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was significantly higher than that in normal 
cells,[4] suggesting that gene mutation is 
closely related to cancer. However, cancer 
exhibits extensive mutational heterogeneity, 
resulting in the so-called long-tail phenom-
enon that a small number of mutated genes 
are seen in vast majority of cancers while a 
large number of other mutated genes are 
found in only few cancers.[5] According to 
the driver–passenger model, driver muta-
tions render a selective advantage to cancer 
cells, thereby promoting cancer occurrence, 
while passenger mutations play little role in 
driving cancer.[6]

A great deal of efforts have been made 
to distinguish drivers from passen-
gers. Some methods such as Mutation_
Assessor,[7] CHASM,[8] transFIC,[9] and 
FATHMM[10] predict possible driver muta-
tions by assessing functional impact of 
missense mutations. Other methods such 
as MutSig2.0,[11] MutSigCV,[12] InVEx,[13] 

and MuSiC[14] predict as possible driver genes those with 
extraordinary higher mutation rates than background mutation 
rates (BMR). A considerable number of genes have been identi-
fied as driver genes by these methods. Unfortunately, due to the 
long-tail phenomenon, methods based on mutation frequency 
are underpowered for uncovering infrequently mutated driver 
genes. The observation that mutations in a cancer genome tend 
to converge on a few biological pathways,[15] has prompted the 
development of pathway-based or network-based approaches 
to cancer gene discovery.[16–19] These studies showed that func-
tional networks could be helpful in identifying cancer driver 
genes. However, they attempt to identify cancer driver modules 
consisting of a number of genes rather than individual genes 
crucial to cancer development. To overcome this problem, some 
methods prioritize the candidate genes. For instance, Contras-
tRank[20] prioritizes candidate genes based on the distribution 
of putative deleterious mutations derived from three types of 
cancer data. And MUFFINN[21] takes into account mutations 
in neighbor genes in a network by two different ways, showing 
good predictive performance in a large candidate set. Consen-
susDriver[22] is a meta-predictor that reranks the candidate genes 
based on the ranking results of 18 existing methods, showing 
good predictive performance in a small top-ranked candidate 
gene set (50). However, the false positive rates of these existing 
methods are still too high and thus need to be further improved.

In this study, we propose a novel method (MaxMIF) for pri-
oritizing potential cancer driver genes based on a new maximal 
mutational impact function that integrates somatic mutation 

Identification of a few cancer driver mutation genes from a much larger 
number of passenger mutation genes in cancer samples remains a highly 
challenging task. Here, a novel method for distinguishing the driver genes 
from the passenger genes by effective integration of somatic mutation 
data and molecular interaction data using a maximal mutational impact 
function (MaxMIF) is presented. When evaluated on six somatic muta-
tion datasets of Pan-Cancer and 19 datasets of different cancer types from 
TCGA, MaxMIF almost always significantly outperforms all the existing 
state-of-the-art methods in terms of predictive accuracy, sensitivity, and 
specificity. It recovers about 30% more known cancer genes in 500 top-
ranked candidate genes than the best among the other tools evaluated. 
MaxMIF is also highly robust to data perturbation. Intriguingly, MaxMIF 
is able to identify potential cancer driver genes, with strong experimental 
data support. Therefore, MaxMIF can be very useful for identifying or pri-
oritizing cancer driver genes in the increasing number of available cancer 
genomic data.

Computational Biology

© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim This is an open access article under the terms of the Creative 
Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Cancer is one of the most complex diseases that threaten 
human health. Systemic cancer genomics projects such as the 
Cancer Genome Atlas (TCGA)[1] and the International Cancer 
Genome Consortium (ICGC)[2] have produced and analyzed a 
large number of genomics data in various cancers, providing an 
unprecedented opportunity to elucidate the etiology of cancer.[3] 
It has been observed that the gene mutation rate in cancer cells 
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data and protein–protein interaction (PPI) data. Tested on six 
mutation datasets of Pan-Cancer and 19 datasets of individual 
cancer types from TCGA, MaxMIF almost always significantly 
outperforms the state-of-the-art tools such as MUFFINN, 
MutSig2.0, MutSigCV, Mutation_Assessor, and ContrastRank, in  
terms of the ROC (receiver operating characteristic) curve, the 
F1 score (harmonic average of the precision and recall), and 
the cumulative number of recovered known cancer genes by 
top-ranked candidate genes. MaxMIF is also highly robust to 
various data perturbations tested. MaxMIF’s ability to concen-
trate most likely candidate genes in a short list facilitates their 
experimental validations.

