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ABSTRACT
Corticosteroids (CS) regulate the expression of numerous
genes at the mRNA and protein levels. The time course of
CS pharmacogenomics and proteomics were examined in
livers obtained from adrenalectomized rats given a 50-mg/kg
bolus dose of methylprednisolone. Microarrays and mass
spectrometry-based proteomics were employed to quantify
hepatic transcript and protein dynamics. One-hundred, sixty-
three differentially expressed mRNA and their corresponding
proteins (163 genes) were clustered into two dominant groups.
The temporal profiles of most proteins were delayed compared
with their mRNA, attributable to synthesis delays and slower
degradation kinetics. On the basis of our fifth-generation model
of CS, mathematical models were developed to simultaneously
describe the emergent time patterns for an array of steroid-
responsive mRNA and proteins. The majority of genes showed
time-dependent increases in mRNA and protein expression

before returning to baseline. A model assuming direct, steroid-
mediated stimulation of mRNA synthesis was applied. Some
mRNAs and their proteins displayed down-regulation following
CS. A model assuming receptor-mediated inhibition of mRNA
synthesis was used. More complex patterns were observed
for other genes (e.g., biphasic behaviors and opposite direction-
ality in mRNA and protein). Models assuming either stimula-
tion or inhibition ofmRNA synthesis coupledwith dual secondarily
induced regulatory mechanisms affecting mRNA or protein
turnover were derived. These findings indicate that CS-regulated
gene expression manifested at the mRNA and protein levels are
controlled via mechanisms affecting key turnover processes. Our
quantitative models of CS pharmacogenomics were expanded
from mRNA to proteins and provide extended hypotheses for
understanding the direct, secondary, and downstream mecha-
nisms of CS actions.

Introduction
Corticosteroids (CS) are a class of pleiotropic immunosup-

pressive agents used in the treatment of various inflammatory
and autoimmune diseases, such as asthma (Barnes, 1998) and
rheumatoid arthritis (Kirwan and Gunasekera, 2017). Their
potent immunosuppressive properties also form the basis for
their use in preventing rejection of solid organ transplants
(Taylor et al., 2005). Beneficial effects derived from immuno-
suppression are accompanied by numerous metabolic side
effects, which upon long-term steroid usage are manifested
as osteoporosis, insulin resistance, diabetes, and obesity
(Schacke et al., 2002). The ubiquitously expressed glucocorti-
coid receptor (GR) is the principal target in tissues mediating
both therapeutic and adverse CS outcomes. Upon binding GR,
CS produce effects that are either rapid in onset (immune cell
trafficking and adrenal suppression) or delayed (genomic
regulation of mediators) (Jusko, 1995). Pharmacogenomic

CS mechanisms involve a series of intracellular transduction
steps, including drug-receptor binding in the cytosol, GR
dimerization, nuclear translocation, DNA binding (i.e., gene
regulation), and consequent alterations in mRNA and protein
expression. Although immune regulation by CS ismediated by
both genomic and nongenomic mechanisms (Cain and Cidlow-
ski, 2017), metabolic actions in tissues such as liver are largely
receptor/gene-mediated.
Systems pharmacodynamic modeling that integrates “hor-

izontal” and “vertical” aspects of drug actions are critical for
gaining quantitative insights into drugs such as CS with
complexmechanisms (Jusko, 2013). Since hundreds of steroid-
target genes are regulated in an organ, the “horizontal” can be
captured by studying large-scale gene expression changes
within the tissue. The “vertical” is reflected by the intermedi-
ary mechanisms linking CS pharmacokinetics (PK) to result-
ing pharmacogenomic changes (Ramakrishnan et al., 2002b),
and ultimately, to clinically relevant pharmacodynamic (PD)
outcomes (Ayyar et al., 2018). We previously examined the
entire temporal profiles of about 8000 genes in rat liver after a
single 50-mg/kg dose of the synthetic CS methylprednisolone
(MPL) (Almon et al., 2003). This led to “vertical” model-based
integration of MPL PK, receptor binding, and dynamics, and

This work was supported by the National Institute of General Medical
Sciences, National Institutes of Health [Grant GM24211].

https://doi.org/10.1124/jpet.118.251959.
s This article has supplemental material available at jpet.aspetjournals.org.

ABBREVIATIONS: ADX, adrenalectomized; CS, corticosteroid(s); GR, glucocorticoid receptor; GRE, glucocorticoid response element; HNF-4a,
hepatocyte nuclear factor-4a; LC/MS, liquid chromatography–mass spectrometry; miRNA, microRNA; MPL, methylprednisolone; PK,
pharmacokinetic; PD, pharmacodynamic; SR, secondary regulator.

168

https://doi.org/10.1124/jpet.118.251959
http://orcid.org/0000-0003-4027-0550
https://doi.org/10.1124/jpet.118.251959
http://jpet.aspetjournals.org


consequent primary and secondary drug-mediated transcrip-
tional effects, which captured the emergent time patterns for
six clusters of CS-responsive mRNAs (143 different genes)
(Jin et al., 2003).
Although highly useful in understanding the genomic

mechanisms of CS regulation, sole use of transcriptomic
approaches are limited in that changes in mRNA expression
may not directly correlate with protein expression and, hence,
may not fully reflect drug effects (Maier et al., 2009; Payne,
2015). Although the central dogma (Crick, 1970) tightly
coupled flow of molecular information from DNA to mRNA
to protein, complexities in gene regulation and dynamics
arising during transcription, post-transcriptional processing,
and translation complicate the interpretation of the relation-
ship between mRNA and protein abundances, especially in
mammalian systems. That protein levels at steady-state are
primarily determined by their mRNA has been established in
experimental systems (Vogel and Marcotte, 2012; Liu et al.,
2016b). However, such steady-state dynamics are perturbed
upon acute or long-term exposure to biologic or pharmacolog-
ical stressors (Vogel, 2013; Cheng et al., 2016; Liu et al.,
2016b). Since proteins, or protein networks, are more direct
mediators of pharmacological actions, integration of -omics
information within systems models can yield a deeper un-
derstanding of molecular drug actions (Kamisoglu et al.,
2017).
Upon examining the relationship of protein and mRNA

