.

Perhaps the most fundamental feature of the immune
system is its ability to distinguish self from nonself.
This ability is possible because of two very important
factors—the fact that self does not change over time,
and the two-step selection process to which maturing
T cells are subjected. Applying self-recognition as an
information concept requires finding a suitable prob-
lem in the real world. Here the value of the ‘‘unchang-
ing’’ aspect of self becomes obvious. Thus, one pos-
sible application of self-recognition is detection of
perturbations or changes in a stable system. This fea-

ture has been studied at length by Forrest et al.2 using
a negative-selection algorithm for change detection to
provide more robust security for computer operating
systems. Dasgupta and Attoh-Okine3 describe a vari-
ety of projects, including work with Forrest, in which
they experimented with this concept as a mechanism
for anomaly detection in time series data.

B-cell activation and the subsequent creation of high-
affinity clones via affinity maturation have also re-
ceived a good deal of attention from artificial immune
system designers.4–7 Genetic algorithms, as initially
described by Holland,8 have done much to promote
the use of this feature of the immune system. In arti-
ficial immune systems that make use of the concept
of affinity maturation, a population of artificial anti-
bodies/B cells is created with the amino acid se-
quences of antigen-binding sites represented by bi-
nary strings. Antigens are likewise represented as
binary strings. A matching algorithm is then used to
determine the degree of affinity between an anti-
body’s binding site (paratope) and the binding site of
an antigen (epitope). Using the principles of genetic
algorithms, a population of antibodies is evolved that
attains a higher affinity for the antigen with each new
generation. The entire population of antibodies/B
cells that results (i.e., the repertoire) now reflects the
features of the presented antigen. Using public do-
main genetic algorithm software, Forrest et al.4 have
demonstrated that a population of artificial antibodies
could be evolved that would recognize a diverse ar-
tificial antigen population while maintaining the sta-
bility of the antibody population.

Idiotypic Network Theory

A final feature commonly found in current artificial
immune systems (especially in combination with
genetic-algorithm-influenced antibody population
growth models) is the incorporation of some aspects
of Jerne’s idiotypic network model.9–11 Jerne’s model
is seen as providing a viable theoretic underpinning
for explaining the dynamics of interactions between
the various components of artificial immune systems.
Jerne postulated that the immune system is regulated
by antibody–antibody and antibody–lymphocyte in-
teractions. Idiotypic network theory stipulates that, in
the absence of antigen, the immune system is in a
state of dynamic equilibrium. Specifically, binding
sites of immunoglobulins (paratopes) or T-cell im-
mune receptors are capable of provoking a type of
autoimmune response in which the immune system
creates antibodies against them. The immunogenic
sites of immunoglobulins and T-cell receptors are re-
ferred to as idiotypes. When antigen is introduced, a
subset of B and T cells becomes stimulated and pro-
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liferates, leading to clearing of the offending antigen.
The introduction of clones with new affinities pro-
vokes a counter idiotypic response, and a cascade of
anti-idiotype, anti-anti-idiotype, and anti-anti-anti-
idiotype interactions occur until the system once
again reaches a state of equilibrium.

A good deal of work has been done to create mathe-
matical and, later, computer-based models of idiotypic
networks.10–20 However, there is still no firm evidence
that this is the ultimate control mechanism for natural
immune systems. The most obvious effects of Jerne’s
theory on the design of artificial immune systems has
been the emphasis on accounting for the number and
types of antibodies extant in a system and the provi-
sion of a mechanism for population subsets to change
in size and strength because of some type of compet-
itive mechanism. For example, Hunt and Cooke5 offer
the following description of learning in their artificial
immune system:

During the learning phase, input data [are] inserted
into the cell network. The cells in the vicinity of the
insertion point are presented with the data. An im-
mune-based matching algorithm is used to establish
the match between the data and the cell. If the match
value exceeds a threshold, the cell becomes stimu-
lated and produces other cells whose pattern match-
ing element can mutate, which may produce better
matches for the input data. These cells joint the net-
work of cells. This network reinforces the stimula-
tion level of the better cells and represses poorer
cells via a feedback mechanism. The size of the net-
work and the links within the network are dynam-
ically generated by the interaction of the cells.

Farmer et al.6 demonstrated the similarities between
classifier systems introduced by Holland and an
idiotypic network immune model system that used
genetic operators. Ishida and Mizessyn21 applied the
immune paradigm to sensor monitoring for fault di-
agnosis in chemical plants.

Finally, Gilbert and Routen7 relate their failed attempt
to build an artificial immune system designed to ex-
hibit associative memory. They cite the inability to
find a stable network configuration (i.e., one that
would retain a memory of the antigen and maintain
a stable antibody population) as the main reason for
their lack of success.