2. Results

2.1. Overview of MaxMIF

Our MaxMIF pipeline consists of three steps (Figure 1). First, 
we compute a mutation score for each candidate driver gene 
for its role in driving cancer based on somatic mutation data 
(Figure 1a). We designed the mutation score, such that each 
cancer sample in which the genes were mutated contributes 
equally to the score, because studies have shown that there are 
only a small number of driver mutation genes[5] regardless of 
the total number of mutated genes in the sample. In this way, 

we avoid possible biases caused by samples with large number 
of mutated genes to stratify genes according to their resulting 
much different mutation scores (A1 vs A2 in Figure 1a). Second, 
we calculate a mutational impact function (MIF) value for each 
pairs of candidate genes, measuring their mutational impacts 
according to their relationship in PPI networks (Figure 1b).  
Motivated from the gravity principle[23] (see the Supporting 
Information for details), two genes should have a strong muta-
tional impact if they both have a high mutation score and are 
close to each other in PPI networks. Therefore, we define the 
MIF value of two genes to be proportional to the product of 
their mutation scores but inversely proportional to the square 
of the distance between them in PPI networks. Finally, we com-
pute a novel maximal mutational impact function value for 
each candidate gene by considering all its neighbors in the PPI 
networks (Figure 1c) to rank the candidate genes according to 
their maximal mutational impact function values.

2.2. Performance of MaxMIF on Six Datasets of Pan-Cancer

We first tested MaxMIF’s ability to differentiate drivers from pas-
sengers in six Pan-Cancer datasets, namely, AWG, bcgsc, bcm, 
broad, ucsc, and wustl, provided by different research groups 
from the TCGA consortium (see the details in Table S1, Sup-
porting Information), using two independently developed PPI 
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Figure 1. Flowchart of MaxMIF. a) The somatic mutation data matrix (rows are genes and columns are samples) is standardized by columns, then the 
mutation score of each gene is computed as the sum of the row. b) The mutational impact function (MIF) value of two candidate genes is computed 
as the product of their mutation scores divided by the square of the interaction distance between them in the PPI networks. c) For each candidate 
gene, the maximal MIF score is computed by considering all its neighbors in the networks. wa,c, the interaction weight between genes a and c in the 
PPI networks. ra,c, the “biological distance” between genes a and c, the reciprocal of wa,c.
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networks HumanNet[24] and STRINGv10.[25] We compared  
the 12 prioritizing results with those obtained by DNmax and 
DNsum (two algorithms in MUFFINN)[21] using the same 
data and the same five reference cancer gene sets, that is, 
CGC (Cancer Genome Census),[26] CGCpointMut, Rule2020,[5] 
HCD,[27] and MouseMut[28,29] (see the Supporting Informa-
tion for details), with CGC being the most well-known and 
confident cancer gene set. Both ROC curves (Figure 2a) and 
AUC (area under the ROC curve) scores (Figure 2b) show that 
MaxMIF outperforms DNmax and DNsum in the AWG Pan-
Cancer dataset, using either the HumanNet or STRINGv10 net-
works validated on the CGC reference cancer gene set. Similar 
results were obtained in the other five Pan-Cancer datasets vali-
dated on the CGC reference set (except ucsc, Figures S1–S5,  
Supporting Information) as well as when the other four refer-
ence cancer gene sets were used for validation (Figures S6–S12, 
Supporting Information). Furthermore, most of the P values 
(Table 1) indicate that MaxMIF is significantly superior to 
DNmax and DNsum in terms of sensitivity and specificity in 
identifying driver genes.