dynamics in vertebrate embryonic development, Peshkin et al.
(2015) demonstrated that mutual information is contained
across both scales. A simple model of protein turnover consid-
ering mass action kinetics as a basis predicted protein dy-
namics from mRNA concentrations for a large number of
dynamically varying genes. For modeling drug actions, both
direct and secondarily regulatedmechanisms that alter steady-
state mRNA and protein turnover must also be considered (Jin
et al., 2003). Secondarily induced gene regulatory mechanisms,
such as hormones, cytokines, transcription factors, and micro-
RNAs (miRNA), can impact gene regulation at the transcrip-
tional, post-transcriptional, and translational stages (Jin et al.,
2004; Valencia-Sanchez et al., 2006; Cho et al., 2015).
We conducted a time-course animal study similar to our

previous microarray studies (Almon et al., 2003; Jin et al.,
2003) and applied ion-current-based quantitative nano–liquid
chromatography–mass spectrometry (LC/MS) methods to
examine the temporal proteomic response of rat liver (Nouri-
Nigjeh et al., 2014). The major application for this investiga-
tion was to develop mechanism-based PK/PD models that
expanded our quantitative “horizontal” and “vertical” assess-
ments of pharmacogenomic MPL actions from the liver tran-
scriptome to the proteome. In this report, our current models
of CS gene regulation were expanded from mRNA to proteins,
which simultaneously explain emergent time patterns within
the liver transcriptome and proteome as observed within our
studies.

Materials and Methods
Experimental Procedures

Animal Experiments. The data for this studywere obtained from
two sets of animal experiments performed in adrenalectomized (ADX)
maleWistar rats (Harlan Sprague Dawley Inc., Indianapolis, IN). Our
research protocol adheres to the Principles of Laboratory Animal Care

(NIH publication 85–23, revised in 1985) and was approved by the
University at Buffalo Institutional Animal Care and Use Committee.
The first set of experiments consisted of 43 animals (group 1) given a
single intravenous dose of 50 mg/kg of MPL succinate and euthanized
at 16 different time points after dosing (0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 6,
7, 8, 12, 18, 30, 48, or 72 hours). Four untreated rats were sacrificed at
0 hours as controls. The second set of experiments consisted of
55 animals (group 2) given a single intramuscular dose of 50 mg/kg
of the same drug. The livers from group 2 were perfused with cold
heparinized saline (5 ml of heparin/1 l saline) before sacrifice to
remove blood (as necessary for accurate proteomic profiling) and the
animals were euthanized at successive times after dosing (0.5, 1, 2, 4,
5.5, 8, 12, 18, 30, 48, and 66 hours). Five untreated rats were sacrificed
at random times as controls. Liver harvested from animals from both
experiments were flash frozen in liquid nitrogen and stored at 280°C
until further analysis. More information about the animal procedures
can be obtained from previous reports (Almon et al., 2002; Nouri-
Nigjeh et al., 2014).

Transcriptomics. Powdered liver (100 mg) from each animal
(group 1) was added to 1 ml of TRIzol Reagent (Invitrogen/Thermo
Fisher Scientific, Carlsbad, CA). Total RNA extractions were carried
out according tomanufacturer’s instructions andwere further purified
by passage through RNeasy columns (QIAGEN, Valencia, CA). RNAs
were quantified spectrophotometrically, and purity and integrity were
assessed by agarose gel electrophoresis. Isolated RNA from each liver
was used to prepare target according to manufacturer’s protocols. The
biotinylated cRNAs were hybridized to 47 individual Affymetrix
GeneChips Rat Genome U34A (Affymetrix, Inc., Santa Clara, CA)
containing 7000 probe sets. More information about this data set can be
obtained from Gene Expression Omnibus (GEO) database (GSE490).

Proteomics. A total of 80 mg of powdered liver from each animal
(group 2) was extracted, digested, and analyzed using a nano-LC/MS
instrument. The Nano Flow Ultra-High Pressure LC system (nano-
UPLC) consisted of a Spark Holland Endurance autosampler and an
ultra-high pressure Eksigent Nano-2D nano-LC system, with a LTQ
Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Waltham,
MA) used for detection. Separation was performed on a long column
(100 cm long and 50-mm inner diameter) with small particles (Pepmap
2-mmC18, 100Å) under high pressure (∼9000–11,000 psi with heating
at 52°C). The LC/MS raw data were searched against the UniProt-
reviewed rat protein database (released October 2012) with 7853 pro-
tein entries using SEQUEST-based Proteome Discoverer (version
1.2.0.208; Thermo Fisher Scientific). The false discovery rate was
estimated by a target-decoy search strategy, using a concatenated
database containing both forward and reversed sequences. Protein
quantification used the area under the curve (AUC) of the ion-current
peaks as a basis. A more detailed description of the analytical
methodology was published (Nouri-Nigjeh et al., 2014; Tu et al., 2014).

