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Abstract

Loss to follow-up (LTFU) in clinical trials represents a potential threat to their soundness that may 

not be adequately recognized. We consider a log-rank test in a trial with two arms, experimental 

and control, and with a single unfavorable binary endpoint such as death. Commonly, one applies 

censoring to patients with LTFU. That approach is valid if LTFU is independent of outcome, but 

can lead to bias otherwise. Unfortunately, there is no statistical test for independence, so the 

legitimacy of the approach rests on unverifiable assumptions. For two cases, we evaluate the 

impact of the approach based on simulations that use reasonable models for outcome dependent 

LTFU. In each case, LTFU in one arm disproportionately suppresses recognition of relatively early 

deaths or other outcomes, thus producing bias favoring that arm. The first case has extra LTFU in 

the experimental arm and the treatment has no benefit. The second case has extra LTFU in the 

control arm and the treatment is effective. The simulation results show severe inflation of Type I 

error in the first case and major loss of power in the second case. Remedies for LTFU are scarce 

but include avoiding it in the first place where possible.
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1 Introduction

This paper uses simulations to examine the effects of outcome-dependent loss to follow up 

(LTFU) whose extent or nature differs between the two arms of a randomized clinical trial. 

The setting posits that one uses a log-rank test, with LTFU handled through censoring, to 

assess whether an experimental arm is better than a control arm with respect to a single (i.e., 

non longitudinal) unfavorable binary endpoint or outcome, such as death. LTFU occurs for a 

patient if one cannot determine when or whether the patient's outcome took place after loss 

of contact.

If LTFU is independent of outcome but its extent or distribution differs between arms, then 

the log-rank test still has the correct Type I error. Likewise, if LTFU is outcome-dependent 

but the joint distribution of LTFU and the outcome is the same in both arms under the null 

hypothesis, then again the log-rank test is valid. But if LTFU is outcome-dependent and also 

may have a different (null) joint distribution with the endpoint in the two arms, then the log-

HHS Public Access
Author manuscript
J Biopharm Stat. Author manuscript; available in PMC 2019 January 01.

Published in final edited form as:
J Biopharm Stat. 2018 ; 28(4): 633–644. doi:10.1080/10543406.2017.1372773.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rank test can produce faulty results. It is at this last situation that the present paper is 

directed.

To enable slightly simpler language, we often refer henceforth to "death" rather than 

"outcome." Of course, everything that follows applies to any binary outcome, not just death.

LTFU poses challenges. Per the results of Tsiatis (1975) on competing risks, if one is given 

any pair of ("crude") distribution functions, consisting of the distribution of death where it 

precedes LTFU and the distribution of LTFU where it precedes death, then there exists a 

joint distribution consistent with those two in which ("potential") death and LTFU times are 

independent. The implication is that (for either arm) one can never determine from clinical 

trial data whether death and LTFU are independent, because, for any (crude) data, one can 

always find an independent joint distribution that conforms to the data.

Since it is thus not safe to assume independence of death and LTFU (where LTFU does 

exist), the use of the log-rank test (or any test that presumes independence) is problematic. It 

can be more so the greater the LTFU difference between arms, and the greater the LTFU in 

total.

The purpose of this paper is rather modest: to assess the possible impact of LTFU on Type I 

error and on power, rather than to propose remedies. But the troubles that our simulations 

expose are disturbing. Although there are both empirical and theoretical indications that one 

should sometimes expect distortions from LTFU with respect to both Type I error and power 

loss (as one may gather from points covered later in this Introduction), the possible severity 

of the consequences of the biases and distortions for some clinical trials may not be well 

appreciated. This paper provides quantification of those consequences, an undertaking that 

may be novel.

Outcome-dependent LTFU that differs between the two arms can take varied forms. One arm 

(either treatment or control) but not the other may involve undesirable side effects that lead 

to greater LTFU among patients who are sicker, more vulnerable to the side effects, and 

likely to die sooner; or possibly LTFU is greater among the healthier patients if the side 

effects bother them more. A treatment or control alternative that succeeds in causing some 

patients but not others to feel better may entail greater LTFU for the latter patients if they see 

no benefit in continuing. Or, conversely, an alternative that is demanding but somewhat 

successful may result in greater LTFU among patients who feel better and are destined to 

have better survival, if they think it is no longer necessary to continue. In all these situations, 

lack of information about what happened to the patients with LTFU can lead to bias.

