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Abstract

Hibernating mammals, like the arctic ground squirrel (AGS), exhibit robust resistance to 

myocardial ischemia/reperfusion (IR) injury. Regulated preference for lipid over glucose to fuel 

metabolism may play an important role. We tested whether providing lipid in an emulsion protects 

hearts from summer-active AGS better than hearts from Brown Norway (BN) rats against 

normothermic IR injury. Langendorff-prepared AGS and BN rat hearts were perfused with Krebs 

solution containing 7.5 mM glucose with or without 1% Intralipid™. After stabilization and 

cardioplegia, hearts underwent 45 minutes global ischemia and 60 minutes reperfusion. Coronary 

flow, isovolumetric left ventricular pressure and mitochondrial redox state were measured 

continuously; infarct size was measured at the end of the experiment. Glucose-only AGS hearts 

functioned significantly better on reperfusion than BN rat hearts. Intralipid™ administration 

resulted in additional functional improvement in AGS compared to glucose only and BN rat 

hearts. Infarct size was not different among groups. Even under non-hibernating conditions, AGS 

hearts performed better after IR than the best-protected rat strain. This, however, appears to 

strongly depend on metabolic fuel: Intralipid™ led to a significant improvement in return of 

function in AGS, but not in BN rat hearts, suggesting that year-round endogenous mechanisms are 

involved in myocardial lipid utilization that contributes to improved cardiac performance, 

independent of the metabolic rate decrease during hibernation. Comparative lipid analysis revealed 

four candidates as possible cardioprotective lipid groups. The improved function in Intralipid™-

perfused AGS hearts also challenges the current paradigm that increased glucose and decreased 

lipid metabolism are favorable during myocardial IR.
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1. Introduction

Coronary artery disease and subsequent myocardial infarction continue to rank among the 

most common causes of mortality, accounting for nearly 40% of the deaths in the developed 

world (Gaziano et al. 2010; Roger et al. 2012) and one of every six deaths in the United 

States (Go et al. 2013). Health care costs in the United States associated with cardiovascular 

disease exceed $300 billion per year (Go et al. 2013), in addition to the enormous personal 

price of severely limited quality of life, loss of productivity, and premature death patients 

experience.

Myocardial ischemia/reperfusion (IR) and their resulting tissue injury are also an 

unavoidable consequence of cardiac surgery and heart transplantation, and remain a major 

source of perioperative morbidity and mortality (Bueno-Gonzalez et al. 2010; Ueki et al. 

2016). Prognosis after myocardial IR injury primarily depends on the quantity of irreversibly 

damaged myocardium (Miller et al. 1995). Remarkable differences in individual myocardial 

IR tolerance, however, have been found among (Shen and Vatner 1996), and even within, 

different species. For example, the Brown Norway (BN) rat (Rattus norvegicus) exhibits a 

significantly lower susceptibility to myocardial IR injury than any other rat strain, including 

Dahl salt-sensitive (SS) rats (Baker et al. 2000) which can be exploited to study some of the 

phenotypical and genetic determinants of resistance to myocardial IR injury (Shi et al. 2005; 

Kwitek et al. 2006; Nabbi et al. 2014).

The physiological phenomenon of hibernation offers another intriguing example of natural 

adaptation to adverse conditions (Carey et al. 2003). During hibernation, regulatory 

mechanisms depress metabolism to as low as 2% of basal rates for days to weeks to support 

cell preservation and long-term viability in a fasting state (Heldmaier et al. 2004). 

Hibernating mammals have also been found to exhibit an extraordinary resistance to IR 

injury in numerous organs (Lindell et al. 2005; Kurtz et al. 2006; Dave et al. 2006; Dave et 

al. 2009; Bogren et al. 2014; Yan et al. 2015).