Data Mining and Cluster Analysis. Individual probe-set inten-
sity (microarray data) and protein AUC (proteomics data) were
normalized as a ratio to the mean of the controls, which had a
distribution around 1. Proteins and transcripts with differential
temporal profiles were determined by using the extraction and
analysis of gene expression (EDGE) software (Storey et al., 2005;
Leek et al., 2006). Within-class differential expression was employed
to identify proteins that showed a differential expression profile over
time. Only mRNA and proteins that varied significantly over time
(P value ,0.05 and q-value ,0.01) were employed in the subsequent
analysis (Kamisoglu et al., 2015; Ayyar et al., 2017). Temporal data for
the differentially expressed genes identified at both transcriptomic
and proteomic levels were concatenated and subjected to hierarchical
clustering using the clustergram function in the Bioinformatics
Toolbox ofMATLAB (Mathworks, Natick,MA) as described previously
(Kamisoglu et al., 2015). Proteins showing similar expression patterns
after MPL dosing were identified using a quality-threshold cluster-
ing algorithm in GeneSpring 4.1 (Silicon Genetics, Redwood City,
CA), employing Pearson’s correlation as the similarity measure-
ment. Common coregulatory proteins and transcription factors were
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extracted within each cluster on the basis of the informatics analysis
using the Ingenuity Pathway Analysis package (IPA; Ingenuity
Systems/QIAGEN, Redwood City, CA). Experimentally validated
microRNA-target gene interactions in murine and rodent models
were extracted from the miRTarBase database (release 7.0) (Chou
et al., 2018). Only microRNA-gene interactions confirmed under
“strong evidence” (i.e., reporter assays, Western blots, and quantita-
tive polymerase chain reaction) were retained for further analysis.
The PubMed database was searched for literature-based evidence of
glucocorticoid or CS regulation of the miRNA across species and
experimental systems (date accessed: 04/05/2018). The miRNA-mRNA
interaction network was visualized using Cytoscape (version 3.6.1)
(Shannon et al., 2003).

Pharmacokinetic/Pharmacodynamic/Pharmacogenomic/
Pharmacoproteomic Models

MPL Pharmacokinetics. Plasma concentrations of MPL follow-
ing intravenous and intramuscular dosing were modeled simulta-
neously. A two-compartment model with linear elimination was used
to describe the biexponential disposition of plasma MPL. In addition,
two absorption components from the injection site was used to
describe the absorption kinetics of MPL following intramuscular
dosing (Hazra et al., 2007c). Equation and initial conditions (IC)
describing the model are:

Vc
dCPðIVÞ

dt
52CL×CP 2CLD×CP 1CLD×CT IC5

DðIVÞ
Vc

(1)

Vc
dCPðIMÞ

dt
5ka1×DðIMÞ×F×Fr×e2ka1t 1ka2×DðIMÞ×F×ð12FrÞ×e2ka2t

2CL×CP 2CLD×CP 1CLD×CT IC5 0
(2)

VT
dCT

dt
5CLD×CP 2CLD×CT IC5 0 (3)

where C and D represent the concentration and dose of MPL in
the corresponding plasma (P) and tissue (T) compartments, Fr and
(1 2 Fr) are fractions of dose absorbed through the absorption
pathways described by first-order rate constants ka1 and ka2, CL is
clearance from the central compartment, CLD is the distribution
clearance, F is the overall bioavailability of MPL after intramuscu-
lar injection, andVc andVT are the central and peripheral volumes of
distribution.

Receptor Dynamics. The molecular receptor-mediated mecha-
nisms governing CS pharmacodynamics as depicted by our fifth-
generation model of receptor dynamics was employed for developing the
pharmacokinetic/pharmacodynamic/pharmacogenomic/pharmacoproteomic
model. The dynamics of drug-receptor complex and feedback inhibition
of receptor mRNA production was used as previously described
(Ramakrishnan et al., 2002a). The equations describing the receptor
dynamics are:

dR
dt

5ks;GR×GRm 2kd;GR×R2kon×fmpl×Cmpl×R1kre×Rf ×DRn IC5Rð0Þ
(4)

dDR
dt

5 kon×fmpl×Cmpl×R2kt×DR IC50 (5)

dDRn

dt
5kt×DR2kre×DRn IC50 (6)

dGRm

dt
5ks;GRm×

�
12

DRn

DRn 1 IC50;GRm

�
2kd;GRm×GRm IC5GRmð0Þ

(7)

where symbols represent the free cytosolic glucocorticoid receptor (R),
cytosolic drug-receptor complex (DR), nuclear-translocated drug-
receptor complex (DRn), and receptor mRNA (GRm) concentrations.
The ks,GR and kd,GR are first-order rate constants for the production of

free receptor from the translation of GRmRNA and the degradation of
the free receptor, kon is the second-order rate constant for formation
of drug-receptor complex (DR) by the binding of free ligand and
receptor in the cytosol, and kt is the first-order rate constant for
translocation of the drug-receptor complex from cytosol (DR) into the
nucleus (DRn). Part of DRn may recycle back to the cytosol controlled
by the rate constant Rf ×kre with the remainder degraded by rate
constant (1 2 Rf)×kre, and ks,GRm and kd,GRm are rate constants for the
production and degradation of the receptormRNA. The IC50,GRm is the
concentration of DRn at which the synthesis rate of GR mRNA is
reduced to 50% of its baseline.

Equations (4) and (7) yield the following baselines:

ks;GRm 5kd;GRm×GRmð0Þ (8)

ks;GR 5
kd;GR×Rð0Þ
GRmð0Þ (9)

whereGRmð0Þ andRð0Þ are the baseline values of receptormRNA and
free cytosolic GR density. These baseline values were fixed as the
mean values obtained in liver from the control animals (Hazra et al.,
2007b). Parameters from our previous report (Hazra et al., 2007a)
were used to simulate receptor dynamics and produce the driving force
for genomic CS actions in the present study.