Different previous authors, though not many, have written in some depth about LTFU. Akl et 

al. (2012) examined LTFU in 235 reports (published in 2005-2007 in five leading medical 

journals) of randomized controlled clinical trials with binary outcome and statistical 

significance at the 0.05 level. Analyzing those reports, they found a median LTFU of 6% of 

participants (interquartile range, 2% to 14%) in studies reporting LTFU; widespread lack of 

adequate attention to details and implications regarding LTFU; difficulties in evaluating 

(through different means that they considered) the impact of LTFU; and loss of statistical 
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significance in up to a third of trials under plausible assumptions about the outcomes for 

patients with LTFU.

Other articles that call attention to the bias that can result from LTFU in clinical trials 

include Ranganathan and Pramesh (2012) and Walsh et al. (2015), in a general context; 

Clark et al. (2003), in the context of cancer trials; and Stinner and Tennent (2012), in the 

context of surgical trials. The last article noted a sharp difference in LTFU occurrence 

between the surgical and nonsurgical arms of a trial (6% versus 25%, respectively). In an 

observational study pertaining to hip replacement, Murray et al. (1997) found that patients 

who had LTFU were in worse condition (before LTFU) than patients who were otherwise 

comparable.

For specific observational studies, Geng et al. (2008, 2010), Wu et al. (2008a), te Riele et al. 

(2010), and Schomaker et al. (2012) each reported empirical evaluations of possible LTFU-

related bias in different contexts, through efforts to obtain outcome information about 

patients with LTFU. All these studies except Wu et al. (2008a) found that patients with 

LTFU had worse outcomes than other patients. Use of outcome information that is tracked 

down about patients with LTFU is dealt with also by Frangakis and Rubin (2001), in a work 

that is more methodological than empirical.

In principle at least, one can try to compensate for bias resulting from LTFU by predicting 

the unknown outcomes for the patients who have LTFU and then using those predictions in 

the survival analysis, although such a technique can be heavily dependent on modeling 

assumptions. A recent article by Liu (2016) explores this type of approach.

Somewhat related to LTFU are the works of Snapinn et al. (2004) and Jiang et al. 

(2004),which focus not on LTFU but rather on noncompliance (patient's discontinuation of 

study drug) and its effect on power and bias and on required sample size. Scharfstein et al. 

(2014) focus on informative LTFU in longitudinal studies rather than those with single-event 

endpoints, developing and examining methodology to analyze sensitivity to model 

assumptions. Shih (2002) discusses various issues regarding LTFU, mainly in the context of 

cardiology clinical trials, and notes that LTFU often comes about after adverse events.

Ways to measure and report LTFU are the subject of several works. They include Clark et al. 

(2002), Siskind (2002), and Wu et al. (2008b).

Obviously, the best way to deal with LTFU is to prevent it in the first place, to the extent that 

that can be done. Possible strategies to reduce clinical-trial LTFU in different contexts 

include those considered by Sprague et al. (2003), Cleland et al. (2004), and McCarthy et al. 

(2016).

Whether in regard to clinical trials with a binary outcome, those with longitudinal data, or 

observational studies, LTFU essentially involves a missing survival outcome, so missing-

data theory is applicable. Results just cited suggest that generally the missing data resulting 

from LTFU are not missing completely at random (MCAR) or even missing at random 

(MAR), since often the probability of missingness (of LTFU) appears to depend on (the 

sometimes unobserved) outcome. With data missing not at random (MNAR), standard tools 
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of survival analysis such as the log-rank test, Cox regression, and the Kaplan-Meier 

estimator are generally unsuitable to use [see also, e.g., Little (1993, 1995); Frangakis and 

Rubin (2001); Little and Rubin (2002); Schomaker et al. (2014)]. Thus the consequences of 

using the log-rank test in clinical trials that have LTFU are important to assess.

Section 2 describes our model and Section 3 the simulations. Simulation results are in 

Section 4. Section 5 concludes.