In summary, most artificial immune system designers
have relied very heavily on three principal concepts
—self/nonself discrimination, generation of cell/
antibody populations via genetic operators, and
idiotypic network theory as the basis for controlling
interactions between various artificial immune system

components. These are obviously sound architectural
principles, as evidenced by the existence of working
applications; however, a number of immune system
features that may provide additional rich examples
for building intelligent systems have been overlooked.

An Alternative Approach to Building an
Artificial Immune System

A remarkable trait of all published accounts of artifi-
cial immune system applications is their very strong
adherence to biological principles gleaned from actual
immunologic research as well as theoretic computer
models of the immune system. Witness the failure of
Gilbert and Routen to build a stable learning system.
They were very careful to use equations derived from
theoretic studies of the immune system6,18,19,20 in build-
ing their model, which proved to be unworkable in
an actual application. Building systems that adhere
closely to what is known of natural immune systems
with all their innate complexity, while admirable, may
in the long run prove to be less than ideal from a
computational standpoint. Consider the explosion in
neural network activity with the introduction of the
back-propagation algorithm.22 Very capable applica-
tions have been built using this algorithm, yet one
would be hard pressed to demonstrate such a mech-
anism in real nervous systems.

The recognition of the value of simple processing
units connected in parallel was the most important
design hint taken from the central nervous system.
Imagine how little progress would have been made
in building useful applications if neural net applica-
tions had to adhere strictly to all the precepts of neu-
rophysiology. Similarly, with immune-based systems,
perhaps a wider variety of applications could be de-
veloped if more systems were based on higher-level
immune system features with less regard to actual bi-
ological detail. For example, natural immune systems
create millions of cells daily, most of which die with-
out encountering an antigen. This is necessary in a
biological system, which cannot predict when or to
what it may be called on to react. In an application
such as bad loan detection, however, such redun-
dancy would serve no useful purpose, since all input
types (but not patterns) are defined in advance. In cre-
ating Immunos-81, I made a few very specific design
decisions, perhaps the most important being that im-
mune system concepts would be reduced to their
most fundamental level before they are incorporated
into the prototype. For example, B cells/antibodies
are not randomly generated with a range of binding
affinities. Instead, B-cell/antibody generation is under
the control solely of entered data.
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Table 1 n

Immunos-81 Design Goals

Ability to perform classification/pattern recognition tasks:
n Easily understood internal representation
n Ability to generalize from input data
n Predictable training times
n Online learning
n Potential to act as an associative memory
n Acceptance of continuous and nominal variables
n Capacity to learn and recall large numbers of patterns
n Experience-based learning
n Supervised learning

Table 2 n

Immune System Concepts and Their Adaptation
for Immunos-81
T-cell concepts:

T cells control the activities in the immune system.
T cells learn the primary structure of antigens (i.e., the se-

quence of amino acids).
T cells decide what is interesting (not based on self/nonself).

B-cell concepts:
B cells recognize surface features of antigens.
Clones of a particular B cell, because of affinity maturation,

have a range of affinities for the same antigen.
IgG recognition is more specific than IgM recognition.

Learning:
When new antigens are introduced, the behavior of clone

population group is adjusted only during learning (primary
response).

Ability to recognize an antigen on secondary response results
in no adjustment in the influence of clone groups.

Learning occurs in two steps–T-cell recognition followed by
B-cell creation or clone expansion, or both.

Antigen concentration is accounted for during learning

Recognition:
The total avidity for an epitope determines the winner.
T cells screen unknowns prior to B-cell presentation.

Concepts not explicitly used:
No attempt is made to explicitly represent a concept of self.
No preformed T or B cells are present in the system.
No idiotypic interactions are stimulated.

Design Goals for Immunos-81

The immune system was chosen as a design paradigm
because at its most fundamental level it may be
viewed as a learning system that readily accepts new
input patterns of arbitrary length, maintains a data-
base of previously encountered patterns, and on rein-
troduction recognizes learned patterns efficaciously.
These are the characteristics of the immune system
that Immunos-81 attempts to emulate. A list of the
specific design goals of Immunos-81 may be found in

Table 1. Immunos-81, while not intended as a strict
implementation of a natural immune system, does
make use of many information processing techniques
used by natural systems. Table 2 lists concepts that
were borrowed to create Immunos-81 components.