Pharmacogenomic and Proteomic Models. The diverse cellu-
lar andmolecularmechanisms that govern the pharmacodynamic and
pharmacogenomic effects of CS are depicted in Fig. 1. Binding of CS
with the receptor leads to activation and translocation of the receptor
into the nucleus. Activated GR binds to recognition sites known as
glucocorticoid response elements (GREs) in the promoter region of
target genes and activates or inhibits target gene transcription. Part of
the nuclear receptors are recycled back into the cytoplasm after
exerting their effects. Furthermore, the CS cause homologous down-
regulation of their own receptors via decreased transcription. Growing
evidence indicates that CS modulate many transcription factors such
as CCAAT-enhancer binding protein (C/EBP) and hepatocyte nuclear
factor-1a (HNF-1a), as well as miRNAs (Suh and Rechler, 1997; Phuc
Le et al., 2005; Smith et al., 2013; Clayton et al., 2018). The altered
expression of these transcription factors and miRNAs can in turn
affect the expression of other genes during transcriptional and trans-
lational processing of mRNA and peptides (Valinezhad Orang et al.,
2014). Secondary effects of CS on other hormones, such as cyclic
adenosine monophosphate and insulin, also influence gene regulation
(Jin et al., 2004). Since the exact regulatory mechanisms or networks
for each CS-responsive gene at the mRNA and protein levels has not
been clarified thus far, models in the present report collectively refer
to such mediators as secondary regulators. Thus, a target mRNA or
protein may be regulated either directly by DRn, or through a
secondary regulator, or by both. Various pharmacogenomic models
are proposed to describe diverse hepatic mRNA and protein
expression profiles following acuteMPL dosing. TheDRn is assumed
as the driving force influencing the dynamics of mRNA expression,
which then translates to changes in proteins. In the absence of drug,
the expression of mRNA is described by a turnover model with a
zero-order production rate (ks,mRNA) and a first-order degradation
rate (kd,mRNA), whereas protein turnover is controlled by a first-
order production rate (ks,protein) dependent on mRNA expression and
with a power coefficient ðgÞ and a first-order degradation rate
(kd,protein):

dmRNA
dt

5ks;mRNA 2kd;mRNA×mRNA IC5mRNA0 (10)

dProtein
dt

5 ks;protein×ðmRNAÞg 2kd;protein×Protein IC5Protein0 (11)

Since endogenous glucocorticoid production in ADX rats is
negligible, steady-state gene expression was assumed before drug
administration. The following baseline conditions are derived:
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ks;mRNA 5kd;mRNA×mRNA0 (12)

ks;protein 5
kd;protein×Protein0

ðmRNA0Þg (13)

where mRNA0 and Protein0 are the baseline targets for mRNA and
protein expression levels. Since all data were normalized as ratios to
the baseline, their valueswere fixed to 1, except in some cases inwhich
estimation yielded significant improvement of model fitting. Figure 2
depicts, along with the core fifth-generation CS model, six mathemat-
ical models proposed to explain the observed gene expression profiles.

Model A (Fig. 2A) assumes enhancement of gene transcription by
DRn (i.e., stimulation of mRNA production), modeled as

dmRNA
dt

5ks;mRNA×ð11SmRNA
DRn

×DRnÞ2kd;mRNA×mRNA (14)

dProtein
dt

5 ks;protein×ðmRNAÞg 2kd;protein×Protein (15)

where SmRNA
DRn

is a linear stimulation constant by which DRn increases
the synthesis of the target mRNA.

Model B (Fig. 2B) assumes repression of gene transcription by
DRn (i.e., inhibition of mRNA production), represented as

dmRNA
dt

5ks;mRNA×

 
12

DRn

DRn 1 ICDRn
50;mRNA

!
2 kd;mRNA×mRNA (16)

dProtein
dt

5ks;protein×ðmRNAÞg 2 kd;protein×Protein (17)

where ICDRn
50;mRNA is the concentration ofDRn at whichmRNA synthesis

rate drops to 50% of its baseline value.
Genes described by model C (Fig. 2C) were characterized by a

stimulatory effect on gene transcription by DRn along with delayed,
inducedmRNA degradation by a secondary regulator. In the proposed
and subsequent “dual-effect” models, the secondary regulator (SR)
represents DRn-induced changes of a transcription factor, miRNA, or
other mediator from its original baseline. Equations reflecting these
joint effects are

dSR
dt

5kSR×ðDRn 2SRÞ (18)

dmRNA
dt

5ks;mRNA×ð11SmRNA
DRn

×DRnÞ
2 kd;mRNA×ð11SmRNA

SR ×SRÞ×mRNA
(19)

Fig. 1. General schematic of molecular and cellular mechanisms of corticosteroid action regulating mRNA and protein expression. CBG, corticosteroid-
binding globulin; hsp 70/90, heat shock protein 70/90; FKBP, FK506 binding protein; nGRE, negative-glucocorticoid response element; RNAP, RNA
polymerase.
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dProtein
dt

5 ks;protein×ðmRNAÞg 2kd;protein×Protein (20)

where SmRNA
DRn

is a linear stimulation constant by which DRn

increases the synthesis of the target mRNA. The intermediate step
SR is described in a simplified manner using a linear transduction
model (Sun and Jusko, 1998). The SR variable represents the
absolute change of regulator level from baseline produced by DRn

via a first-order rate constant (kSR). The initial condition of eq. (18)
was fixed to 0.

Model D (Fig. 2D) assumes a combinatorial effect of bothDRn and SR
on the synthesis of mRNA, where DRn inhibits gene transcription,
whereas SR stimulates the same. This model is given by the equations

dmRNA
dt

5ks;mRNA×

 
12

DRn

DRn 1 ICDRn
50;mRNA

1SmRNA
SR ×SR

!

2kd;mRNA×mRNA

(21)

dProtein
dt

5 ks;protein×ðmRNAÞg 2kd;protein×Protein (22)

where the SR is described by eq. (18).
Model E (Fig. 2E) describes the inhibition of gene transcription by

DRn occurring in combination with repressedmRNA degradation by a
secondary regulator, given by the equations

dmRNA
dt

5ks;mRNA×

 
12

DRn

DRn 1 ICDRn
50;mRNA

!

2kd;mRNA×

 
12

SR
SR1 ICSR

50;mRNA

!
×mRNA

(23)

dProtein
dt

5 ks;protein×ðmRNAÞg 2kd;protein×Protein (24)

where the SR is described by eq. (18) and ICSR
50;mRNA is the concentra-

tion of SR when the inhibitory effect of SR on themRNA reaches half
of its maximum.