2 Model

Various models might be formulated to investigate how outcome-dependent differential loss 

to follow-up can distort Type I error or power in a two-arm randomized clinical trial that has 

a single binary endpoint (i.e., a single dichotomous time-to-event endpoint). Our model 

seems reasonable and is also mathematically convenient.

For simplicity, we consider a situation where LTFU occurs in only one arm. Basic 

conclusions may differ little whether (e.g.) LTFU occurrences in the two arms are 7% and 

0% or 12% and 5%.

We use K to denote the time from the randomization of the first patient until the data cutoff. 

The time from the first patient randomization to the finish of all patient randomizations is 

denoted by F (F < K).

The model has three basic elements. First, t, a patient's time of death (or other outcome) 

counted from the time of that patient's randomization, is assumed to be measured exactly 

(rather than somewhere within a specified interval) and to follow a Weibull distribution,

f (t) = abbtb − 1e−(at)b, 0 < t < ∞ . (1)

The median of the distribution (1) is M = (log 2)1/b/a. Our simulations vary a and b. Let q 
denote the time from the patient's randomization until the data cutoff at the end of the trial 

(which means that q ≤ K). If t > q, then t will not be known to the investigator.

Second, for a patient who is in the arm where LTFU can occur and whose death is at time t, 
we specify that LTFU will occur (at some time before t) with probability p*t, and not occur 

with probability (1 – p*t), where

p ∗ t = p0e−ut with u = 1
K log

p0
pK

for 0 < pK ≤ p0 ≤ 1

or

p ∗ t = 1 − (1 − p0)e−ut with u = 1
K log

1 − p0
1 − pK

for 1 > pK ≥ p0 ≥ 0 . (2)
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In both of equations (2), p*0 = p0 and p*K = pK, where p0 and pK (the respective LTFU 

probabilities for patients who die at 0 and K time units after their randomizations) are 

parameters to be set to different values for the simulations. The formulas (2) simply use K as 

a convenient anchoring point but instead could have used some value other than K for that 

purpose. Note that t can be < q, between q and K, or > K. In either of the last two cases, 

death occurs after data cutoff (because t > q) but LTFU (if it takes place) can occur either 

before or after data cutoff.

Finally, let y denote the time from the patient's randomization until LTFU occurs, if the 

patient is in the arm that can have LTFU and is one of those who do realize LTFU. For such 

a patient, LTFU has to occur before death, so we use g(y∣t), 0 ≤ y < t, to denote the 

conditional density of y given t for the patient. Of course, g(y∣t) has to satisfy 

∫ 0
t g(y ∣ t) dy = 1. For the simulations, we apply two choices for g(y∣t), one uniform 

(rectangular),

g(y ∣ t) = 1
t , 0 ≤ y < t, (3)

and the other triangular,

g(y ∣ t) = 2y
t2

, 0 ≤ y < t . (4)

For given t, LTFU tends to occur closer to death in (4) than in (3). Observe that the value 

drawn for y will be merely hypothetical if q < y < t, but not if y < t < q or y < q < t. In either 

of the last two cases, the patient is censored at y, the time of LTFU. In the first case, the 

patient is censored at q.

The model of (2), (3), and (4) obviously has outcome-dependent LTFU. It was designed with 

the intent that patients with relatively early deaths or other outcomes would be 

overrepresented among those who realized LTFU, thus leading to unduly favorable 

evaluation of the related arm. LTFU prevents the posting of the death of a patient with y < t 
< q.

The overrepresentation of patients who die earlier among those with LTFU, for the above 

model versus one with LTFU independent of survival, is perhaps best understood in a rough 

way if one considers patients with very small t. Under the independence model, such 

patients have only a tiny chance of realizing LTFU (Pr{y < t∣t}), far lower than any value of 

p*t we will have under our model above.

Simulations of clinical trials involving outcome-dependent LTFU appear to be uncommon, 

although Schomaker et al. (2014, section 4) do report one that uses a model that they 

devised. In our model, the use of the Weibull distribution (1) for time until death, t, seems 

standard. But the rest of our model, which prescribes the conditional distribution of y (time 
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until LTFU) given t, through the use of (2) and (3)-(4), allows for considerable added 

versatility and appears to be novel.