Artificial T Cells

T cells are the central control point for Immunos-81.
Antigens are presented to T Cells for both learning
and recognition. T cells are concerned mainly with the
primary structure/sequence of antigens (Figure 1A).
For the current coronary artery disease data set, the
physical sequence of the fields in each record consti-
tute the primary sequence or structure of the antigen.
Consequently, record fields are the Immunos-81
equivalent of amino acids in natural antigens. This
sequence is recorded by T cells. In the simplest form
of T-cell learning or recognition, an antigen might be
recognized by matching its primary sequence to that
of one stored in a T cell. For example, a T cell that
recognizes a sequence of ‘‘age, weight, height, race’’
would have a low binding affinity for a sequence of
‘‘age, cholesterol, resting blood pressure, fasting blood
glucose.’’ More complex recognition might be based
on patterns embedded in sequences (e.g., temporal,
repeating groups). In Immunos-81, antigens may be
of arbitrary length and variables may consist of a va-
riety of data types.

If an antigen class has been previously encountered,
the T cell presented with an unknown antigen of that
class presents it in turn to a specific subpopulation of
B cells (clones) for recognition. If the antigen is a
member of a class not previously encountered, an at-
tempt is made to learn its primary structure (amino
acid sequence), and then a B-cell population is created
that can recognize special features of the antigen (ter-
tiary structure) (Figure 1B). T-cell receptors are rep-
resented as arrays with binary paratopes. A direct re-
sult of this design is that T cells in Immunos-81
perform a type of ‘‘class-level’’ recognition.

During recognition, unknowns are initially presented
to T cells, which compete to find one that perfectly
matches the primary sequence of the unknown—that
is, all variables in the unknown match those in the T
cell in both type and sequence (Figure 2). If a perfect
match is found, then the B-cell population controlled
by the winning T cell is presented with the unknown
to determine which instance of the class the unknown
represents. Although not implemented completely in
the current version of Immunos-81, partial matching
of unknowns may be used to determine degrees of
membership in a particular class. The ability to deter-
mine the degree of membership in a class permits the
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F i g u r e 1 (A), Generic antigen with eight
potential binding sites—primary structure
(T-cell recognition). (B), Generic natural an-
tigen with eight potential binding sites—
tertiary structure (B-cell recognition). B cells
recognize instances of a class by looking for
special features. In natural antigens, these
may be thought of as surface features. In the
figure, sites 6 and 7 are folded into the body
of the antigen, making them relatively in-
accessible to B cells/antibodies. Therefore, B
cells/antibodies directed at this antigen
would tend to notice sites 1 through 5 and
site 8. In Immunos-81, special features are
denoted by paratopic affinities. In clone
populations (groups of B cells), the greater
the affinity value of a paratopic site, the
more likely that site represents a special fea-
ture of the antigen. For example, if ‘‘male
gender’’ has an affinity of 0.34 and ‘‘female
gender’’ an affinity of 0.51, then being fe-
male is a stronger indicator than being male
of membership in the antigen class recog-
nized by this clone.

F i g u r e 2 T-cell Paratope and unknown. T cells and antigen binding sites are binary. (A) and (B), Antigens and T
cells show a value of 1 at a binding site if the feature is present in the represented class, and a 0 if the feature is absent.
Class membership may be determined by matching the T-cell receptor sites to those of the unknown. (C), In the present
case a match occurs only at the ‘‘Age’’ paratope/epitope pair (one of five sites). Thus, the antigen is unlikely to be a
member of the class recognized by this T cell. During recognition, feature sequence is very important. No attempt is
made to reorder features to improve match results. Thus, the feature order and the presence or absence of a feature
affects recognition. Partial matches may be used to assign degrees of membership to a class, permitting a form of
generalization. Partial matching is not implemented in the current version of Immunos-81.
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Table 3 n

Immunos-81 Components
Antigen: A data grouping from the real world that may consist

of multiple variables of any type.

T cell: A control agent that represents a particular class and
determines the sequence and types of variable within an an-
tigen; whether an antigen has been previously encountered;
and which B-cell clone will decide the identity of an antigen.

B cell: An entity that represents an instance of a particular class
during learning. After learning has occurred, no explicit rep-
resentations of B cells are stored by Immunos-81.

Amino Acid Library: All variables encountered by Immunos-
81, which are each assigned a name and type. This informa-
tion is contained in an ordered pick-list and may be used to
construct new antigen sequences. This ensures a consistent
definition for all variables. Each entry has an Amino Acid
Number, Amino Acid Name, and Data Type. Typical entries
for Immunos-81 are: 1, Age, numeric; 2, Sex, nominal, etc.