Model F (Fig. 2F) characterizes genes which show opposite pat-
terns in their mRNA and protein expression. This model assumes an

inhibition of mRNA synthesis by DRn, in combination with inhibition
of protein degradation mediated by DR, represented as

dmRNA
dt

5ks;mRNA×

 
12

DRn

DRn 1 ICDRn
50;mRNA

!
2 kd;mRNA×mRNA (25)

dDR*

dt
5 kt×ðDR2DR*Þ (26)

dProtein
dt

5ks;protein×ðmRNAÞg

2kd;protein×

 
12

DR*

DR* 1 ICDR*

50;protein

!
×Protein

(27)

where the DR* represents the activated intracellular receptor
interacting with protein and ICDR*

50;protein is the concentration of DR*

at which the inhibitory effect of DR* on a target protein reaches
half maximum.

Data Analysis

Data taken from individual rats (n 5 2–4 per time point) were
pooled at each time. Mean mRNA and protein time profiles for each
gene were modeled simultaneously. Mean transcriptomic and proteo-
mic data were employed for model fitting for practical ease and
feasibility in data handling. The ADAPT 5 software was used for all
data fitting and simulation ofmodel equations (D’Argenio et al., 2009).
The maximum likelihood method was applied for fitting the data. The
variance model specified was:

Vi 5Vðu;s; tÞ5 ½s1×Yðu; tiÞ�s2

where Vi is the variance of the ith data point, s1 and s2 are the
variance parameters, and Yi is the model-predicted concentration or
response. Variance parameters s1 and s2 were estimated along with
model parameters during fittings. The goodness-of-fit was assessed by
system convergence, visual inspection of the fitted curves, objective
function values such as Akaike Information Criterion (AIC), improved
likelihood, examination of residuals, and precision (%CV) of the
estimated parameters.

Fig. 2. Pharmacogenomic models for CS effects onmRNA and protein expression via diverse mechanisms. (A–F)Models A to F are defined further in the
text [eqs. (14–27)]. The dotted lines and rectangles indicate stimulation (open bar) and inhibition (solid bar) of the various processes via indirect
mechanisms.
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Results
Clustering and Gene Ontology Analysis

The temporal profiles of MPL-regulated transcriptomics
and proteomics are shown in Fig. 3. Time-course data for
163 common genes that were available from both transcrip-
tomic and proteomic data sets were concatenated and hierar-
chically clustered as described previously (Kamisoglu et al.,
2015). Functional description and discussion of the proteomic
data has been reported (Ayyar et al., 2017). On the basis of the
analysis, cluster 1 was populated with 80 genes for which
corresponding mRNA and protein expression profiles were
essentially parallel in direction, whereas for 83 genes in
cluster 2 the directionality between mRNA and protein was
reversed (Fig. 3). The collective dynamics of the mRNA in
cluster 1 revealed peak expression around 4–8 hours after
MPL, whereas the proteins in the same cluster peaked around
8 hours after dosing. Conversely, mRNA in cluster 2 were
down-regulated by about 45% between 4 and 8 hours, and
several corresponding proteins peaked around 6–8 hours.
Quality-threshold clustering of both up- and down-

regulated proteins was performed, by which proteins with
highly similar temporal profiles were clustered (Fig. 4A).
Coregulatory mechanisms for proteins within the same clus-
ter were evaluated on the basis of a common transcription
factor identification strategy, as employed previously in
analyzing CS-induced mRNA expression (Jin et al., 2003;
Nguyen et al., 2010). The common transcription factors of the
clusters, extracted using the IPA package, are shown in

Fig. 4A. Links between CS and identified transcription factors
are supported by previous reports. For example, hepatocyte
nuclear factor-4a (HNF-4a) plays a crucial role in the tran-
scriptional regulation of hepatic gluconeogenesis (Suh and
Rechler, 1997). HNF-4a interacts with the GR andmay inhibit
CS-enhanced transcription involved in liver glucose metabo-
lism (Pierreux et al., 1999; Yamamoto et al., 2004). Nuclear
factor (erythroid-derived 2)-like 2, NFE2L2, is a key tran-
scription factor regulating detoxifying enzymes and antioxi-
dant genes involved in hepatic drug metabolism (Kratschmar
et al., 2012). Among the common transcription factors in-
volved only in down-regulation, SWI/SN-related regulator of
chromatin (SMARCB1) is responsible for the nucleosome
disruption that may lead to repressing basal transcription of
a number of genes (Ostlund Farrants et al., 1997). The CS are
known to stimulate the nucleosome-disrupting activity for the
SWI/SN complex (Ostlund Farrants et al., 1997).
Glucocorticoid-induced regulation of miRNA expression as

well as the miRNA-mediated regulation of glucocorticoid-
inducible genes have been documented. The MPL-regulated
genes from Fig. 3 were analyzed for experimentally validated
interactions with specific miRNAs using miRTarBase (Chou
et al., 2018). As depicted in Fig. 4B, 20 genes were found to
interact with at least one miRNA in murine or rodent models.
From a total of 25 interacting miRNAs, the expression of
16were reported to be altered by glucocorticoids either in vitro
or in vivo (Fig. 4B; Supplemental Table 1). For example, miR-
155 was shown to increase by 2.4-fold in preadipocytes upon

Fig. 3. Changes in mRNA and corresponding protein expression of CS-responsive genes in liver as a function of time after 50-mg/kg intravenous and
intramuscular injections of MPL in ADX rats. Each green (mRNA) and yellow (protein) line represents connection of mean values for one gene or protein
from two to four animals at each time point. Each solid pink and blue line depict the mean profile of all mRNAs and proteins within each cluster.
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Fig. 4. Representative temporal clusters of drug-altered proteins (A). Four quality-threshold up-regulated protein clusters, one down-regulated protein
cluster, and the main common contributing transcription factors to those protein clusters are shown. Interaction network for microRNA and drug-
responsive target genes (B). Yellow boxes represent specific microRNA, and green boxes depict target genes. The blue asterisks on yellow boxes denote
glucocorticoid-regulated microRNAs.
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dexamethasone treatment (Peshdary and Atlas, 2018). The
miR-210 is up-regulated by hypoxia in an HNF-1a-dependent
manner in cardiomyocytes (Martinez et al., 2017). Of interest,
HNF-1a was identified as an important coregulatory tran-
scription factor for MPL actions (Fig. 4A), suggesting possibly
intertwined mechanisms of gene regulation.