Specifying the probability of LTFU (p*t) to be a function of t, as in (2), provides broad 

flexibility. Further flexibility is provided through g(y∣t), although g(y∣t) is restricted to the 

interval from 0 to t, as is E(y∣t), the mean time until LTFU. Both (3) and (4) prescribe beta 

distributions for g(y∣t), with E(y ∣ t) = ∫ 0
t y g(y ∣ t) dy = ½t for (3) and = ⅔t for (4). Obviously, 

other beta distributions for g(y∣t) could be used, although ones with E(y∣t) below ½t would 

entail relatively early LTFU and might thus be deemed unrealistic.

3 Simulations

The simulations were all carried out with SAS, including SAS/IML. Broadly, they deal with 

two cases. In Case 1, LTFU occurs in the experimental arm (but not the control arm) and f(t) 
of (1) is the same in both arms (i.e., the treatment has no benefit). The simulations gauge the 

extent to which the Type I error (the chance of finding the treatment beneficial when it is 

not) is too high. Apparently the LTFU gives the treatment a bias in its favor because deaths 

of patients who die earlier are less likely to be recognized.

Case 2 has LTFU in the control arm only and has f(t) different in the two arms so that the 

treatment is beneficial. The simulations evaluate the reduction in power (the chance of 

finding the treatment beneficial) below what was intended. The LTFU produces a bias that 

helps the control arm, thereby impairing the power by lessening the difference between the 

two arms.

Each of the two cases has simulations for 30 conditions. These 30 conditions consist of all 

combinations of the following: three pairs of Weibull distributions f(t) of (1) (one 

distribution for the experimental arm, one for the control arm); five sets of (p0, pK) for use in 

(2) for the arm that has LTFU; and either the uniform distribution (3) or the triangular 

distribution (4) for g(y∣t) for the arm that has LTFU.

For Case 1, all three pairs of Weibull distributions have medians ME = MC = 3 (units of 

time), where the subscripts E and C refer to the experimental and control arms, respectively. 

The values of the Weibull shape and scale parameters for the three pairs (same for E and C) 

are

bE = bC = 0.8, aE = aC = 1
3(log 2)1.25;

bE = bC = 1, aE = aC = 1
3(log 2);

bE = bC = 1.25, aE = aC = 1
3(log 2)0.8 .

The three pairs of Weibull distributions of (1) for Case 2 each have the median pairs ME = 

4.2, MC = 3, with shape and scale parameters of
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bE = bC = 0.8, aE = 1
4.2(log 2)1.25 , aC = 1

3(log 2)1.25;

bE = bC = 1, aE = 1
4.2(log 2), aC = 1

3(log 2);

bE = bC = 1.25, aE = 1
4.2(log 2)0.8, aC = 1

3(log 2)0.8 .

For either arm and for either Case 1 or Case 2, the value of t for a patient comes from the 

applicable Weibull distribution using the formula t = (−log x)1/b /a, where x is drawn 

randomly from the uniform distribution on [0, 1].

For the experimental arm for Case 1 and the control arm for Case 2, the five sets of (p0, pK) 

used in calculating p*t of (2) are

(p0, pK) = (0, 0), (0.05, 0.05), (0.05, 0.15), (0.1, 0.1), (0.15, 0.05) .

LTFU occurs for a patient with time of death t if x < p*t, where x is from the uniform 

distribution on [0, 1]. Of course, for the control arm for Case 1 and the experimental arm for 

Case 2, p*t = 0 for all t and all five sets.

For a patient with time of death t who realizes LTFU (in either the experimental arm for 

Case 1 or the control arm for Case 2), the time of the LTFU is determined as y = tx1/w, 

where w = 1 for the rectangular g(y∣t) distribution (3) and w = 2 for the triangular 

distribution (4), with x uniform [0, 1]. As noted before, y plays no role if (and only if) the 

value drawn for it exceeds q.

Certain elements, representing reasonable specifications, are common to all the simulations. 

Each arm has 300 patients. They are randomized uniformly over a period of F = 5 time units. 

