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Abstract

Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular 

cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint 

tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been 

well recognized, it is now becoming apparent that in many cases, the onset of the disease may be 

initially reflected in the matrix region immediately surrounding the chondrocytes, termed the 

pericellular matrix (PCM). Growing evidence suggests that the PCM – which along with the 

enclosed chondrocytes are termed the “chondron” – acts as a critical transducer or “filter” of 

biochemical and biomechanical signals for the chondrocyte, serving to help regulate the 

homeostatic balance of chondrocyte metabolic activity in response to environmental signals. 

Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to 

genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or 

progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the 

role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region 

with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based 

diseases such as osteoarthritis. Further study of the structure, function, and composition of the 

PCM in normal and diseased conditions may provide new insights into the understanding of the 

pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease.
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Introduction

Under normal physiologic circumstances, articular cartilage functions as a nearly frictionless 

surface while exposed to loads of several times body weight. This remarkable function is 

attributed to the unique structure and composition that determine the mechanical properties 

of the cartilage extracellular matrix (ECM). The ECM of articular cartilage is primarily 

water (60–85% by wet weight). The remaining solid matrix is composed of a crosslinked 

network of type II collagen (15–22% by wet weight), proteoglycans (4–7% by wet weight), 

and lesser amounts of several important other collagens (e.g., VI, IX, X, XI) and non-

collagenous proteins [1, 2]. The constituents of articular cartilage are organized in a complex 

porous and permeable ECM that provides the unique capabilities for fluid-pressurization that 

allow for the long-term load-bearing capabilities of the joint. Under pathologic conditions, 

such as osteoarthritis, however, the ECM exhibits a myriad of changes in its mechanical 

function that are associated with increased catabolic activity and inflammation in the joint. 

In this regard, the role of the ECM in osteoarthritis has been extensively studied and reported 

in several previous reviews [3–8].

The chondron: The chondrocyte and its pericellular matrix

The ECM changes in osteoarthritis appear to be driven by an imbalance of anabolic and 

catabolic activities of the chondrocytes, the cell population within articular cartilage. Within 

the cartilage ECM, chondrocytes are surrounded by a narrow matrix region that is 

compositionally and structurally distinct from surrounding bulk ECM. This unique region is 

approximately 2 to 4 μm thick and is called the “pericellular matrix” (PCM) (Figure 1). The 

PCM then integrates with the surrounding tissue via the “territorial matrix,” connecting the 

PCM to the “interterritorial matrix” (i.e., the ECM). Together, the chondrocyte and its PCM 

have been termed the “chondron” [9–12]. This name was derived from “chondrone”, which 

was coined by Benninghoff in the early 19th century when he observed the altered matrix 

structure around chondrocytes via polarized light [13]. However, little direct research on the 

PCM was reported until it was discovered that intact chondrons could be retrieved as a by-

product of cartilage homogenization [14]. Using this method, a number of seminal studies 

were performed by Poole and co-workers to provide the first reports on the composition, 

metabolic activity, and structure of the PCM [11, 15]. Chondrons were found to contain 

large amounts of proteoglycans and collagen types II, VI, and IX. Further examination 

showed that the PCM can be defined primarily by the presence of type VI collagen, 

fibronectin 1, and the proteoglycans perlecan and biglycan [11, 15–17].

The function of the PCM and chondron

Significant evidence is now accumulating on the important role of the PCM (and chondron) 

in regulating the function of the chondrocyte (reviewed in [18, 19]). As every chondrocyte is 

surrounded by this tissue region, any chemical or physical signals that the chondrocyte 

perceives may be modulated by the PCM. Although the complete role of the PCM remains 

to be elucidated, it is apparent that the PCM can serve as a transducer, or “filter,” of both 

biomechanical and biochemical signals for the chondrocyte [20–23] (Figure 1). Data from a 

variety of theoretical models and experimental studies of the PCM and cell-matrix 
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interactions indicate that the presence and properties of the PCM can regulate mechanical 

and physiochemical environments in cartilage, influencing chondrocyte physiology and 

cartilage ECM homeostasis [24–38]. By modulating the stress-strain, osmotic, and fluid-

flow environments of the chondrocyte, the PCM is believed to serve as an additional 

regulator of the chondrocyte mechanotransduction process [39–41].