A recent in-vivo study of deep hypothermic myocardial IR (Quinones et al. 2016) compared 

hibernating and summer-active non-hibernating Arctic Ground Squirrels (Urocitellus parryii, 
AGS), the hibernating mammal with the lowest body temperature during hibernation 

(Barnes 1989; Andrews 2007), as well as the most (BN) and the least IR injury-resistant 

(SS) rat strain (Baker et al. 2000). Interestingly, AGS displayed increased resistance against 

myocardial IR injury even at euthermic body temperatures while under non-hibernating 

conditions when compared to BN and SS rats; as expected, hibernation further increased this 

resistance in AGS. A subsequent detailed proteomic analysis suggested that hibernator 

cardioprotection may be associated with a controlled fuel shift from myocardial 

carbohydrate to fatty acid metabolism (Quinones et al. 2016), which is in line with the 

notion that fatty acids may not just be preferred substrates during hibernation (Galster and 
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Morrison 1975; Yan et al. 2008; Shao et al. 2010), but also during true myocardial IR 

(Quinones et al. 2014).

In this study, we used Langendorff-perfused isolated hearts from summer-active AGS and 

BN rats to test the hypotheses that a) non-hibernating AGS are better protected against 

normothermic myocardial IR injury than the best-protected rat strain, the BN rat (Baker et 

al. 2000); and b) that administration of lipids through perfusion with Intralipid™, a Food 

and Drug Administration-approved lipid emulsion routinely used for total parenteral 

nutrition (McNiff 1977), differentially improves resistance against IR injury in AGS more 

than in BN rat hearts.

2. Methods

2.1. Animals

All investigations conformed to the Guide for the Care and Use of Laboratory Animals 

(Institute for Laboratory Animal Research, National Academy of Sciences, 8th edition, 

2011) and were approved by the Institutional Animal Care and Use Committees of the 

Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center 

(both in Milwaukee, WI). AGS were trapped by licensed members of the Institute of Arctic 

Biology at the University of Alaska Fairbanks along the Denali Highway in central Alaska 

in July 2012 and 2013, transported to the University of Alaska Fairbanks for quarantine and 

testing, and subsequently shipped to the Medical College of Wisconsin. Age- and gender-

matched BN rats were obtained from the Department of Physiology at the Medical College 

of Wisconsin. The BN rat was chosen as it had been identified in several studies to be the rat 

strain most resistant against myocardial IR injury (Baker et al. 2000; Nabbi et al. 2014). A 

total of 11 AGS and 16 BN rats were used during the months of September and October for 

this study (Table 1).

2.2. Langendorff Heart Preparation

Animals were anesthetized by inhaled isoflurane (1 to 5 Vol% titrated to loss of 

consciousness), followed by intraperitoneal injection of 3,000 U kg−1 heparin. After a 

negative response to a noxious stimulus 5 min later, animals were decapitated and hearts 

were excised through a thoracotomy. The aorta was cannulated distal to the aortic valve, and 

the heart perfused retrograde with 4°C cold oxygenated Krebs solution of the following 

composition (in mM): 148 Na+, 4.7 K+, 1.2 Mg2+, 1.6 Ca2+, 127 Cl−, 27.8 HCO3
−, 1.2 

H2PO4
− , 1.2 SO4

2- , 7.5 glucose, 2 pyruvate, 0.026 ethylene diamine tetraacetic acid, and 5 

U/L insulin. The venae cavae were ligated, and the heart was rapidly placed into the support 

system and perfused at 80 mmHg and 37°C. The perfusate was equilibrated with 95% O2 

and 5% CO2 to maintain a constant pH of 7.40 (carbon dioxide partial pressure pCO2 40 

mmHg; oxygen partial pressure pO2 570 mmHg). The perfusate was filtered (5 μm pore 

size) in-line. Left ventricular pressure (LVP) was measured isovolumetrically with a saline-

filled latex balloon (Radnoti LLC, Monrovia, CA) inserted into the left ventricle. Its initial 

volume was titrated to achieve a diastolic LVP of 10 mmHg at baseline so that any 

subsequent increase reflected diastolic contracture. LVP-derived data were: systolic, 

diastolic, and developed (systolic minus diastolic) LVP, and its maximal and minimal first 
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derivatives (dLVP/dtmax and dLVP/dtmin) as indices of ventricular contractility and 

relaxation, respectively. Spontaneous heart rate (HR) was monitored by an 

electrocardiogram via bipolar electrodes placed in the right atrial and ventricular walls. The 

rate pressure product (RPP) was calculated as developed LVP • HR to correct for potential 