Pharmacokinetics and Receptor Dynamics

The pharmacokinetics of MPL for both intramuscular and
intravenous studies were simulated using previously esti-
mated parameters (Ayyar et al., 2018). The simulated curves
shown reflect biexponential disposition ofMPL (Supplemental
Fig. 1). The parameter values are listed (Supplemental
Table 2). The receptor mRNA, free cytosolic receptors, and
the nuclear drug-receptor complex concentrations, which
serves as the driving force for MPL actions, were simulated
(Supplemental Fig. 1) using parameter values obtained from a
previous report (Hazra et al., 2007a). Parameter values are
provided (Supplemental Table 2).

Pharmacogenomics and Proteomics

Model A. In total, 32 mRNA and their corresponding
proteins were well captured by model A, assuming induced

transcription by DRn, suggesting that all these genes are
regulated by CS via similar mechanisms. Figure 5 shows
representative fittings of 16 genes that were well described by
model A. Genes described by this model included prototypic
hepatic biomarkers of CS, including tyrosine aminotransfer-
ase (Tat), cytosolic aspartate aminotransferase (Got1), and
tryptophan 2,3-dioxygenase (Tdo2). The peak of enhancement
for themRNAof these genes (5 hours) exhibited amarked time
shift compared with the profile of the driving force DRn

(Supplemental Fig. 1; peak at 2.2 hours), whereas their
associated protein peaked at later times (8 hours and beyond).
Table 1 lists the estimated parameters for all 64 mRNA and
proteins described by model A. The mRNA and protein
degradation rate constants (kd,mRNA and kd,protein) repre-
sents the drug-independent property of the physiologic sys-
tem. The kd,mRNA exhibited a limited range between 0.08 and
0.8 hours21, indicating that these mRNA have similar stabil-
ity, with half-lives ranging from 1 to 8 hours. The estimated
kd,protein varied to a greater extent, ranging from 0.008 to
1.5 hours21, indicating a greater diversity in protein stability,
with half-lives ranging from about 0.5 to 86 hours. The linear
stimulation factor represents the drug-specific property of
the message. The limited range of SmRNA

DRn
estimates from

Fig. 5. Representative fittings of genes described by model A. Solid circles are the mean gene array data, and the open circles depict the mean protein
data. Solid lines are fittings for each mRNA and dashed line for each protein after MPL. Estimated parameter values for each mRNA and protein are
listed in Table 1.
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0.001 to 0.008 (fmol/mg protein)21 implies that the transcrip-
tional machineries of these genes have similar sensitivity to
CS action. The estimated g coefficient describing the efficiency
of mRNA-to-protein translation showed a mean estimated
value of 1.7, indicating amodest difference in themagnitude of
protein enhancement from mRNA.
Model B. Seven expressed genes were described reason-

ably well by model B assuming an inhibition on the mRNA.
Figure 6 shows representative fittings of four genes that were
captured by model B. Included within this group are such
genes as Mug-1/2 and Cyp2c18 that have been reported
previously to be down-regulated by steroids (Northemann
et al., 1989; de Morais et al., 1993). Table 2 lists the estimated
parameters for the mRNA and proteins described by model B.
In general, message expression for the genes in this group
were down-regulated by 30%–50%, reaching a nadir around
6–8 hours after dosing, which can be attributed to similar
kd,mRNA values. Protein expression was down-regulated in
accordance with the time course of mRNA but showed a
delayed nadir around 20 hours. This may be explained by the
longer half-lives for proteins compared with their mRNA
(around 21 hours). The ICDRn

50;mRNA of the transcripts described
by model B ranged from 130 to 780 fmol/mg protein.
Model C. In total, eight expressed genes were well cap-

tured by model C. The mRNA and proteins described by this
model showed rapid increases after MPL, followed by an
immediate decline below baseline, an acute tolerance/rebound
phenomenon. Both mRNA and protein returned to baseline
beyond 30 hours. Model C assumed an initial enhancement

produced by the transcriptional control of MPL via DRn,
whereas the hypothetical secondary regulator SR produced
by linear transduction was responsible for the decrease in
mRNA, which explained the acute tolerance phenomenon.
Figure 7 depicts representative fittings of six genes that were
captured by model C. The estimated parameters for the
mRNA and proteins described by model C are provided in
Table 3. The mean estimated kd,mRNA of 0.37 hours21 within
this group was like that estimated for mRNA described by
model A (0.31 hours21), and the kd,protein values for most
proteins within this cluster ranged between 0.01 and 0.6
hours21. The mean degradation rate constant for the second-
ary regulator (kSR), excluding that forRnp2, was 0.11 hours21,
which is slightly slower compared with the first-order con-
stants for target mRNA. The Rnp2 gene displayed a distinct
profile with mRNA and protein peaking slightly earlier than
the DRn (not shown), which explains the much faster rate
constants kSR and kd,protein for Rnp2. Both SmRNA

DRn
and SmRNA

SR
averaged about 0.008 (fmol/mg protein)21, which is compara-
ble to the sensitivity constants for genes described bymodel A.
Models D and E. Some genes in cluster 1 showed a fast

and prolonged decline in mRNA followed by a further delayed
sustained induction. Their corresponding proteins showed
either modest early decreases or remained unchanged before
increasing above baseline. This pattern suggests that, as with
genes described by model C, two mechanisms might be
involved in CS action. To describe the observed patterns,
various models were tested, including two competing models
(modelsD andE) developed by Jin et al. (2003) to describe such