In addition to these biomechanical and mechanobiologic roles, the PCM can regulate cell-

matrix ligand binding, growth factor and enzyme sequestration, transport, assembly, and 

activation, thus influencing major aspects of ECM turnover in cartilage [42, 43]. The 

presence of a PCM significantly influences chondrocyte gene expression and response to 

mechanical loading [44–46], while PCM retention and sequestration of various growth 

factors may play an important role in regulating chondrocyte activity [21, 47–49]. The 

critical role of the PCM has been recently highlighted in a review of the various protective 

effects that it may have against the development of osteoarthritis [19]. Thus, it is apparent 

that alterations in PCM properties, secondary to genetic, epigenetic, metabolic, or 

biomechanical stimuli, could in fact serve as initiating or progressive factors of 

osteoarthritis.

The mechanical properties of the pericellular matrix

Over the past two decades, a variety of techniques have been pioneered to quantify the 

biomechanical and physical properties of the PCM, using either mechanically or 

enzymatically isolated chondrons, or in situ testing methods that combine experimental 

microscopy and computational modeling (reviewed in [18]). For example, physically 

extracted chondrons have been tested using osmotic swelling [25, 34], deformation within 

hydrogels [33, 34, 50], or individual chondron testing using compression [51–53] and 

micropipette aspiration [54–58]. More recently, methods have been developed for the direct 

quantification of PCM properties in situ through the application of osmotic swelling and 3D 

confocal microscopy [59] or atomic force microscopy (AFM)-based microindentation [60–

67]. With this method, AFM-stiffness mapping showed comparable values for PCM 

properties as compared to other methods such micropipette aspiration [55] or combined 

computational modeling and 3D microscopy [68]. These studies have shown that the moduli 

of the PCM (Young’s moduli, EY ~ 40 – 100 kPa) are two orders of magnitude greater than 

those of chondrocytes (EY ~ 0.5 kPa) [54, 69] but as much as an order of magnitude lower 

than those of the surrounding ECM, depending on the zone of cartilage (aggregate modulus, 

HA ~ 0.1 – 2 MPa) [70]. With the growing prevalence of mouse models in cartilage and 

osteoarthritis research, recent studies have shown that the Young’s moduli of murine PCM 

(300 – 1000 kPa) is much higher than that of human PCM, while the surrounding ECM (0.5 

– 2 MPa) is similar human values [59, 71]. These differences in mechanical moduli 

implicate the PCM as a crucial transducer or filter of mechanical signals to the chondrocyte.

The PCM in osteoarthritis

In healthy articular cartilage, the ECM is maintained in a slow, continuous state of turnover 

– often described as “homeostasis” – a balance of overall anabolic and catabolic activities of 

matrix synthesis and degradation. These activities are tightly controlled by the 
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environmental signals (including both biochemical and biomechanical cues) through 

regulating genetic and epigenetic programming of the chondrocytes. As a transitional zone 

between the interterritorial matrix and chondrocytes, the PCM, which has a much higher 

proteoglycan turnover rate [72], can modulate these environmental signals before they reach 

the chondrocytes and thus play a key role in chondrocyte gene expression and epigenetic 

state. Consequently, in a pathologic state such as osteoarthritis, changes to PCM properties 

may not only reflect the disease state but may also influence the regulatory function of PCM 

and thus chondrocyte activity. Therefore, further study of the PCM remodeling with 

osteoarthritis may provide new insights into understanding the etiology and pathogenesis of 

the disease.

The first studies of osteoarthritic changes in PCM structure and composition reported on 

human and canine chondron morphology, viability, and metabolism. This work 

demonstrated that early changes in the collagen and proteoglycan distribution within the 

chondron precede chondrocyte proliferation and cell cluster formation [73]. Osteoarthritic 

cartilage also exhibited chondron swelling and chondrocyte cluster formation, with a loss of 

pericellular type IX collagen staining [74] and the prevalence of enlarged chondrons with 

“loosely-organized” PCM structures [73, 75, 76]. Osteoarthritic cartilage was also associated 

with the appearance of a sub-population of chondrocytes with multiple elongated 

cytoplasmic processes [77]. Indeed, using confocal microscopy, it has been observed that 

some of these cytoplasmic processes were longer than 8 μm, radiating beyond the PCM and 

extending into the territorial matrix [78, 79]. Together these seminal studies suggest that 

concomitant loss of PCM structure, composition, and mechanical function are present in 

osteoarthritis.