HR-induced decreases in developed LVP due to HR-dependent decreases in calcium release 

from the sarcoplasmic reticulum. Changes in coronary flow, as a result of changes in 

coronary resistance at a constant perfusion pressure, were measured by an in-line ultrasonic 

flowmeter (T106X; Transonic Systems, Ithaca, NY).

2.3. Experimental Protocol

Hearts were randomized to perfusion with either 7.5 mM glucose only or with 7.5 mM 

glucose plus 1% Intralipid™. Intralipid™ was chosen because it is clinically used and 

contains a multitude of different lipids including saturated and unsaturated fatty acids 

(Morris et al. 1998). Prior experiments in in- and ex-vivo models of myocardial IR have 

identified 1% as an optimal concentration to elicit cardioprotection (Rahman et al. 2011; Li 

et al. 2012). Hearts from either species were allowed to stabilize for 20 minutes. Following 

baseline readings, all hearts were perfused for 5 minutes with Krebs solution that contained 

18 mM K+ as cardioplegia; this was necessary to arrest the AGS hearts that would otherwise 

continue to beat despite subsequent ischemia. Hearts were then subjected to 45 minutes of 

global no-flow ischemia before 60 minutes of reperfusion with continuous monitoring of 

LVP, heart rate, coronary flow and nicotinamide adenine dinucleotide (NADH) fluorescence, 

followed by tissue harvest and ventricular infarct size assessment. If ventricular fibrillation 

occurred on reperfusion, a bolus of 250 μg lidocaine was immediately injected in the aortic 

cannula. All data were collected from hearts naturally in, or converted to, sinus rhythm.

2.4. Assessment of Mitochondrial Redox State by Spectrophotofluorometry

All experiments were conducted in a light-proof cage to enable continuous measurements of 

mitochondrial NADH. The distal end of a trifurcated fiberoptic cable (6.8 mm2 per bundle) 

was placed gently against the heart’s left ventricular anterior wall. A net was applied around 

the heart to insure optimal contact with the fiberoptic tip. The three proximal ends were 

connected to a customized spectrophotofluorometer (Photon Technology International [PTI], 

London, Canada). Fluorescence was excited with light at the appropriate wavelength from a 

xenon lamp filtered through a monochromator (Delta RAM; PTI). The beam was focused 

onto the in-going fibers of the optic bundle and the shutter was opened only for 3-sec 

recording intervals at select time points to prevent photo-bleaching. Light at the wavelength 

used in our studies penetrates transmurally, i.e., all cells from the epicardium to the 

endocardium contribute to the measured signal (Rhodes et al. 2003). Emissions were 

collected by fibers of the other two limbs and filtered before reaching the photomultiplier 

(PTI). Autofluorescence at 460 nm emission (350 nm excitation) was used to measure 

changes in mitochondrial NADH (Chance et al. 1965) as previously described (Riess et al. 

2002a). Although autofluorescence may also arise from unknown intracellular constituents 

or cytosolic NADH, the majority is derived from mitochondrial NADH (Eng et al. 1989). 

NADH is given in arbitrary fluorescence units (afu).

Salzman et al. Page 4

J Comp Physiol B. Author manuscript; available in PMC 2018 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5. Infarct Size Measurement

At the end of each experiment, hearts were removed, weighed and their atria discarded. 