TABLE 1
Pharmacodynamic parameters for genes fitted by model A

No. Gene Name Symbol
kd,mRNA SDRn(mRNA) kd,protein g

Estimate %CV Estimate %CV Estimate %CV Estimate %CV

h–1 fmol/mg h–1

1 26S Proteasome regulatory subunit 8 Pscm5 0.24 66 0.001 45 0.54 122 1.4 43
2 40S Ribosomal protein S5 Rs5 0.33 66 0.001 40 1.1 159 1.9 33
3 40S Ribosomal protein S7 Rs7 0.16 55 0.001 38 1.2 156 2.4 28
4 60S Ribosomal protein l23a Rl23a 0.09 54 0.003 49 0.35 218 0.5 78
5 60S Ribosomal protein L3 Rl3 0.17 59 0.001 43 0.65 120 1.9 31
6 ADP ribosylation factor 4 Arf4 0.82 30 0.002 18 0.32 51 1.0 Fixed
7 Argininosuccinate lyase Asl 0.74 30 0.003 19 0.05 141 0.7 105
8 Argininosuccinate synthase 1 Ass1 0.06 40 0.008 42 0.027 61 3.3 34
9 Aspartate aminotransferase Got1 0.34 37 0.006 14 0.024 57 2.1 21

10 Aspartate–tRNA ligase, cytoplasmic Sdac 0.49 52 0.001 26 0.10 45 3.8 28
11 Aspartyl-tRNA Synthetase Dars 0.37 60 0.001 33 0.81 123 1.6 36
12 CCAAT-binding transcription factor i Ybx1 0.07 34 0.005 32 0.1 54 1.5 27
13 Cytochrome P450 27A1 Cyp27a1 0.12 48 0.002 38 0.58 98 1.0 28
14 Cytochrome P450 reductase Por 0.11 32 0.008 30 0.036 55 1.8 31
15 Galectin-9 Leg9 0.07 30 0.007 30 0.019 57 3.9 28
16 Heat Shock 70 kDa protein 5 Hspa5 0.90 42 0.001 15 0.3 Fixed 0.4 53
17 Heat shock cognate 71 kDa protein Hspa8 0.19 50 0.002 35 0.04 97 1.5 60
18 Heat shock protein d (hsp60) 1 Hspd1 0.10 38 0.003 32 0.06 98 0.7 67
19 Karyopherin subunit beta 1 Kpnb1 0.20 31 0.003 24 0.3 Fixed 0.6 36
20 NADPH:P450 oxidoreductase Ncpr 0.10 38 0.007 26 0.045 56 1.7 27
21 Nucleolin Ncl 0.40 38 0.004 17 0.06 44 1.0 Fixed
22 Nucleophosmin Npm 0.28 29 0.006 10 0.041 51 1.4 21
23 Oligosaccharyltransferase subunit 48 Ddost 0.46 37 0.001 21 0.3 Fixed 1.0 Fixed
24 Phosphoglucomutase-1 Pgm1 1.56 37 0.002 16 0.3 Fixed 0.2 59
25 Proteasome 26S subunit, ATPase 2 Psmc2 0.27 43 0.002 27 0.10 183 0.7 107
26 Ribosomal protein l4 Rpl4 0.20 50 0.001 32 0.07 61 2.1 35
27 Signal activator of transcription 3 Stat3 0.33 24 0.005 11 0.12 22 1.9 9.3
28 Tryptophan di-oxygenase Tdo2 0.16 25 0.004 21 1.5 65 2.0 15
29 Tubulin alpha 1 Tuba1c 0.09 49 0.004 45 0.3 Fixed 0.2 175
30 Tubulin beta 4b class iv Tubb4b 0.07 43 0.004 41 0.023 123 1.8 84
31 Tudor domain-containing protein 11 Snd1 0.14 54 0.001 40 0.031 96 2.3 64
32 Tyrosine aminotransferase Tat 0.26 55 0.002 34 0.17 50 5.0 26
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transcript patterns. Model D assumed repressed transcription
by DRn followed by an enhanced transcription that was
mediated by a steroid-enhanced SR. Model E assumed an
inhibition of mRNA synthesis by DRn and an inhibition of
mRNA degradation by the steroid-enhanced regulator SR.
Figure 8 depicts representative fittings of four genes that were
described by models D and E. On the basis of the goodness-of-
fit and the precision of the estimated parameters, model E
performed better than model D in capturing the mRNA and
proteins. The estimated parameters for the mRNA and
proteins described by models D and E are provided in Tables
4 and 5. Some parameter estimates were associated with
relatively high %CV, especially for model D, implying that the
models might be somewhat overparameterized. Like findings
by Jin et al., mRNA described bymodel E yielded high kd,mRNA

estimates ranging from 1.1 to 3 hours21, suggesting that the
messages may have relatively low stability with half-lives

ranging from 15 to 45 minutes. Furthermore, the steep
initial slopes of mRNA down-regulation in this cluster can
be attributed to the high kd,mRNA values. The generally low
ICSR

50;mRNA for genes fitted by model E implied that the
transcriptional machineries of these genes are sensitive to CS
repression. The low kd,protein values, averaging 0.031 hours21,
indicates ameanhalf-life of about 23 hours,which suggests that
these proteins are quite stable. The slower degradation kinetics
of these proteins also explain their shallower, prolonged
temporal profiles.
Model F. A significant number of genes in cluster 2 (Fig. 3)

showed atypical profiles: Transcripts and proteins changed
in opposite directions. In particular, several genes within
this cluster displayed a time-dependent down-regulation of
mRNA (characteristic of genes described by model B) but an
up-regulation in corresponding protein expression. Some of
the proteins returned to baseline, whereas others displayed

Fig. 6. Representative fittings of genes described by model B. Solid circles are the mean gene array data, and the open circles depict the mean protein
data. Solid lines are fittings for each mRNA and dashed line for each protein after MPL. Estimated parameter values for each mRNA and protein are
listed in Table 2.