Interestingly, several other reports also identified early changes in PCM composition with 

osteoarthritis. In human cartilage with minor osteoarthritic lesions, focal pericellular 

deposition of collagens I and III was observed, while at more advanced stages of disease, 

extensive changes were seen in collagen expression in the PCM, with overlapping 

localization of collagens I, II and III [80]. More recent studies have also shown the presence 

of type I collagen in the PCM with osteoarthritis [81]. The protein collagen VI, as a primary 

component of the PCM, has also been shown to be increased with osteoarthritis [82, 83] 

(Figure 2), showing zone-dependent changes in expression and immunolabeling [84–86]. 

Moreover, differential mRNA expression analyses of preserved and lesioned articular 

cartilage of patients undergoing joint replacement surgery due to osteoarthritis show highly 

significant upregulated expression of collagen type VI with osteoarthritis pathophysiology 

[87].

These arthritic changes in PCM composition can significantly affect mechanotransduction in 

chondrocytes, partly through chondrocyte’s primary cilium, a single cellular organelle that 

projects from the cell surface into the PCM. The primary cilium has recently been 

recognized as a potential mechanotransducer of the chondrocyte due to its capacity to 

interact with matrix proteins such as collagens type II and VI through the receptors 

including integrins and chondroitin sulfate proteoglycan 4 (also called neuron-glial antigen 

2, NG2) [88, 89]. In addition to matrix protein receptors, several putative mechanosensors, 

including connexin 43 and a variety of ion channels such as the transient receptor potential 
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vanilloid 4 (TRPV4) are expressed on the primary cilia of the chondrocytes [90]. While 

connexin 43 is a mechanosensitive adenosine 5′-triphosphate (ATP)-release hemichannel 

[91] found in chondrocytes [92], TRPV4 induces intracellular Ca2+ signaling cascades in 

response to osmotic or mechanical stimuli [90]. Furthermore, it has been reported that both 

cilia length and incidence (i.e., overall percentage of ciliated-chondrocytes in cartilage) 

increase with osteoarthritis severity, implying an altered cilia-mediated signaling in 

degenerated cartilage [93].

Other PCM molecules, such as nidogens and laminins, are also modulated with disease and 

appear to influence the calcification process of chondrocytes in osteoarthritis through the 

reciprocal regulation of RUNX2 and SOX9 [94]. Interestingly, the PCM-specific localization 

of laminins α5 and β1 was reported to be lost in aged, disrupted cartilage while laminin α1 

and perlecan were robustly withheld within the PCM in old mice [16]. These points 

underpin the complex and delicate homeostatic balance maintained by the PCM in 

presenting biomechanical signals to the chondrocytes.

Indeed, it has been suggested that degradation of PCM structure may be one of the earliest 

events during osteoarthritis onset due to the observation of elevated serine proteases, such as 

high-temperature requirement A serine peptidase 1 (HtrA1), in the synovial fluid from the 

osteoarthritis patients [95]. HtrA1 has the capacity to digest several major PCM components 

including aggrecan, decorin, fibromodulin, fibronectin, and biglycan, leading to the 

chondrocyte’s exposure to type II collagen fibrils, which is more highly expressed in ECM 

compared to the PCM. Increased interaction of type II collagen fibrils with cell surface 

receptors, potentially through discoidin domain receptor 2 (DDR2), may alter metabolic 

activity and intracellular signaling cascades in chondrocytes [19, 96–98]. For example, there 

is mounting evidence showing that binding of DDR2 to type II collagen up-regulates 

production of matrix metalloproteinase (MMP)-13 in chondrocytes [99], which in turn 

degrades type II collagen in cartilage matrix, suggesting a potential axis of HtrA1-DDR2-

MMP13 degradative pathway in osteoarthritis development [100].