Clone: A recognition agent—mathematical representation of a
population of B-Cells

system to perform a type of generalization (i.e., if no
perfect match is found, then the T cell with the highest
match total wins and presents the unknown to its B
cells). To ensure that sequences are always compared
properly, a library of epitopes (i.e., variables) (Table 3)
is maintained and is referred to as the amino acid li-
brary (AALib). Each entry in the library consists of a
unique numerical identifier (Amino Acid Number),
unique name (Amino Acid Name), and data type
(nominal, numeric, ordinal). When new antigens are
presented to the system, their record fields (i.e., amino
acids or epitopes) are decoded and placed in the
AALib. T cells use the information in this library to
construct their receptors and those of B cells. During
recognition, AALib data are used to determine
whether T-cell paratopes match the epitopes of the
unknown. Once the primary structure has been de-
coded, a B cell is created that matches the antigenic
sites (epitopes) on the antigen.

Artificial B Cells

Antibodies, which in natural immune systems are B-
cell products and serve as B-cell surface receptors, do
not exist as discrete entities in Immunos-81. Since B-
cell surface receptors are identical to the antibodies
produced by the B cell, each B cell represents all its
potential antibody progeny. The notation Ab is used
to denote the antibody/B-cell surface receptor duality.
B cells are created that represent an ‘‘immune re-
sponse’’ to instances of a particular class found in a
data set (antigens).

For example, the data used to test the recognition ca-
pabilities of Immunos-81 consist of cases of patients
evaluated for coronary artery disease. Two categories
of patients are represented in this group (referred to
here as a ‘‘class’’)—those with coronary disease
(CAD1) and those without (CAD2). An antigen
would consist of a complete data set for each patient,
containing one value for each possible trait (age, sex,
systolic blood pressure, cholesterol level, etc.). T cells,
which represent and monitor the ‘‘immune response’’
at the class level, are created for each distinct class.
CAD1 and CAD2, being two instances of the same
class, would lead to the creation of a single CAD T
cell. B cells perform ‘‘instance-level’’ recognition and,
in this example, one B cell would be created for each
CAD1 and CAD2 antigen set. In a sufficiently large
data set, it could reasonably be expected that more
than one record would exist that represents an in-
stance of the CAD1 or CAD2 state. The entire pop-
ulation of CAD1 B cells would then be grouped to
form a ‘‘clone’’ (as would the CAD B cells), capturing
the features of CAD1 antigens. The clone is the basic
unit of recognition in Immunos-81.

The relationship between B cells and clones is as fol-
lows (Figure 3): If a B-cell (Ab) receptor’s paratopic
site is represented by P, then B-cell ‘‘X’’ (Abx), with ten
potential binding sites, would be denoted Abx(P10) and
the i-th paratope Pi. The ‘‘affinity’’ (binding strength)
of a paratopic site for a particular epitope is denoted
Pia. Thus, the affinity of the eighth paratopic site on
B cell ‘‘X’’ for an antigenic epitope would be denoted
(AbxP8a). In Immunos-81, at the antibody/B-cell level,
paratopic affinity is binary (i.e., if the feature is pres-
ent in the antigen, then the corresponding site on the
antibody/B cell is stored as 1; if absent, as 0).

During learning in Immunos-81, presentation of an
unknown results in the creation of a T cell, which then
directs the creation of B cells whose receptors recog-
nize the epitopes of the unknown. In natural immune
systems the magnitude of the immune response (and
size of the resulting clone) is a function of the anti-
genicity of the foreign material and the concentration
of that material in the serum. This concept is approx-
imated in Immunos-81 by the use of ‘‘antigenic units’’
(au). An antigenic unit is the basic unit of ‘‘foreign-
ness’’ and is defined as the amount of antigen re-
quired to cause the creation of a single B cell. The
concentration of a given antigen, q, is represented in
Immunos-81 as [q]au.

Most natural antigens are complex proteins that are
processed into smaller units by APCs. Therefore, any
given antigen may have multiple epitopes, and the B-
cell response will constitute a response to the entire
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F i g u r e 3 Clone population. A, Each
clone consists of a series of B cells that rec-
ognize the same antigen class instance. B,
Once an antigen class instance is learned,
a clone that recognizes the future instances
of that class is created. Notice that, once a
clone is formed, individual B cells no
longer exist, only their pooled representa-
tion in the form of the clone. Also, notice
that, at the level of the clone, affinities
(ClaPna) are continuous variables.

epitope population. All the subparticles (and their ep-
itopes) that are created as a result of APC processing
belong to the same parent antigen (i.e., class), and
each is capable of invoking an immune response. Im-
munos-81 assumes (during supervised learning) that
all antigens presented as a group belong to a same
class or class instance. And each instance of the class
is equal to one antigenic unit. If 350 instances (cases)
are presented for learning purposes, then [q]350 rep-
resents the concentration of antigen q.