We next compared MaxMIF with DNmax and DNsum for 
ranking their predicted driver genes. Clearly, the higher a driver 
gene is ranked by an algorithm, the better it performs. We exam-
ined how known cancer genes are cumulated by the 500 top-
ranked candidate genes predicted by each method, measured 
by the F1 score as function of the ranks, which is the harmonic 
average of the precision and recall. As shown in Figure 2c,d,  
the curves of F1 score of MaxMIF increase much faster and 
go up to 30% higher than those of DNmax, DNsum, and the 
frequency-based approach (F_based, ranks are solely based on 
mutation frequency) by the end of the 500 top-ranked genes  
in the AWG Pan-Cancer dataset, indicating that the precision 
and recall of MaxMIF are much higher than those of the other 
three methods. As shown in Figure 2e,f, MaxMIF identified 
more known cancer genes by its 20, 50, 100, 200, and 500 top-
ranked candidate genes than did DNmax or DNsum. Similar 
results were obtained in the other five Pan-Cancer datasets 
validated on the CGC reference set (Figures S1–S5, Supporting 
Information) as well as when the other four reference cancer 
gene sets were used for validation (Figure S13, Supporting 
Information). Notably, the number of known driver genes 
retrieved by MaxMIF in its 50 top-ranked candidate genes was 
approximately the same as that by DNmax or DNsum in their 
100 top-ranked candidate genes. Besides, the number of known 

driver genes retrieved by MaxMIF with the STRINGv10 net-
work in its 20 top-ranked candidates was exactly 20, reaching 
prefect precision in predicting driver genes. Taken together, 
these results clearly show that MaxMIF consistently outper-
forms the other methods in prioritizing driver genes validated 
on the five reference gene sets in the six Pan-Cancer datasets, 
thus can be used to discover unknown driver genes.

2.3. Performance of MaxMIF on 19 Datasets of Individual 
Cancer Types

To further evaluate MaxMIF’s ability to identify responsible 
drive genes, we compared it with five well-regarded methods 
Mutation_Assessor (Mut_Ass),[7] MutSig2.0,[11] MutSigCV,[12] 
ContrastRank,[20] and MUFFINN[21] using somatic mutation 
datasets from 19 cancer types (see the details in Table S2, Sup-
porting Information). Since ContrastRank is targeted at colon 
cancer (COAD), lung cancer (LUAD), and prostate adenocar-
cinomas (PRAD), we excluded it when the comparison was 
based on the average performance across the 19 cancer types, 
and further compared it with MaxMIF on the two common 
cancer cohorts (Figure S14, Supporting Information). As shown 
in Figure 3a, MaxMIF, on LUAD dataset using either the 
HumanNet or STRINGv10 networks, outperforms all the other 
five methods validated on the CGC reference cancer gene set. 
Particularly, the MaxMIF’s AUC scores computed across the 19 
cancer types are much greater than those of other four methods 
when CGC was used as the reference gene set (Figure 3b). Sim-
ilar results were obtained when validated on the other four ref-
erence gene sets, that is, CGCpointMut, Rule2020, HCD, and 
MouseMut (Figure S15, Supporting Information). Moreover, 
MaxMIF also outperforms the other methods measured by the 
F1 score as a function of the number of top-ranked candidate 
genes on average across the 19 cancer types (Figure 3c,d and 
Figure S16, Supporting Information). In summary, MaxMIF sig-
nificantly outperforms all the state-of-the-art methods we evalu-
ated in terms of prediction accuracy, sensitivity, and specificity.

2.4. Robustness of MaxMIF

To evaluate the robustness of MaxMIF we examined it in 
three scenarios, each with two levels of data perturbation: (1) 
using only 50% and 10% of samples randomly selected from 
the mutation data; (2) using 50% and 10% of the pairwise 
interactions randomly selected from the PPI data; and (3) 
using all PPI data with noise added to the weights. We model 
the PPI noise with a Gaussian distribution of mean 0 and 
standard deviation 0.1 or 0.2, since the weights in the net-
works are standardized to a range from 0 to 1 (if a noised 
weight is less than 1E-20, we assume it to be 1E-20). Shown 
in Figure 4 are the results averaged over 100 repeats in each 
scenario based on the Pan-Cancer AWG dataset and the 
HumanNet or STRINGv10 PPI datasets. In the first scenario, 
MaxMIF showed only a slight (0.03) decrease in the AUC 
scores, with approximately the same cumulative number of 
recovered cancer genes, even when only 10% of mutation data 
were used. In the second scenario, there was also only a slight 
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Table 1. P values of the hypothesis test of ROC analyses between 
MaxMIF and MUFFINN on six Pan-Cancer datasets using the 
HumanNet or STRINGv10 networks and the CGC reference gene set.