Data cutoff occurs after K = 7 time units. Thus q is uniform [2, 7]. The median survival 

times (shown above) provide acceptable numbers of events.

The median ME = 4.2 for Case 2 (with MC = 3) was chosen so that power in the absence of 

LTFU would take a reasonable value. For 300 patients in each arm, accrual time of 5 and 

follow-up time of 2 (i.e., F = 5 and K = 7), no LTFU, and exponential survival with median 

survival times of 4.2 and 3, PROC POWER of SAS shows that the power of the log-rank test 

is 87.4% and 70.2% for respective one-sided significance levels of 0.025 and 0.005.

For each case and each of the 30 conditions, the simulations ran 10,000 trials, thus yielding a 

total of 2 × 30 × 10,000 = 600,000 simulated trials involving 2 × 300 × 600,000 = 

360,000,000 patients. The log-rank test was run for each trial, with a patient treated as 

censored at the time of LTFU if LTFU occurred (with y < q) or as censored at the time of 

data cutoff if the patient was still alive then (but had not realized LTFU). For each of the 

600,000 trials, we recorded the value of z that was obtained as the square root of the log-

rank χ2-value from PROC LIFETEST of SAS, with a minus sign attached if the control arm 

was the one with the worse result.
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Each simulation result in our tables below is shown as a percentage, and comes from 

Bernoulli observations that are mostly based on whether or not z < −1.96 or z < −2.576 and 

are generated from (at least) 10,000 simulated clinical trials. The standard error for each one 

is thus no greater than 0.5 × 0.5 10, 000 = 0.005 = 0.5 %, and is far lower for many of the 

percentages in the tables.

4 Results of the simulations

Table 1 shows the simulation results for Case 1, for which bias that favors the treatment and 

thus inflates the Type I error is the consequence of the LTFU in the experimental arm. The 

treatment has no benefit in Case 1. The top row in each of the three groups of five rows in 

Table 1 shows that rejection frequency conforms with what it is supposed to be (0.025 or 

0.005) for the null case with no LTFU. Generally, for all three values of b (the Weibull shape 

parameter), rejection frequencies climb as LTFU becomes more influential, with a bit greater 

impact for b = 0.8 than b = 1 and for b = 1 than b = 1.25. The impact for triangular g(y∣t) 
exceeds that for uniform g(y∣t), apparently because LTFU comes closer to death with the 

triangular distribution and can thus lead to (artificially) better survival results recorded for 

affected patients. The greatest distortion occurs with b = 0.8, (p0, pK) = (0.15, 0.05), and 

triangular g(y∣t), for which the null hypothesis of no benefit for the treatment is rejected 

almost 17% of the time where it should be 2.5% and almost 6% of the time where it should 

be 0.5%.

Case 2, for which the treatment is beneficial and whose simulation results appear in Table 2, 

involves power diminution stemming from control-arm LTFU that causes bias in favor of the 

control. In the middle group of five rows in the table (exponential distribution), the top row 

(no LTFU) shows simulated power close to the values of 87.4% and 70.2% found from 

PROC POWER of SAS. For all three values of b, power drops sharply as LTFU increases. 

As in Table 1, the impact is heavier with triangular than with uniform g(y∣t). The three 

values of b differ considerably with respect to power even when no LTFU exists, with the 

top row in each group of five rows in Table 2 showing b = 1.25 with greater power and b = 

0.8 with lower power than b = 1; not unexpectedly, that relationship endures for the 

remaining four rows.

Although the power loss resulting from LTFU in Case 2 is substantial, it is at least somewhat 

inflated because the effective sample-size reduction stemming from LTFU would, by itself, 

cause some reduction in power. One thus has to evaluate how the results Table 2 in are 

affected by the sample-size factor. We do so by examining how power would be affected if 

LTFU is independent of outcome. (For Case 1, there is no concern like that for Case 2, since 

no similar consideration of sample-size effect for Case 1 would diminish the distortion 

shown by Table 1.)