Clone Characteristics

Immunos-81 creates one B cell for each antigen pre-
sented, resulting in the creation of a clone (Cl) pop-
ulation. As in natural immune systems, antigens of
the same class will cause the generation of an anti-
body clone population with varying affinities for a
given epitopic site. This principle was used in design-
ing the recognition engine of Immunos-81. Recalling
the coronary artery disease example, assume that the
problem is learning to classify patients into two
groups—those with coronary artery disease (CAD1)
and those without (CAD2). If 100 cases with 13 var-
iables per case are presented to the system, then one
T cell will be created (there is one class with two in-
stances) and a clone population of antibodies/B cells
will be created, one for each class instance. When an
unknown case is offered for recognition, the clones
representing each instance (CAD1 and CAD2) will
compete. Recognition is decided by clonal avidity, not
at the level of individual antibodies/B cells. In other
words, the clone population that has the optimum
mixture of high receptor affinity and high concentra-
tion will be declared the winner.

Clone-level affinity is a function of the affinities of the
antibodies/B cells it contains. Clone-level affinity of
clone ‘‘X’’ (Clx) at paratope site 8 may be represented as:

j=1

Cl (P a) = k (Ab P a)x 8 j 8O
N

(clone-level affinity)

where j indexes all antibodies/B cells in the clone, N
is the number of Ab in the clone with value 1 at Ps,
and k is the scaling factor.

The size of a clone (S), as stated earlier, is proportional
to the concentration of the antigen that provoked its
creation:

yS(Cl ) = k[q] (clonal size)x

The avidity (A) of a clone is the combined affinities
for all paratopic sites. Given this definition, it is ob-
vious that the avidity of a clone for a particular an-
tigen will vary according to the epitopes present for
binding on the antigen (i.e., the number of features
present). Also, the greater the number of antibodies/
B cells that the clone comprises, the more opportuni-
ties it has for antigen binding. This very basic prin-
ciple, which plays a key role in natural immune
systems, is emulated in Immunos-81 by inclusion of a
clone-level scaling factor (k2), which ensures that the
relative avidity of a clone is adjusted in accordance
with the number of clones present for a particular an-
tigenic class. The total avidity for paratopic site 8
would denoted as:

Cl A(P ) = k [Cl (P a)?S(Cl )]x 8 2 x 8 x

(total clonal affinity at paratope 8)

where k2 is the scaling factor that adjusts for the total
number of clones.

The total avidity for clone X would then become:

i=1

Cl A(P) = k (Cl (P a) ?S(Cl )x 2 x i xFO G
N

(total clonal avidity)

where i indexes clonal paratopes in the clone, N is the
number of paratopes in the clone with value 1 at Pi,
and k2 is the scaling factor that adjusts for the total
number of clones.
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F i g u r e 4 Coronary artery disease antigen/input record. Antigens are presented to Immunos-81 as a list of ordered
fields (they may be database records, or arrays). Fields may be of numeric, nominal, or ordinal type.

F i g u r e 5 Learning algorithm.

Once a clone population has been created, the antigen
is considered learned. A consequence of this definition
of clonal avidity is that the influence of any particular
clone is subject to change as new antigen classes are
added or as additional instances of a particular class
are presented to the system.

Special Learning Features

An interesting feature of Immunos-81, which is cur-
rently being investigated, is its potential ability to
learn ‘‘on line.’’ In this setting online learning refers
to the ability to add new classes or class instances to
the artificial immune system without having to re-
build the entire system. For example, the current ar-
tificial immune system contains one T-cell (CAD) and
two antibody/B-cell clones, (CAD1) and (CAD2).
The presentation of a data set containing information
on valvular heart disease would result in the creation
of a T cell for that class and series of antibody/B-cell
clones representing class instances (e.g., mitral steno-
sis, aortic regurgitation). The new T cell and clones
would become active parts of the artificial immune
system, leaving the CAD components undisturbed.
Consider the effects of making similar adjustments to
a back-propagation neural network: New output
states would require a complete retraining of the net-
work and possibly the addition of more hidden layer
neurons. In addition to the ability to accept new clas-
ses without disruption of current classes, new in-
stances of current classes may be added, with retrain-
ing taking place only in the affected classes. Thus,
clone size and total affinity (and therefore avidity)
may change at any time.

The dynamic nature of clonal avidity permits Immu-
nos-81 to mimic forgetting, which is handled as fol-
lows. Using our coronary artery disease example, in
which 14 variables are provided to the system and in
which one variable is age, the effect of adding cases
of CAD1 Medicare patients to the database would be
to increase the affinity for older ages in the CAD1
clone subpopulation, while that in the CAD-sub-
population would decrease. This ability to adjust clonal
avidities on the basis of experience improves the ability
of Immunos-81 to adjust to its local environment.