Ventricles were cut into 2-mm transverse sections using a heart matrix. Incubation with 1% 

2,3,5-triphenyltetrazolium chloride (TTC) in 0.1 M KH2PO4 buffer (pH 7.4, 38°C) for 10 

minutes (Riess et al. 2009) stains viable tissue red by dehydrogenase enzymes present in 

viable cells, with infarcted areas remaining white. Both sides of each slice were digitally 

imaged on green background, and their infarcted areas measured automatically by 

planimetry using Image J 1.44i software (NIH, Bethesda, MD), its ColorThreshold plugin 

and a custom-developed, calibrated macro ensuring fast and operator-independent 

measurements (Shidham et al. 2011). Infarcted areas were averaged on the basis of their 

weight to calculate the total ventricular infarction of each heart.

2.6. Lipid Analysis

Blood samples were collected from all animals immediately after decapitation and 

centrifuged at 500g for 10 min at 4°C. The plasma supernatant was aspirated and 

immediately frozen at −80°C. Plasma samples from AGS and rats as well as 1% Intralipid™ 

were subsequently analyzed for their lipid composition. Over 1,800 lipid measurements by 

mass spectrometry produced a profile of 399 lipids. ESI-MS/MS lipid profiling of 

phospholipids and cholesterol esters was performed as described by Zhou and colleagues 

(Zhou et al. 2012); triacylglycerol analysis, resulting in 44 triacylglycerol species, was 

performed as described by Li and colleagues (Li et al. 2014).

2.7. Statistical Analysis

All analog signals were digitized (PowerLab/16 SP, ADInstruments North America, 

Colorado Springs, CO) and recorded at 200 Hz (Labchart, ADInstruments) for later analysis. 

All data are expressed as the mean ± standard error of the mean. Composite baseline data 

were compared by one-way analysis of variance (SigmaStat 3.5, Systat Software Inc, San 

Jose, CA), all other data were compared by two-way analysis of variance with species and 

substrate as two independent factors. If F values were significant, Student-Newman-Keuls 

post-hoc tests were conducted. Tests were considered statistically significant at P<0.05 (2-

tailed): * vs glucose only, † vs BN.

3. Results

3.1. Baseline Data

AGS were significantly heavier than their BN counterparts as were their respective hearts 

(Table 1). The ratios of heart weight to body weight, however, were not different between 

the species or treatment groups. Baseline coronary flow per g heart weight was higher in 

AGS than in BN rat hearts; all other baseline functional data were not different between the 

species or treatment groups.

3.2. Myocardial and Coronary Function

There was no significant effect of species or treatment on the incidence of ventricular 

fibrillation upon reperfusion. Systolic LVP, expressed as % baseline, upon reperfusion 
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(Figure 1, panel A) was the lowest in the BN Glucose group and not different to the BN 

Intralipid group. The AGS Glucose group had a higher systolic LVP than the two BN 

groups. The AGS Intralipid group exhibited an even higher systolic LVP than the other three 

groups throughout reperfusion.

Diastolic contracture, expressed in mmHg (panel B), occurred in all hearts, starting during 

ischemia and lasting throughout reperfusion. While there was no difference among BN 

Glucose, BN Intralipid and AGS Glucose hearts, AGS Intralipid hearts exhibited a 

significantly later increase in diastolic LVP during ischemia, and a significantly lower 

contracture both during ischemia as well as throughout reperfusion compared to all other 

groups.

All of the above contributed to better developed LVP (panel C), contractility (dLVP/dtmax, 

panel D) and relaxation (dLVP/dtmin, not shown), as well as a better RPP (panel E) for the 

AGS Intralipid group than the other three groups. Developed LVP and contractility were also 

higher in the AGS Glucose group compared to the two BN groups, RPP was not. Coronary 

flow (panel F) returned at a significantly higher rate in Intralipid™-treated AGS hearts than 

in glucose only AGS or BN hearts; Intralipid™ did not affect coronary flow in BN hearts.

3.3. Mitochondrial Redox State

With the onset of global ischemia, all hearts exhibited the previously described (Riess et al. 