Moreover, because the PCM also serves as a repository for a variety of growth factors and 

regulatory molecules, the disruption of PCM structure, either due to mechanical injury or by 

proteolytic activity, may trigger the release of these modulatory proteins, which can function 

in an autocrine or paracrine manner. For instance, transforming growth factor (TGF)-β is 

normally sequestered by fibrillin and fibulin in the PCM; however, increased release and 

activation of TGF-β was observed in injured articular cartilage [41, 101, 102]. It has also 

been reported that both biglycan and syndecan, a family of transmembrane heparan sulfate 

proteoglycans, play a critical role in modulating Wnt signaling and phenotypic changes of 

chondrocyte in osteoarthritis [103–106]. Similarly, perlecan, a PCM-localized proteoglycan 

[107], modulates fibroblast growth factor (FGF) presentation and binding near chondrocytes 

through heparin sulfate substitutions [21], altering the proliferation and metabolism of 

chondrocytes in response to injury.

Abnormal cartilage matrix turnover in osteoarthritis is not only associated with elevated 

levels of MMPs but also with increased production of aggrecanases such as ADAMTS4 and 

5 (a disintegrin and metalloproteinase with thrombospondin motifs) [108, 109], often 
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occurring secondary to the action of pro-inflammatory cytokines such as interleukin 1 (IL-1) 

[110]. Furthermore, remodeling of the PCM in osteoarthritic cartilage appears to modify the 

response of chondrocytes to soluble mediators and matrix proteins [42, 111, 112]. For 

example, when articular cartilage is degraded following exposure to IL-1, hyaluronic acid 

(HA) penetrates the cartilage and accumulates in the chondrocyte PCM [113]. In collagen-

induced arthritis mouse model, high levels of the aggrecan neo-epitopes, NITEGE 

(generated by aggrecanases [114]) and VDIPEN (generated by MMPs [115]), are present 

initially in the chondrocyte PCM, suggesting that stimulated chondrocytes can synthesize 

and/or activate both matrix-degrading enzymes [116]. Interestingly, it has been reported that 

NITEGE and VDIPEN are predominantly generated at different zonal regions in healthy 

tibial cartilage. However, once the spontaneous lesions develop in STR/ort mice, both neo-

epitopes co-localize at the PCM and further extend to interterritorial matrices of 

chondrocytes adjacent to osteoarthritic lesions when the disease advances [117]. In human 

osteoarthritic cartilage, ADAMTS5 was present in association with cells throughout normal 

cartilage and was markedly increased in osteoarthritis, particularly in clonal groups in the 

superficial and transitional zones, where it was predominantly co-localized with HA in the 

PCM. HA-dependent sequestration of ADAMTS5 in the PCM may be a mechanism for 

regulating the activity of this proteinase in human osteoarthritis cartilage [118].

Interestingly, despite harboring several matrix-degrading enzymes in osteoarthritis, the PCM 

appears to possess a certain level of resistance to enzymatic degradation. For example, 

targeted digestion of articular cartilage with aggrecanase-1 (ADAMTS4), bacterial 

hyaluronidase, or chondroitinase ABC demonstrated that PCM mechanical properties exhibit 

high resistance to aggrecan-targeted digestion, despite significant degradative effects on the 

properties of the cartilage ECM [66]. This resistance to enzymatic digestion may provide a 

mechanism for enzyme transport from the chondrocyte to the surrounding ECM during 

normal matrix turnover without mechanical disruption of the PCM.

The mechanical properties of the PCM are strongly associated with its biochemical and 

structural changes. Using different micromechanical testing methods such as micropipette 

aspiration or AFM indentation, several studies have revealed that the elastic modulus of the 

PCM is reduced by 30–50% in osteoarthritic cartilage [55, 56, 65] (Figure 2). Conversely, 

alterations in PCM properties due to loss of type VI collagen in Col6a1−/− mice can 

accelerate the progression of osteoarthritis in the hip [57] in a joint-specific manner [119]. 

The loss of PCM properties is accompanied by altered calcium signaling in chondrocytes 

and increased cell swelling in response to osmotic stress [59]. Deletion of type IX collagen, 

which is more concentrated in the PCM [120, 121], has been shown to accelerate 

osteoarthritis progression [96] as well as intervertebral disc degeneration [122], potentially 

through the exposure and activation of DDR2 in chondrocytes [42, 96, 97]. Of particular 

interest is the discovery of a genome-wide association between polymorphisms in collagen 

type VI alpha 4 pseudogene 1 (COL6A4P1, also known as DVWA) with increased risk of 

knee osteoarthritis, indicating a potential role for alterations in pericellular collagen VI in 

the initiation of disease [123, 124]. These studies demonstrate the potential for a complex 

and interrelated role of the PCM as both an indicator as well as a potentiating factor in 

osteoarthritis and suggest additional studies of gene polymorphisms or mutations in PCM 

proteins as targets for osteoarthritis research.
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In a similar manner to genetic predispositions to osteoarthritis, the PCM responds to 

injurious mechanical loading through both matrix turnover and mechanical softening [98, 