The final recognition step involves the determination
of the avidity difference between the two clones
that demonstrate the highest avidities. Two select-
able strategies are available—simple highest avidity
(SHA), in which the winning clone has the highest
total avidity; and relative highest avidity (RHA), in
which the winning clone has the highest total avidity
and that avidity is also at least 5 percent greater than
the avidity of the closest competitor.

Methods

Testing of Immunos-81 was carried out using two
standard databases available from the Machine Learn-
ing Group of the University of California–Irvine.23

The Cleveland database was used for training and
cross-validation, and the Long Beach database for test
unknowns. Both databases were provided by Detrano
et al.24 The Cleveland database consists of 303 cases
of 14 variables (eight nominal, six continuous) each,
derived from patients referred for coronary angiog-
raphy at the Cleveland Clinic from 1981 until 1984.
Patients with a history of myocardial infarction, val-
vular disease, or cardiomyopathy were excluded.
Each case includes the following variables—age,
sex, chest pain type, resting systolic blood pressure,
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F i g u r e 6 Components of the coronary artery disease Immunos-81 artificial immune system (AIS). The amino acid
library and T cells are the highest-level components—all information entering the system must be registered with both.
The clones are created using information stored in T cells. The clones represented above have nonbinary paratopic
affinities. These values will vary depending on antigen concentration, the number of epitopes per antigen, and the
number of clones present for instances of the same class in the AIS.

serum cholesterol, fasting blood sugar (T = hyper-
glycemic), exercise electrocardiographic results, ex-
ercise thallium results, fluoroscopy results (number
of vessels noted), the presence of exercise-induced
angina, S-T slope shape during peak exercise, S-T
segment depression (in millimeters), maximal heart
rate, and postangiography diagnosis. Patients were
divided into five groups on the basis of angiography
results—no ischemic heart disease and ischemic dis-
ease of S1 through S4. For the testing of Immunos-
81, patients were placed in only two groups—CAD1
and CAD2. The case set was then divided into ten
groups and used to conduct a ten-way cross-valida-
tion study. Each input record consisted of 13 input
variables, since postangiography diagnosis was ex-
cluded.

Input (Learning)

Each antigen processed by Immunos-81 is received in
the form of an ordered list (database record or array)
(Figure 4). The order of the fields in the record con-

stitutes the primary sequence or structure of the an-
tigen. The names and data type of each field are read
from the database and used to construct the receptor
of the T cell for this antigen class. All records that
represent a particular instance of class are then pre-
sented to the T cell, which then guides the creation of
a clone population of B cells. In the present case, clone
populations representing CAD1 and CAD2 states are
created. Once clones are created, clonal avidities are
assigned on the basis of the antigen concentration that
caused their formation and the number of competing
clones (Figure 5). When learning is completed, the ac-
tive components of the Immunos-81 artificial immune
system are the amino acid library, T cells, and clones
(Figure 6).

Output (Recognition)

During recognition, one or more unknown antigens
are presented to Immunos-81. Each record undergoes
a two-level match prior to processing. The first-level
match is performed by the T cells in the system (for
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F i g u r e 7 Recognition algorithm for Immunos-81, ver-
sion 1.0.

Table 4 n

Sample Output from the Immunos-81 Recognition
Engine
Antigen
Number Avidity Clone Winner

1 0.606277 CAD2 W
0.552119 CAD1 –

2 0.385981
0.597804

CAD2

CAD1

–
W

3 0.717996
0.468982

CAD2

CAD1

W
–

NOTE: The antigen offered for recognition was test DataSet9.
The sample output is a subset taken from the cross-validation
run using test set 9 and is presented here as a table listing the
number of the antigen record in the parent antigen set; the total
avidity of the antigen for each clone to which it was exposed;
and the winner (the clone with the highest avidity), designated
by the letter W.

the current system, for coronary artery disease, only
one T cell exists). If a perfect match occurs (that is, all
paratopic sites of the T cell match those of the antigen
by name and type), then all clones controlled by that
T cell compete for the antigen. At the level of the
clone, each epitopic site of the antigen is compared
with its clonal equivalent (paratopic site), and the af-
finities for all sites that match are summed. The clone
that generates the highest avidity (the sum of affinities
for all sites) is declared the winner (Figure 7). Avidi-
ties are represented as real numbers whose values
may range from 0.0 to 1.0. Table 4 is an example of
the output obtained from the system after presenta-
tion of test data.