2002a; Riess et al. 2003; Riess et al. 2004) pattern of initially increased mitochondrial 

reduction (increased NADH fluorescence, panel G) with the AGS Glucose group exhibiting 

a significantly higher initial reduction than the other three groups. This was followed by an 

abrupt oxidation, i.e., return towards or below baseline levels upon reperfusion. While there 

was no difference in mitochondrial redox state among the other three groups, BN hearts 

treated with glucose only exhibited a profound and sustained oxidation throughout the entire 

reperfusion period. During ischemia, the AGS Intralipid group did not exhibit the same 

continuous rate of oxidation (decrease in NADH) (Riess et al. 2002a; Riess et al. 2003; 

Riess et al. 2004) as the other three groups.

3.4. Ventricular Infarct Size

There were no significant differences among the four groups comparing ventricular infarct 

size as assessed by TTC staining (panel H).

3.5. Gender

We did not find a significant effect of gender in either of the species on any of the tested 

parameters.

3.6. Lipid Analysis

Comparisons between BN, AGS and Intralipid™ revealed four different lipid groups that 

were commonly higher in 1% Intralipid™ and in AGS plasma compared to BN rat plasma 

(Table 2): 1) phosphatidyl-choline by 4.5-and 1.5-fold; 2) lyso-phosphatidyl-ethanolamine 

by 17.0- and 2.1-fold; 3) phosphatidyl-ethanolamine by 136.9- and 8.4-fold; and 4) ether-
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linked phosphatidyl-ethanolamine by 28.7- and 2.3-fold in 1% Intralipid™ and AGS plasma, 

respectively, compared to BN rat plasma.

4. Discussion

This study, for the first time, characterizes and compares the effects of normothermic 

myocardial IR in hearts isolated from summer-active AGS with those from the best protected 

rat strain, the BN rat, and reports a differential effect of Intralipid™ on cardiac function after 

cardioplegic IR in both species. Our comparative analysis revealed a significantly improved 

systolic function under glucose-only conditions in AGS compared to BN rats. The additional 

administration of Intralipid™ as a source for lipids dramatically improved not only systolic, 

but also diastolic function both during ischemia and throughout reperfusion, as well as 

coronary flow during reperfusion, and mitochondrial redox state during ischemia in AGS, 

but not in BN rats. Mitochondrial NADH autofluorescence was significantly lower initially 

during ischemia in the AGS Intralipid compared to AGS Glucose hearts, possibly as a 

consequence of less glucose utilization and increased -oxidation. More importantly, and as 

consistently observed with other cardioprotective strategies (Riess et al. 2002a; Riess et al. 

2003; Riess et al. 2004), redox state became more oxidized during reperfusion in BN rats 

treated with glucose only, while there was no difference between BN rats treated with 

Intralipid™ and either AGS group. In contrast, TTC-based infarct size analysis did not show 

significant differences between species or treatments. A comprehensive lipid analysis 

identified four major lipid groups to be more prevalent in both AGS plasma and in 1% 

Intralipid™ versus BN rat plasma.

Mammalian hibernation is a powerful physiological mechanism to drastically reduce energy 

expenditure seasonally by reducing metabolism at times of reduced to completely ceased 

food supply. It is characterized by phases of torpor lasting for days to weeks that go along 

with reduced physical activity, decreased metabolism and body temperature (Andrews 2007; 

Sheriff et al. 2011). These are interrupted by short episodes of interbout arousals during 

which metabolism and temperature return to normal for several hours (Andrews 2007; 

Karpovich et al. 2009). While going in and out of torpor with concomitant manifold changes 

in metabolism and hemodynamics may constitute repeated global IR injury by itself, organs 

of hibernating mammals are also protected against true IR injury as shown in models of 

global ischemia during cardiac arrest (Dave et al. 2006; Dave et al. 2009; Bogren et al. 