Pan-Cancer datasets HumanNet STRINGv10

DNmax DNsum DNmax DNsum

AWG 7.61 × 10−23 1.02 × 10−26 3.01 × 10−13 2.37 × 10−24

bcgsc 3.79 × 10−7 1.91 × 10−9 3.10 × 10−3 8.75 × 10−8

bcm 9.21 × 10−4 7.39 × 10−5 1.74 × 10−1 1.63 × 10−4

broad 1.34 × 10−12 5.08 × 10−16 1.28 × 10−6 2.14 × 10−14

ucsc 3.20 × 10−2 4.50 × 10−3 7.88 × 10−1 2.79 × 10−2

wustl 1.92 × 10−7 2.83 × 10−10 6.32 × 10−3 5.28 × 10−8
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decrease in the AUC scores and the cumulative number of 
recovered driver genes, even when only 10% of PPI data were 
used. In the last scenario, both levels of noise had almost 

no effect on the performance of MaxMIF. All those results 
demonstrate that the MaxMIF is highly robust to the size of 
datasets and noise in PPI data.
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Figure 2. Comparison between MaxMIF and MUFFINN on the Pan-Cancer datasets. a) ROC plots of the results of the three methods on the AWG 
Pan-Cancer dataset, using the HumanNet (H) or STRINGv10 (S) networks, and the CGC reference cancer gene set. The AUC scores of the ROC curves 
are shown in the legends. TNR, true negative rate, represents specificity; TPR, true positive rate, represents sensitivity. b) AUC scores of the results of 
the three methods on the six Pan-Cancer datasets, validated on the CGC reference cancer gene set. c,d) F1 scores as a function of the number of top-
ranked driver genes returned by the four methods on the AWG Pan-Cancer dataset, using the HumanNet and STRINGv10 networks, respectively, and 
the CGC reference cancer gene set. e,f) Cumulative number of known cancer genes recovered in the indicated number of top-ranked candidate genes 
on the AWG Pan-Cancer dataset, using the HumanNet and STRINGv10 networks, respectively, and the CGC reference cancer gene set.
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2.5. Novel Candidate Genes Predicted by MaxMIF

To evaluate MaxMIF’s ability to identify potential novel cancer 
driver genes, we considered the genes in the 500 top-ranked 
candidate lists that were predicted by MaxMIF with both 
HumanNet and STRINGv10 while not in CGC, resulting in 31 
potential novel candidate cancer driver genes after some further 
screening. Intriguingly, enrichment analysis using DAVID[30] 
against Genetic Association Database (GAD)[31] that documents 
genes associated with complex diseases, uncovers that 28 
(90.3%) of these 31 genes are included in GAD, and 18 (58.1%) 
genes are associated with cancer (see the details in Table S3, 
Supporting Information). Notably, 11 of the 31 genes are 
enriched for “breast cancer” (P value = 1.7 × 10−7, by Fisher’s 
exact test, FDR = 6.2 × 10−5, the false discovery rate adjusted by 

Benjamini–Hochberg procedure for multiple hypothesis tests, 
Figure 5a), and eight genes are enriched for “lung cancer” (P 
value = 6.7 × 10−5, FDR = 4.2 × 10−3, Figure 5b). Specifically, 
PRKDC (Figure 5a,b) ranked 17th and 23th by MaxMIF with 
HumanNet and STRINGv10, has been reported as an essen-
tial gene required for colorectal cancer cells.[32]EGF (epidermal 
growth factor, Figure 5a,b), ranked 133th and 432th by MaxMIF 
with HumanNet and STRINGv10, plays an important role in 
nonsmall cell lung cancer (NSCLC).[33]RAD51 (Figure 5a–c), 
ranked 140th and 480th by MaxMIF with HumanNet and 
STRINGv10 is known to interact with the breast cancer driver 
gene BRCA2.[34]