Data Analysis

For each validation run, nine groups were selected as
the training group. The training group was then di-
vided into CAD1 and CAD2 groups and presented
to Immunos-81. (Angiography data were removed
during cross-validation and training runs.) Next, the
remaining group was provided as an unknown set,
and each case was assigned to either a CAD1 or a
CAD2 diagnostic group on the basis of total avidity.
For each validation run, decisions were provided at
both 0 percent (SHA) and 5 percent (RHA) levels of
difference between the avidities of competing clones.
When the RHA metric was used, unknowns whose
total avidity for CAD1 and CAD-clones resulted in a
difference of less than 5 percent between the two cal-
culated avidities were labeled as ‘‘too close to deter-
mine’’ by Immunos-81. The RHA metric provides a
mechanism for allowing Immunos-81 to offer some
idea of its level of certainty when classifying un-
knowns. The results of the validation runs are found
in Table 5.

A second test of Immunos-81 recognition capabilities
was conducted using the Long Beach Veterans Ad-
ministration (VA) database, which contains 200 cases.
This database was selected because it offered a rea-
sonable challenge, due to the number of missing val-
ues for each case. On the average, each case has four
missing values. The entire VA database was treated as
an unknown, and each case was presented to Immu-
nos-81, which had been trained with the Cleveland
data set.

Results

The cross-validation yielded very interesting results.
Correct recognition using SHA ranged from a high of
96 percent (set 4) to a low of 63.2 percent (set 8). Over-
all, the greatest number of incorrect classifications oc-
curred with attempts to separate CAD2 level subjects
from those in the S1 category (the least ill of the
CAD1 group). This is as expected, since these two
classes have the least amount of difference (clinically)
between them. The average correct classification for
all runs was 83.2 percent using SHA. Using the RHA
metric (5 percent difference), the system labeled 11.2
percent (34 cases) ‘‘too close to determine’’ and no
further attempt was made to classify them. Of the re-
maining 269 cases, 85.5 percent (230 cases) were cor-
rectly classified.

When presented with the Long Beach VA data set (Ta-
ble 6), Immunos-81 was able to identify the correct
diagnosis in 73.5 percent of the cases using SHA.
When tested using RHA, the system deemed 16 per-
cent of cases ‘‘too close to determine.’’ The remaining
168 unknowns were classified with an 80.3 percent
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Table 5 n

Ten-way Cross-validation Results (Cleveland Data Set)

Set Number

0% Difference (SHA)

Correct Incorrect

5% Difference (RHA)

Correct Incorrect Not Attempted

1 27/33 6/33 25/28 3/28 5/33
2 23/30 7/30 23/28 5/28 2/30
3 26/30 4/30 25/29 4/29 1/30
4 29/30 1/30 27/28 1/28 2/30
5 22/30 8/30 20/26 6/26 4/30
6 26/30 4/30 23/27 4/27 3/30
7 27/30 3/30 25/27 2/27 3/30
8 19/30 11/30 18/28 10/28 2/30
9 27/30 3/30 24/26 2/26 4/30

10 26/30 4/30 20/22 2/22 8/30

TOTALS 252/303 (83.2%) 51/303 (16.8%) 230/269 (85.5%) 39/269 (14.5%) 34/303 (11.22%)

Table 6 n

Long Beach Veterans Administration Data Results
0% Difference (SHA)

Correct Incorrect

5% Difference (RHA)

Correct Incorrect Not Attempted

147/200 53/200 135/168 33/168 32/200

success rate. Roughly two thirds of the cases placed
in the ‘‘too close to determine’’ group had been in-
correctly classified when SHA was used as the rec-
ognition threshold.

Discussion

Immunos-81 performed very well when classifying
the Cleveland Data set, compared with other systems.
The closest competitor, as described by Wettschereck
et al.,25 is a k-nearest-neighbor classifier utilizing a fea-
ture-weighting scheme (82.4 percent). A cluster algo-
rithm created by Gennari et al.26 managed 78.9 percent
correct. Aha27 attained 75.4 percent accuracy with the
machine learning algorithm C4.0 and 77.9 percent ac-
curacy with an instance-based learning algorithm
(IB3). Gallagher et al.,28 using a constrained discrimi-
nant analysis model, attempted a ten-way validation
and test-set recognition in which all groups (healthy
subjects and patients with S1 through S4 disease la-
bels) served as the test standard (not simply CAD1
or CAD2). They achieved 70.3 percent accuracy dur-
ing the validation exercise and only 42.5 percent dur-
ing actual testing.