125]. Proteomic analysis of an in vitro cartilage injury model demonstrates elevated loss of 

collagen type VI during mechanical injury [98]. Similarly, a recent study which used the 

murine destabilized medial meniscus (DMM) to model traumatic joint injury showed a 

dramatic decrease in mechanical modulus of the PCM [98, 125]. In addition to direct 

cellular mechanotransduction, growth factor sequestration in the PCM may serve to 

modulate chondrocyte response to injury. As noted earlier, perlecan, which is localized to 

the PCM, can modulate the activity of FGF on chondrocytes. Through deletion of the 

domain 1 heparan sulfate (HS) in perlecan, Shu and coworkers reported that the progressive 

degeneration of articular cartilage from DMM-injury could be partially rescued. They 

concluded that this chondroprotective could be attributed, at least in part, to the preservation 

of FGF signaling, providing further evidence of the complex interaction between cellular 

signaling and PCM mechanosensitivity [126]. Future studies to investigate whether 

mechanical loading either alters the PCM indirectly through chondrocyte-PCM interactions 

or directly remodels the PCM may establish the role of the PCM in trauma-induced 

osteoarthritis.

Conclusions

While the role of the cartilage ECM in osteoarthritis has been extensively studied, growing 

evidence suggests that many of the characteristics and influences of osteoarthritis are present 

– and possibly initiated – in the PCM. As the primary connection between the chondrocyte 

and the cartilage ECM, newly synthesized matrix components, enzymes, and growth factors 

will initially pass through the PCM. Furthermore, the important role that the PCM plays in 

modulating environmental signals makes it highly sensitive to changes that occur with 

degradation or osteoarthritis. Thus, further investigation of roles of individual PCM 

components, how they contribute to chondrocyte mechanotransduction, and how they may 

serve as potential biomarkers of disease could help to elucidate factors contributing to the 

progression of osteoarthritis, as well as degeneration changes in other connective tissues 

such as the meniscus or intervertebral disc that possess PCM-like structures rich in type VI 

collagen [127, 128].
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Highlights

• The PCM surrounds all chondrocytes in articular cartilage and regulates their 

interactions with the environment

• Alterations in PCM properties and composition will influence their 

mechanobiologic response to loading

• Some of the earliest biosynthetic and degradative changes in osteoarthritis 

may initially manifest in the PCM

• Here we review the potential role of PCM pathology as a potential driver, as 

well as indicator, of osteoarthritis
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Figure 1. Schematic of the chondrocyte, which together with its surrounding pericellular matrix 
(PCM) forms a chondron, embedded within the cartilage ECM
The PCM is rich in proteoglycans such as perlecan and is characterized by the presence of 

collagens type VI and IX, as well as several other matrix macromolecules (fibronectin, 

laminin, etc.). Because the PCM surrounds the chondrocyte, it is believed to serve as a 

transducer, or “filter”, of the biomechanical milieu through regulation of the stress-strain, 

osmotic, and fluid-flow environments of the chondrocyte. In addition to this 

mechanobiologic role, the PCM can regulate cell-ECM ligand binding, growth factor and 

enzyme sequestration, transport, assembly, and activation, thus influencing major aspects of 

ECM turnover in cartilage

Guilak et al. Page 17

Matrix Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Alterations in the morphology and mechanical properties of the PCM with 
osteoarthritis
(A, B) Representative images of immunofluorescence labeling of type VI collagen in 

cartilage from (A) macroscopically normal and (B) osteoarthritic knee joints. Scale bar = 

100 μm (C, D) Immunofluorescence labeling revealed altered structure and expanded 

regions that were positive for type VI collagen in the PCM of osteoarthritic cartilage. Scale 

bar = 25 μm. (E, F) Elastic mapping of the moduli of the ECM and PCM, from normal (E) 

and osteoarthritic (F) cartilage, showing a loss of mechanical properties with osteoarthritis. 

Modulus maps are presented on the same graded coloring scale, and cell-sized voids are 

depicted in white [Adapted from [65], with permission].
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