As a first step, we show in Table 3, for each of the 30 conditions and for the LTFU arms of 

Cases 1 and 2, the percentage of simulation patients who had LTFU and died before data 

cutoff (y < t < q, "Lost and died"); who had LTFU (that necessarily occurred before data 

cutoff) and survived beyond data cutoff (y < q < t, "Lost and survived"); and who had LTFU 

in total (y < t). [The "Lost and survived" columns in Table 3 come from the combined results 
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of Cases 1 and 2, and are thus each based on 20,000 trials. The LTFU arm has the same 

median survival time of M = 3 in the two cases, and the circumstances also are otherwise the 

same, so the results can be fused because the simulation estimates the same percentage for 

both cases. For the "Lost and died" columns, the percentages are obtained by combining not 

only for the two cases but also for the two w-values, thus producing results that are based on 

40,000 trials and are the same in the two "Lost and died" columns in Table 3. This 

combining of results from w = 1 and w = 2 can be done for "Lost and died" (y < t < q) but 

not for "Lost and survived" (y < q < t) because, for the former, different g(y∣t) distributions 

have no effect since t < q, whereas, for the latter, g(y∣t) affects the frequency of y < q < t 
(versus q < y < t).]

To try to gauge the impact of the LTFU sample-size effect on inflating the power loss in 

Table 2, we focus on the middle five rows of Table 3, which are for b = 1 (exponential 

distribution). The aim is to find joint distributions of survival and LTFU that have LTFU 

independent of survival and that match the results in these rows as well as possible. One can 

then use PROC POWER of SAS to evaluate power for those distributions. Such computation 

with PROC POWER can be done only when b = 1. But the top five and bottom five rows of 

Table 3 are still of some relevance, because the close similarity of their values to those of the 

middle five rows and of each other suggests that the evaluation of the sample-size effect may 

not differ much for b = 0.8 or 1.25 versus b = 1.

To try to match the values in the middle five rows of Table 3 with those from joint 

distributions with survival and LTFU independent, we first need to calculate the probabilities 

of y < t < q and y < q < t when t and y are independent, both are exponential, and q is 

uniform [V, K], where V = K – F. We specify the distributions

f (t) = ae−at, 0 < t < ∞; h(y) = se−sy, 0 < y < ∞; φ(t, y) = f (t)h(y) . (5)

(The outcome y > t is considered to be effectively equivalent to y = t, i.e., no LTFU. The 

outcome q < y < t does not entail LTFU because no LTFU occurs before data cutoff.) From 

(5) one obtains

Pr{y < t < q ∣ q} = ∫0
q ∫0

t
φ(t, y)dy dt = s

a + s − e−aq + a
a + se−(a + s)q,

which leads to

Pr{y < t < q} = 1
F∫

V

K
Pr{y < t < q ∣ q}dq

= s
a + s − 1

Fa (e−Va − e−Ka) + a
F(a + s)2 e−V(a + s) − e−K(a + s) .

(6)

Then also
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Pr{y < q < t ∣ q} = ∫q

∞
f (t)dt ∫0

q
h(y)dy = e−aq(1 − e−sq),

from which

Pr{y < q < t} = 1
F∫

V

K
Pr{y < q < t ∣ q}dq

= 1
Fa (e−Va − e−Ka) − 1

F(a + s) e−V(a + s) − e−K(a + s)
(7)

follows.

Ideally, one would like to choose values of s so as to get a close match both between (6) and 

"Lost and died" in the middle rows of Table 3 and between (7) and "Lost and survived" in 

those rows. As it turns out, though, that is not feasible: Regardless of the extent of LTFU, the 

ratio of (7) to (6) is far higher than the ratio of "Lost and survived" to "Lost and died" in the 

relevant part of Table 3. We therefore take a conservative approach and, with F = 5, V = 2, K 
= 7, and a = (log 2)/MC = (log 2)/3, find s so that (6) matches exactly the values in the 

middle rows of the two "Lost and died" columns in Table 3. The resulting values of s are in 

the first column of Table 4. The "Lost and die" values in that table, calculated from (6) using 

those values of s, agree exactly with the corresponding values in Table 3. The "Lost and 

survive" values in, though, are obtained from (7) and are sharply higher than the 

corresponding values in Table 3. The distributions reflected in the left part of Table 4 thus 

have greater overall LTFU than the corresponding distributions in the simulations. They 

thereby provide a conservative basis for assessing (through overstatement) the part of the 

power loss that is attributable to the sample-size factor rather than to LTFU separate from 

the sample-size factor.