Simplicity, a major design goal of Immunos-81, is a
feature that sets it apart from techniques like cluster
analysis and from machine learning algorithms like
C4.0. The internal representations of Immunos-81 are

easily understood, and its outputs are each presented
as a numeric avidity value (0.0 to 1.0) and a nominal
class assignment. Another significant feature is speed.
Immunos-81 is a single-pass learning and recognition
system. The average time required to learn the CAD1
and CAD2 sets and to create clones was less than one
minute. Immunos-81 is easy to use. It does not require
any special knowledge or expertise.

The availability of a user-selectable threshold may
prove to be a valuable feature. In both the Cleveland
and Long Beach VA data sets, the 5-percent threshold
resulted in a higher level of correct classifications
compared with the total attempted. In the Cleveland
data set, however, most of the cases placed in the ‘‘too
close to determine’’ group had been correctly classi-
fied initially. In the VA data set, most cases had pre-
viously been incorrectly classified. The performance
of Immunos-81 in classifying the VA data set seems
to compare well with the discriminant function (DF)
designed by Detrano et al.,24 which also used the
Cleveland database as a training set. Detrano’s group
performed its analysis using two groups identified by
probability thresholds assigned by the researchers.
One group consisted of those subjects whose proba-
bility for having CAD was either less than 0.2 or
greater than 0.8; the other contained all subjects, re-
gardless of prior probability. The DF performed best
at the 0.5 prior probability threshold when all patients
were included (79 percent). However, performance
decreased to 66 percent when ‘‘less than 0.2’’ or
‘‘greater than 0.8’’ group was excluded from the anal-
ysis. Overall, Immunos-81 compares very well with
the performance of the DF when one considers that
no attempt to determine prior probability of disease
was required and human input into the lengthy pro-
cess of finding a good discriminant function (as de-
scribed by Detrano et al.) was not necessary.
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The uneven performance of SHA compared with RHA
in the VA and Cleveland data sets is a puzzle. It was
expected that use of RHA would tend to reduce the
number of incorrect classifications produced using
SHA, by classifying borderline cases as ‘‘too close to
determine.’’ This proved to be true with the VA data
set. However, when it was applied to the Cleveland
data set, the number of correct classifications was re-
duced, an unexpected result. Perhaps the quality of
data in each set played a role in the outcomes. The
Cleveland data set is, for the most part, complete
(only four of 4,242 values were missing). The VA data
set, on the other hand, had an average of four missing
values per case. When complete data sets are available
SHA may be best, because it relies on the data to re-
flect the true (and absolute) differences between an-
tigens during recognition. If this is true, RHA might
best be considered an ‘‘educated guess’’ that is ac-
ceptable when dealing with noisy data. At this stage
in the development of Immunos-81, it is not possible
to determine the ultimate utility of this feature. Even
with this variance in behavior, however, it appears
that the 5-percent threshold result does offer real
value that does not often appear in many classifica-
tion systems. First, it points out borderline cases,
which improves the reliability of its output. Second,
the predictive value of its classifications are higher be-
cause of the removal of borderline cases. Finally, it
may eventually provide the basis of recognizing in-
stances of a previously unknown class in an unsuper-
vised learning scenario. However, unsupervised
learning is not a focus in this version of Immunos-81.

When compared with back-propagation artificial neu-
ral networks, Immunos-81 appears to offer a few def-
inite advantages, the most significant of which may
be the transparency of the internal state of Immunos-
81.29 In addition, Immunos-81 has a finite training
time and permits the user to set the ‘‘level of cer-
tainty’’ (using SHA and RHA) required to make a
classification.

The immune system model offered by Immunos-81
may prove to be useful for data that have important
temporal characteristics. Since T cells in Immunos-81
are capable of monitoring specific sequence informa-
tion, it may be possible to use the system to discern
patterns that occur in temporal dimensions along with
more static data. An example of such an application
might be the analysis of patient outcomes when the
temporal sequence of a predetermined set of interven-
tions is altered.

One design goal that was not realized for Immunos-
81 was the creation of an associative memory. No such
property is evident in the current version. However,

this may be because of the data sets chosen for testing
and the limited range of interactions currently sup-
ported among system elements. Many potential fea-
tures of the system remain unexplored (e.g., temporal
capabilities of T cells, use of avidity thresholds as a
means of allowing unsupervised learning, recognition
properties of systems with multiple T cells, and an
extensive amino acid library).

Conclusion

In summary, Immunos-81 is an example of immune
computation in the form of a supervised learning sys-
tem. It has performed well in comparison with other
machine learning algorithms when tested using stan-
dard data sets. It is potentially embeddable, and ver-
sions capable of learning on line in real time are pos-
sible with the current architecture. Immunos-81
represents a new application of immune system con-
cepts for machine learning. Further testing is required
to prove its ultimate utility.
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