Moreover, similar enrichment analysis against pathway 
databases KEGG,[35] Reactome,[36] and Gene Ontology 
(GO)[37,38] reveals that these 31 genes are also enriched for 
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Figure 3. Comparison of MaxMIF with the other methods across the 19 cancer types. a) ROC curves of the results of the methods on LUAD cancer 
type, using the HumanNet (H) or STRINGv10 (S) networks (if network-based) and the CGC reference cancer gene set. The AUC scores of the ROC 
curves are shown in the legends. b) Boxplot of the distribution of the AUC scores over the 19 cancer types. c,d) Average F1 scores as a function of 
the number of top-ranked genes returned by the methods across the 19 cancer types, using the HumanNet and STRINGv10 networks, respectively  
(if network-based), and the CGC reference cancer gene set.
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“pancreatic cancer” (KEGG pathway, P value = 9.1 × 10−5, 
FDR = 2.1 × 10−3, Figure 5c), “R-HSA-912526” (Reactome 
pathway, P value = 7.3 × 10−5, FDR = 1.1 × 10−2, Figure 5d),  
and “protein phosphorylation” (GO biological process,  
P value = 1.3 × 10−4, FDR = 9.3 × 10−3, Figure 5e). Specifi-
cally, PIK3CB (Figure 5a,c,d) ranked 286th and 291th by 
MaxMIF with HumanNet and STRINGv10, was hypothesized 
as a potential oncogene in certain cancers,[39] and has been 
subsequently demonstrated as an oncogene,[40] although it 
has not yet been added to the CGC list under this version. 
MAPK8 (Figure 5b,e), ranked 122th and 431th by MaxMIF 
with HumanNet and STRINGv10, is a key kinase interacting 
with other kinases involved in the etiology of many cancer 
types.[41]

3. Discussion

A major challenge for distinguishing driver mutation from 
passenger mutation genes lies in the long-tail distribution of 
the mutation frequency of genes in cancer genomes. Many 

methods have been developed to tackle this problem based 
on differential mutation frequencies, but they all suffer 
from low sensitivity and specificity because genes frequently 
mutated are not necessarily drivers. Obviously, the frequency-
based methods are biased toward genes with higher muta-
tion frequencies and samples with more mutated genes. To 
overcome the limitation, we developed the MaxMIF method 
using the following strategies. First, to balance contributions 
to all the candidate genes from each sample with different 
numbers of mutations, we assign an equal total weight of 1 
to all the mutated genes in each sample (Figure 1a). Second, 
to push a candidate gene with lower mutation frequency in 
samples to the forefront of the candidate list, we compute 
its mutation score as the sum of its standardized weights in 
the samples in which it is mutated. The gene can be other-
wise ranked low by the frequency-based method as we have 
shown in this study (Figures 1a and 2 and Figure S17, Sup-
porting Information). Third, since PPI data can be very useful 
in distinguishing drivers from passengers,[18,21] we proposed 
the new metric MIF to model mutational impacts between 
mutated genes in PPI networks, motivated from the gravity 
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principle.[23] Finally, we rank a candidate gene by the maximal 
MIF score considering all its neighbors, which integrates the 
mutation data with PPI data effectively.