The last six columns of Table 4 show the power comparisons. The four columns appearing 

under "w = 1" and "w = 2" are simply the simulation results for power for b = 1 copied from 

Table 2. The other two columns are the outputs from PROC POWER of SAS for the log-

rank test using one-tailed significance levels of 0.025 and 0.005 with exponential LTFU 

hazards for the control arm equal to each value of s [and with 300 patients in each arm, 

exponential survival medians of 4.2 (experimental) and 3 (control), accrual time of 5, and 

follow-up time of 2]. The model that PROC POWER uses to calculate power assumes that 

LTFU is independent of survival.

In the last six columns of Table 4, the power decreases in the two PROC POWER columns 

are far less than in the other four columns. Thus the conclusion that LTFU brings about a 

substantial loss of power in Case 2 is left largely unaltered after considering the effects of 

the sample-size factor. That is, only a small part of the power loss shown in Table 2 is due to 

the sample-size effect rather than to the bias stemming from outcome-dependent LTFU.
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5 Summary and concluding remarks

For different conditions, our simulations have demonstrated troubling effects of outcome-

dependent LTFU whose degree differs between two arms of a clinical trial. Our simulation 

model is set up so that the deaths or other outcomes suppressed by LTFU tend to be earlier 

ones.

For Case 1, our simulations tested the effects on Type I error of extra LTFU in the 

experimental arm when the treatment provides no benefit relative to the control. For Case 2, 

our work tested the effects on power of adding the LTFU in the control arm when the 

treatment does provide benefit. Simulation results for Case 1 show seriously inflated Type I 

error, thus leading to inordinate probability that the treatment will be determined to be 

effective when it is not. Results for Case 2 show major impairment of power, thereupon 

entailing a sharp reduction in anticipated ability to detect the effectiveness of a treatment 

that really does yield an advantage.

Analyses of clinical trials may often assume that LTFU is independent of outcome and can 

therefore be legitimately handled with censoring in a log-rank test. But not only may that 

assumption be invalid; no test for the existence of outcome-dependent LTFU is even 

possible. Thus outcome-dependent LTFU whose extent or nature differs between arms, 

which this paper focuses upon, is especially pernicious. With lower LTFU in total, or lower 

LTFU difference between the two arms, problems may be less but do not disappear. One 

generally cannot find out whether LTFU is causing bias.

Remedies for LTFU are not easily found. Some forms of statistical adjustment might be 

attempted but would be based on models, probably complex ones, whose foundations could 

be hard to verify. Greater attention to LTFU details in journal articles reporting clinical trials 

would raise awareness, aid interpretation, and be highly desirable, but would not itself 

provide resolution.

The remaining remedy consists of increased efforts to avoid LTFU in the first place. 

Innovative strategies to improve retention could potentially be of significance. For trials with 

a mortality endpoint, intensive efforts to find the vital status of LTFU patients who are 

otherwise unaccounted for would be an obvious way to attack the problems of LTFU. For 

trials whose endpoint is not mortality, though, the challenge is far greater.

Some of the references cited in the Introduction (Section 1 above) provide further 

information related to some of the possibilities just mentioned. Unfortunately, finding a good 

overall approach for tackling potentially severe damage from LTFU cannot be easy.

Thus it is difficult to provide guidance, to those engaged in the design and analysis of 

clinical trials, as to how to avoid unfavorable impact from LTFU. Recognizing the problem 

in the design stage, rather than waiting until data analysis, is obviously helpful. Running a 

pilot mini-trial beforehand might provide a better gauge as to the seriousness of the 

consequences of LTFU and also uncover ideas for minimizing LTFU. Anything that avoids 

LTFU to begin with (or, for a mortality endpoint, finds the vital status for more patients with 

LTFU) is beneficial.
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Table 1.