2014), as well as liver (Lindell et al. 2005), intestinal (Kurtz et al. 2006), and most recently 

myocardial IR (Heinis et al. 2015; Quinones et al. 2016). Little is known, however, about 

year-long endogenous organ protective mechanisms in hibernating mammals that may 

persist during non-hibernating euthermic conditions and are independent of hibernation-

induced reductions in metabolism and temperature (Dave et al. 2006).

Quinones et al. (Quinones et al. 2016) have used a technically demanding in-vivo model of 

deep hypothermic cardioplegic cardiac arrest, adapted from the rat (de Lange et al. 2008) to 

the AGS, and compared myocardial IR injury patterns between non-hibernating rodents (BN 

and SS rats) and AGS that were summer-active and those that hibernated. In their model, the 

phenotype of cardioprotection in summer-active AGS was found to be intermediate between 

the best IR protected (BN) rat and hibernating AGS.
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The goal of the present study was to investigate if, and how, cardioprotection against IR 

injury can be further enhanced even under non-hibernating and normothermic conditions. 

Summer-active AGS exhibit a similar temperature, metabolism, hemodynamic patterns and 

behavior as rats, so that neither of the above would be associated with or identified as a 

cause for any observed differences in outcome. However, hearts from summer-active AGS 

displayed an already improved return of function compared to the best-protected rat under 

standard glucose-only conditions. When mimicking their naturally occurring hyperlipidemia 

(Galster and Morrison 1975) by addition of 1% Intralipid™ to the perfusate, AGS isolated 

hearts performed even better following myocardial IR, clearly suggesting a differential 

capacity and preference for fatty acid metabolism in AGS even under nonhibernating 

conditions compared to the rat. Thus, the presence of lipids to be metabolized may be 

necessary but by far not sufficient by itself for cardioprotection without a concomitant fuel 

switch present in the hibernator versus the non-hibernator heart.

In contrast to the studies by Rahman et al. (Rahman et al. 2011) and Li et al. (Li et al. 2012), 

we did not give Intralipid™ as a ‘post-conditioning’ agent only upon reperfusion, but rather 

before and after ischemia to mimic the AGS hearts’ natural hyperlipidemic environment. 

The ‘pre-conditioning’ effect of the Intralipid™ in the AGS hearts was clearly evidenced by 

the absent mitochondrial oxidation and the much delayed and attenuated diastolic 

contracture during late ischemia. Both are typically a result of better intracellular calcium 

handling and less calcium overload during ischemia and on reperfusion (Riess et al. 2002b; 

Riess et al. 2004), a phenomenon also reported in hibernating 13-line ground squirrels 

(Heinis et al. 2015). Also in contrast to Rahman et al. (Rahman et al. 2011) we did not see 

additional improvement in any of the functional indices, including RPP, with the 

administration of 1% Intralipid™ in the rat; this may be due to the maximal endogenous 

protection in the BN versus all other rat strains (Baker et al. 2000) that cannot be further 

improved by conditioning (Nabor et al. 2012) and has been reported to be nitric oxide-

dependent (Shi et al. 2005; Stowe et al. 2012). In fact, we recently reported nitric oxide 

release from endothelial cells as a possible mechanism of cardioprotection by Intralipid™ 

(Douglas et al. 2016).

Our cross-comparison of lipid levels between 1% Intralipid™, AGS and BN rat plasma 

revealed a multitude of individual lipids whose respective concentrations were significantly 

and multifold higher or lower among the three tested groups. When narrowing them down 

from individual lipids to chemically related lipid groups and searching for common 

differences between 1% Intralipid™ and plasma from AGS (both associated with improved 

function after IR) on one and BN rat plasma on the other side, we identified 1) phosphatidyl-

choline; 2) lyso-phosphatidyl-ethanolamine; 3) phosphatidyl-ethanolamine; and 4) ether-

linked phosphatidyl-ethanolamine to be highly significantly increased in 1% Intralipid™ and 
AGS plasma, respectively, compared to BN rat plasma and, therefore, as possible candidates 

to convey improved myocardial function after IR in our model. Clearly, more research on 

their significance and possible individual effects in non-hibernators will have to be 

conducted. Nevertheless, our finding of enhanced post-IR performance by Intralipid™ in 

hibernators challenges the current paradigm of increased glucose utilization and inhibition of 

lipid metabolism as always favorable during myocardial IR (Lopaschuk et al. 1988; 