Comparing MaxMIF with two algorithms in MUFFINN[21] 
on the six somatic mutation datasets of Pan-Cancer, we found 
that MaxMIF significantly outperforms MUFFINN in all 
the three measures, that is, ROC, F1 score, and cumulative 
number of recovered cancer genes. MaxMIF is also supe-
rior to MUFFINN,[21] MutSig2.0,[11] MutSigCV,[12] and Muta-
tion_Assessor[7] in identifying driver genes in 19 individual 
cancer types in terms of AUC and F1 scores. Moreover, 
MaxMIF also outperforms ContrastRank[20] on three different 
colon, lung, and prostate cancer types. Thus, its outstanding 
performance is quite ubiquitous. In addition, MaxMIF is very 
robust to weight noise in PPI data as well as the size of muta-
tion data and PPI data. Therefore, MaxMIF can be applied 
in a broad range of cases. More importantly, almost all our 
results indicate that MaxMIF has much higher sensitivity and 
specificity than the other methods in discovering cancer driver 
genes as measured by the ROC curves (Figures 2a and 3a). 
The improvement is mainly attributed to our maximal muta-
tional impact function that subtly integrates the mutation data 
and PPI data. On one hand, MaxMIF can rank low passenger 
genes even with a higher mutation frequency such as MLL3, 
FAT3, and XIRP2 (all below 14000th), which could be ranked 
above the top 25 by the mutation frequency-based method. On 
the other hand, MaxMIF can rank high potential driver genes 
even with a low mutation frequency such as EGF and RAD51, 
PIK3CB, and MAPK8 (Figure 5). Thus, MaxMIF could be 
used to identify unknown cancer driver genes. Indeed, by 

considering the non-CGC candidates ranked by MaxMIF 
above the 500th with both the HumanNet and STRINGv10 
datasets, we identified some potential novel driver mutation 
genes with strong independent evidence supports in GAD,[31] 
KEGG pathway,[35] Reactome pathway,[36] and GO biological 
process.[37,38]

4. Conclusions

We have developed a novel method MaxMIF for prioritizing 
potential cancer driver genes by integration of somatic muta-
tional data and PPI data. Evaluated on multiple somatic 
mutation datasets, MaxMIF consistently outperforms the 
state-of-the-art tools in predictive accuracy, sensitivity, and 
specificity for distinguishing drivers from passengers. MaxMIF 
is also highly robust to data size as well as the noise in PPI 
data. MaxMIF can be very useful for identifying or prioritizing 
cancer driver genes using an increasing number of available 
cancer genomic data.

5. Materials and Methods
Somatic Mutation Datasets and Protein–Protein Interaction Datasets: Six 

nonsilent somatic mutation (nonsense mutations, missense mutations, 
frame-shift indels, splice site mutations, or stop codon read-throughs) 
datasets of Pan-Cancer (namely, AWG, bcgsc, bcm, broad, ucsc, 
and wustl) and 19 datasets of individual cancer types were collected 
from the TCGA database by UCSC Browser[42] (https://xenabrowser.
net/datapages/) (Tables S1 and S2, Supporting Information). Two 
independently developed PPI datasets HumanNet[24] and STRINGv10[25] 

Adv. Sci. 2018, 5, 1800640

Figure 5. Networks of some potential novel cancer driver genes enriched in cancer related database or pathways such as GAD, KEGG, Reactome, and 
GO biological process. a) The network of genes enriched for “breast cancer” in GAD. b) The network of genes enriched for “lung cancer” in GAD. 
c) The network of genes enriched for “pancreatic cancer” in the KEGG MAPK pathway. d) The network of genes enriched for “R-HSA-912526” in a 
Reactome pathway. e) The network of genes enriched for the GO biological process “protein phosphorylation.” The networks are provided by STRING.

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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were downloaded from their respective websites. Each of the interaction 
weight between two proteins was extracted and standardized with a value 
ranging from 0 to 1 and divided it by the largest weight. Self-interaction 
loops were removed to simplify the networks. All the proteins were 
referred with their gene Entrez IDs from NCBI updated on May 12, 2017.

Evaluation Criteria and Reference Cancer Gene Sets: The performance 
of methods for prioritizing candidate genes was evaluated using the 
following criteria: the ROC analysis and AUC scores for recovering 
known driver genes, the F1 score and the cumulative number of known 
driver genes recovered in top-ranked candidate genes. As only a limited 
number of top-ranked candidate genes warrant further experimental 
verification, the analysis was mainly focused on the 500 top-ranked 
candidates. The F1 score and the cumulative number of recovered 
known cancer genes were used to assess the ability of a method to 
concentrate real driver genes in the top-ranked candidates. The F1 
score (balanced F-score) is the harmonic mean of precision and recall, 
which represents the accuracy of the binary classification. Different 
methods may recover different number of known cancer driver genes 
in their 500 top-ranked candidates, the recall was calculated using 
the total number of known cancer driver genes in a reference cancer 
gene set to eliminate the possible inequities. The ROC analyses and 
statistical tests were performed using the “delong” program[43] in 
the “pROC” package in R,[44] with the null hypothesis that the two 
compared AUCs are the same.