Percentage of trials with z < −1.96 and z < −2.576, for 10,000 simulated trials with 300 patients in each arm, 

for each of 30 conditions, with experimental and control median survival times both equal to 3 but with loss to 

follow-up (LTFU) for some experimental patients.

y is uniform (w = 1)
% rejection
(one-tailed)
at level of

y is uniform (w = 2)
% rejection
(one-tailed)
at level of

b, Weibull
shape
parameter

Experimental patients,
LTFU

parameter 0.025 0.005 0.025 0.005

0.8 0%  2.62%  0.62%  2.49%  0.58%

5 5.25 1.35 6.03 1.52

5 to 15 4.97 1.20 8.01 2.02

10 9.80 2.86 12.54 3.88

15 to 5 15.67 4.43 16.76 5.74

1 (exponential distribution) 0 2.54 0.52 2.34 0.46

5 4.55 1.04 5.77 1.64

5 to 15 5.10 1.16 7.45 2.13

10 8.73 2.34 11.74 3.78

15 to 5 13.71 4.22 15.29 4.79

1.25 0 2.46 0.43 2.45 0.41

5 4.89 1.11 5.53 1.28

5 to 15 4.88 1.09 7.56 1.90

10 8.24 2.40 10.89 3.18

15 to 5 11.68 3.58 14.70 4.80
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Table 2.

Percentage of trials with z < −1.96 and z < −2.576, for 10,000 simulated trials with 300 patients in each arm, 

for each of 30 conditions, with respective experimental and control median survival times of 4.2 and 3 and 

with loss to follow-up (LTFU) for some control patients.

y is uniform (w = 1)
% rejection
(one-tailed)
at level of

y is triangular (w = 2)
% rejection
(one-tailed)
at level of

b, Weibull shape
parameter

Control patients,
LTFU parameter 0.025 0.005 0.025 0.005

0.8 0% 69.28% 45.24% 69.17% 44.63%

5 55.58 32.29 52.68 28.99

5 to 15 53.94 30.68 46.40 24.08

10 41.36 20.72 36.21 17.07

15 to 5 32.88 14.22 29.54 12.13

1 (exponential distribution) 0 87.50 69.60 87.41 69.59

5 79.25 58.00 77.08 54.59

5 to 15 78.57 56.35 71.44 48.22

10 67.31 44.22 62.35 38.14

15 to 5 60.71 36.41 57.01 32.24

1.25 0 97.38 91.49 97.86 91.16

5 95.25 85.54 94.36 83.30

5 to 15 94.62 83.87 91.70 78.22

10 91.20 76.97 87.93 71.44

15 to 5 87.19 69.60 84.47 65.29
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Table 3.

Mean % of 300 patients who realized loss to follow-up (LTFU) and died, realized LTFU and survived, and 

realized LTFU in total, for the arm with LTFU (experimental arm for Table 1, control arm for Table 2), 

calculated from 40,000 or 20,000 simulated trials for each of 30 conditions.

y is uniform (w = 1)
% of patients in

LTFU arm who were

y is triangular (w = 2)
% of patients in

LTFU arm who were

b, Weibull
shape
parameter

Patients in LTFU
arm, LTFU
parameter

Lost and
died

Lost and
survived

Lost,
total

Lost and
died

Lost and
survived

Lost,
total

0.8 0% 0% 0% 0% 0% 0% 0%

5 3.0 1.0 4.0 3.0 0.6 3.6

5 to 15 4.5 3.3 7.8 4.5 1.8 6.3

10 6.0 2.0 8.0 6.0 1.3 7.3

15 to 5 7.1 1.0 8.1 7.1 0.7 7.8

1 (exponential distribution) 0  0  0  0  0  0  0

5 3.1 1.1 4.2 3.1 0.7 3.8

5 to 15 4.9 3.2 8.1 4.9 2.0 6.9

10 6.3 2.1 8.4 6.3 1.4 7.7

15 to 5 7.1 1.2 8.3 7.1 0.9 8.0

1.25 0  0  0  0  0  0  0

5 3.3 1.1 4.4 3.3 0.8 4.0

5 to 15 5.4 3.0 8.4 5.4 2.0 7.4

10 6.6 2.2 8.7 6.6 1.5 8.1

15 to 5 7.2 1.3 8.5 7.2 1.0 8.2
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