Quinones et al. 2014).
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Adding to the uncertainty about possible mechanisms of Intralipid™-mediated 

cardioprotection are contradictory reports about the role of fatty acids during the different 

phases of IR. While an earlier study in rabbit isolated hearts could show a protective role for 

Intralipid™ only on reperfusion (Van de Velde et al. 2000), a later study in rat isolated hearts 

reported a benefit when given as a pre- or as a postconditioning agent (Liu et al. 2008). The 

latter is in line with the present findings in Langendorff-prepared hearts from AGS where 

1% Intralipid™ clearly improved post-IR function when given before and after IR. The role 

of glucose versus fatty acid metabolization in attenuating IR injury has indeed been the 

subject of a number of investigations and reviews (Jani and Bergmann 2006; Barsotti et al. 

2009; Jaswal et al. 2011). On one side, it is entirely conceivable that fatty acids can serve as 

a more efficient fuel during myocardial IR (Jaswal et al. 2011). On the other hand, metabolic 

modulators shifting metabolism preferentially to glucose utilization are a newer class of 

drugs to ameliorate myocardial IR injury (Jani and Bergmann 2006). Inhibition of fatty acid 

oxidation by etomoxir, for example, has been shown to be highly cardioprotective 

(Lopaschuk et al. 1988).

Several limitations to our study need to be acknowledged. Due to the current inability to 

breed AGS in captivity they have to be trapped in the wild, which limits their availability to 

us for research, and therefore, their respective research group sizes. Thus, the study was not 

designed or powered to exclude a type 2 error in further subgroup analyses. This research 

project did not include hearts from hibernating AGS or other hibernating mammals which 

may have added further important findings to this study. Instead of studying the specific 

effects of individual lipids, we used Intralipid™, a water soluble fat emulsion approved for 

human use as a part of total parenteral nutrition (McNiff 1977), made of soy bean oil, egg 

phospholipids and glycerin and consisting of a multitude of different lipids (Morris et al. 

1998). The fact that only functional parameters were found to be improved in AGS with and 

without Intralipid™, but not infarct size, points more towards improved stunning rather than 

reduced infarction following myocardial IR. Furthermore, we cannot exclude with certainty 

that our findings were not influenced, in part, by a possible species- or strain-dependent 

differential preconditioning effect (Nabor et al. 2012; Shi et al. 2005; Stowe et al. 2012), 

e.g., by exposure to a volatile anesthetic in vivo before the isolation of the heart. This, 

however, would not be expected to affect our Intralipid-related findings. Finally, we used an 

isolated heart model with a blood- and plasma-free perfusate, devoid of autonomic and 

hormonal input, all of which may have influenced our findings.

In summary, even under non-hibernating euthermic conditions, AGS hearts are better 

protected against stunning following IR than the best-protected rat strain. Furthermore, 

Intralipid™ perfusion leads to a remarkable improvement in return of function in AGS, but 

not in BN rats, suggesting that year-round endogenous mechanisms involved in myocardial 

lipid utilization without the production of harmful metabolites contribute to improved 

outcome, independent of decreased metabolism during hibernation. The concept of 

metabolic fuel switching in the AGS heart, with increased fatty acid oxidation, challenges 

the current paradigm that increased glucose and decreased lipid metabolism are always 

favorable during myocardial IR.
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5. Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of 

animals were followed. In addition, all procedures performed in studies involving animals 

were in accordance with the ethical standards of the institution or practice at which the 

studies were conducted.
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Abbreviations in the text:

AGS Arctic Ground Squirrel

BN Brown Norway rat

HR Heart rate

IR Ischemia-reperfusion

LE Lipid emulsion

LVP Left ventricular pressure

NADH Nicotinamide adenine dinucleotide

RPP Rate pressure product

SS Dahl salt-sensitive rat
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Fig 1. 
shows the time courses of A) systolic (in % baseline, bl), B) diastolic (in mmHg), and C) 

developed (systolic – diastolic, in % bl) left ventricular pressure (LVP), D) dLVP/dtmax (in 

% bl), E) the rate-pressure-product (RPP, in % bl), F) coronary flow (CF, in % bl), and G) 

NADH autofluorescence (in arbitrary fluorescence units, afu) before, during, and 45 minutes 

of global no-flow in hearts isolated from Brown Norway (BN) rats (blue triangles) compared 

with hearts isolated from arctic ground squirrels (AGS, red circles) perfused with either 7.5 

mM glucose only (closed symbols, continuous lines) or 7.5 mM glucose and 1% Intralipid™ 

(open symbols, interrupted lines). Panel H shows ventricular infarct size (in %) for each of 

the four groups. CP: perfusion with cardioplegia for 5 minutes before ischemia. Dotted and 

interrupted straight lines in panel G represent average change in NADH fluorescence from 

10 to 45 minutes of ischemia. Statistical symbols for P < 0.05 are * vs glucose only, and † vs 

BN
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Table 1.

Baseline data

BN AGS

Male / Female (n) 8 / 8 5 / 6

Glucose / Intralipid (n) 8 / 8 6 / 5

Heart weight, g 1.24 ± 0.07 2.97 ± 0.13†

Body weight, g 257 ± 23 642 ± 35†

Heart-to-body weight ratio, % 0.48 ± 0.03 0.51 ± 0.02

Systolic LVP, mmHg 116 ± 6 118 ± 7

Diastolic LVP, mmHg 9 ± 0 10 ± 0

Developed LVP, mmHg 107 ± 6 108 ± 7

dLVP/dtmax, mmHg/s 2,937 ± 221 2,733 ± 164

dLVP/dtmin, mmHg/s −1,913 ± 138 −1,859 ± 132

RPP, 1000 mmHg/min 30.0 ± 2.4 33.3 ± 1.6

HR, beats/min 280 ± 12 319 ± 21

Coronary flow, mlmin−1g−1 9.3 ± 0.6 6.1 ± 0.8†

Shown are baseline data for the two species, the Brown Norway (BN) rat ( n = 16) and arctic ground squirrels (AGS, n = 11). Left ventricular 
pressure (LVP) in mmHg, spontaneous heart rate (HR) in beats/min, and coronary flow (in ml per min per g heart weight) were measured, and 
systolic, diastolic, and developed, i.e., systolic–diastolic, LVP, its positive and negative first derivatives dLVP/dtmax and dLVP/dtmin as indices of 

contractility and relaxation, respectively, and the rate-pressure-product (RPP) as the product of developed LVP and HR were calculated at baseline, 
i.e., after 20 min stabilization. All values are absolute numbers or means ± standard error.

†
P < 0.05 vs BN.
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Table 2.

Comparisons of significantly different lipid groups from 1% Intralipid™ and AGS plasma vs BN rat plasma

Lipid Group Fold-difference 1% Intralipid™ vs 
BN rat plasma

p-value Fold-difference AGS plasma vs 
BN rat plasma

p-value

Phosphatidyl-choline 4.5 <1.0E-05 1.5 7.1E-09

Lyso-phosphatidyl-ethanolamine 17.0 <1.0E-05 2.1 1.8E-07

Phosphatidyl-ethanolamine 136.9 <1.0E-05 8.4 5.1E-17

Ether-linked phosphatidyl-ethanolamine 28.7 <1.0E-05 2.3 2.3E-10

Shown are the four lipid groups found to be significantly higher in both 1% Intralipid™ and in plasma from arctic ground squirrels (AGS) 
compared to plasma from Brown Norway (BN) rats.
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