To accurately assess the methods for identifying candidate driver 
genes, ideally, an unbiased comprehensive known cancer gene set 
was needed. Unfortunately, such a gold-standard set of cancer genes 
is currently unavailable. Alternatively, five different cancer gene sets 
were collected to reduce the bias caused by using a single reference 
cancer gene set: (i) 616 cancer genes from the CGC,[26] currently the 
most popular cancer gene set; (ii) a subset of 245 CGC cancer genes 
that mainly undergo somatic point mutations in various cancers 
(CGCpointMut); (iii) 125 cancer genes screened by the “20/20 rule” 
(Rule2020);[5] (iv) 291 high-confidence candidate genes concentrated 
by a rule-based method (HCD);[27] (v) 797 candidate cancer 
genes were identified as human ortholog of mouse cancer genes 
(MouseMut)[28,29] (see details in the Supporting Information and 
the overlaps of the five reference gene sets are shown in Figure S18,  
Supporting Information). In spite of the fact that each reference 
cancer gene set has a different trade-off for accuracy, credibility, 
comprehensiveness, and unbiasedness, a more effective method 
should consistently outperform the other methods evaluated on the 
five reference gene sets.

Scoring Scheme of MaxMIF: Preprocessing of Mutation Data: The 
mutation data are summarized in a binary mutation matrix M, in 
which the rows represent the genes, and the columns the cancer 
samples (patients). For a protein-coding gene i, M(i, j) = 1 if it 
has at least one nonsilent somatic mutation in sample j, and for a 
nonprotein coding gene i, M(i, j) = 1 if it has at least one mutation; 
and M(i, j) = 0 otherwise. A mutation score M(i) for each gene i is 
computed to account for the contribution of its mutations to cancer, 
defined as

=

1 ,

1 ,
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M i
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where Ki is the set of samples in which gene i is mutated, Nk the 
total number of mutated genes in sample k, and Nmax  the maximal 
number of mutated genes in all the samples. If gene i is not mutated in  
all the samples, that is,Ki is empty, M(i) is assigned a background 
mutation score (BMS) that is no larger than those of any mutated 
genes. In this way, each sample equally contributes to the mutation 
score regardless of the total number of mutated genes in the samples, 
balancing the contributions of all the samples with different number of 
mutated genes (Figure S19, Supporting Information). Besides, the BMS 

could help to avoid missing the possible driver genes, especially when 
the sample size is very small (Figure S20, Supporting Information). 
Therefore, driver genes with a small number of mutations can still be 
discovered.

The Mutational Impact Function: To measure the impact of 
interactions between two mutated genes on biological functions, the 
MIF value was introduced between two genes i and j, motivated by the 
gravity principle[23]

MIF , 2i j
M i M j

rij
( ) ( )( )=

 
(2)

1/ ,r W i jij ( )=  (3)

where M(i) is the mutation score of gene i, and rij the “interaction distance” 
between genes i and j, W(i, j) the interaction weight between genes  
i and j in the network. Thus, MIF integrates mutation information and 
functional relationships between the two genes, and two genes with high 
mutation scores and close to each other in a PPI network would have a 
high MIF value.

The Maximal Mutational Impact Function: To integrate somatic 
mutation data and functional interaction networks, the maximal 
mutational impact function value is calculated for each candidate gene i, 
SMaxMIF(i), defined as
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where M(i) is the mutation score of gene i, MIF(i, j) the MIF between 
gene i and j, Ji the set of neighbors of gene i in the network, and rmax  the 
largest “interaction distance” in the network. Therefore, the model uses 
the strongest mutational impact between the gene and its neighbors, 
helping to identify possible driver genes. The average MIF score over all 
the neighbors was considered as well, but its performance was inferior 
to that of the maximal MIF.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author. MaxMIF is accessible at https://sourceforge.net/
projects/maxmif/files/.
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