TABLE 2
Pharmacodynamic parameters for genes fitted by model B

No. Gene Name Symbol
kd,mRNA IC50, DRn(mRNA) kd,protein g

Estimate %CV Estimate %CV Estimate %CV Estimate %CV

h21 fmol/mg h21

1 Alanine–glyoxylate aminotransferase 2 Agxt2 0.13 15 130.7 28 0.074 36 1.0 Fixed
2 Aldehyde dehydrogenase 1A7 Aldh1a7 0.50 85 622.0 46 0.3 Fixed 1.0 Fixed
3 Amine oxidase A Maoa 0.90 18 587.2 7 0.013 63 1.0 Fixed
4 Carboxylesterase 1E Ces1e 0.41 33 272.8 25 0.033 31 5.0 Fixed
5 Cytochrome P450 2C18 Cyp2c18 0.50 Fixed 416.8 17 0.018 43 5.0 Fixed
6 Glutathione peroxidase 1 Gpx1 1.50 50 779.4 21 0.020 88 1.1 7
7 Murinoglobulin-1 Mug1/2 0.24 27 164.6 34 0.038 35 5.0 Fixed
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biphasic regulation. To describe this pattern, model F as-
sumed an inhibition of mRNA production by DRn in conjunc-
tion with a secondary, DR-mediated process inhibiting the
rate of target protein degradation. The basis of this putative
nongenomic, post-translational model of CS action is a re-
cently identified molecular mechanism mediated by dexa-
methasone (Kong et al., 2017). The mRNA and protein
expressions of 10 mRNA and their corresponding proteins
were well described by this model. Figure 9 depicts the fittings
of six representative genes. ThemRNAwithin this group were
down-regulated to nadir by 3 to 4 hours after MPL, whereas
protein expression peaked around 5 to 6 hours post-dosing.
The estimated parameters for the genes described by model F
are listed in Table 6. The system parameters kd,mRNA and
kd,protein averaged around 0.9 and 0.3 hours21, indicating
quicker turnover of message compared with protein. The

mean ICDRn
50;mRNA of the mRNA captured by this model was

459 fmol/mg protein, quite like that for mRNA described by
model B (425 fmol/mg protein). To reduce the overall number
of estimated parameters, the rate constant for DR to interact
with protein was assumed to be equal to the nuclear trans-
location rate constant of DR (kt). The cytoplasmic concentra-
tions of DR* peaked sharply around 25 minutes (∼4.5 fmol/mg
protein) after MPL, and returned to baseline by 12 hours (not
shown). The estimated ICDR*

50;protein for the target proteins
described by this model ranged from 0.06 to 2 fmol/mg protein.

Discussion
This report examined the temporal relationships between the

liver transcriptome and proteome following MPL dosing and
used pharmacokinetic/pharmacodynamic systems modeling to

Fig. 7. Representative fittings of genes described by model C. Solid circles are the mean gene array data, and the open circles depict the mean protein
data. Solid lines are fittings for each mRNA and dashed line for each protein after MPL. Estimated parameter values for each mRNA and protein are
listed in Table 3.

TABLE 3
Pharmacodynamic parameters for genes fitted by model C

No. Gene Name Symbol
kSR SSR(mRNA) kd,mRNA SDRn(mRNA) kd,protein g

Est %CV Est %CV Est %CV Est %CV Est %CV Est %CV

h21 (fmol/mg)21 h21 (fmol/mg)21 h21

1 Chaperonin containing
TCP1 subunit 3

Cct3 0.01 174 0.022 97 0.1 70 0.005 51 0.66 165 0.3 43

2 Eukaryotic translation
initiation factor 4A2

Eif4a2 0.06 73 0.006 45 0.2 63 0.004 51 0.042 51 2.1 32

3 Heterogeneous nuclear
ribonucleoprotein A/B

Hnrnpab 0.21 50 0.019 191 0.03 182 0.025 191 3.8 380 0.4 33

4 Polypyrimidine tract-binding
protein 1

Ptbp1 0.18 98 0.002 37 0.3 - 0.002 50 0.65 113 1.7 37

5 PAPS synthase 2 Papss2 0.18 47 0.005 Fixed 0.5 28 0.007 27 0.24 68 0.7 39
6 Ribonuclease P protein Rnp2 3.04 27 0.086 107 0.04 107 0.106 106 2.6 69 1.0 Fixed
7 RNA-binding protein 8A Tars 0.09 83 0.003 44 1.4 52 0.003 31 0.28 111 0.5 50
8 UDP-glucose 6-dehydrogenase Ugdh 0.05 92 0.004 64 0.4 80 0.002 49 0.012 74 6.8 64

Est, estimate.
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assess CS pharmacogenomics at the mRNA and protein
levels in livers harvested from intact animals. This area
has been of general interest in molecular and systems
pharmacology, as protein expression is often cited as being
more complementary to drug efficacy and toxicity than is
mRNA expression. Our previous studies using microarrays
provided the basis to model the possible receptor-mediated
mechanisms controlling the time course of several mRNAs
(Jin et al., 2003). Together, our bioinformatics (Kamisoglu
et al., 2015) and current model-based analysis indicate that
transcript expression recapitulated protein dynamics for
approximately 45%–50% of the genes for which both transcript
and protein information were available within the –omics
data sets. The present models serve to provide mechanistic
hypotheses on how mRNA and protein turnover are con-
trolled by primary and secondary drug effects occurring
during transcriptional, post-transcriptional, translational,
and post-translational processing. These models confirm
known mechanisms at both mRNA and protein levels for
some of the genes studied, but in some cases represent
possibilities with general molecular mechanisms as a
basis, and thus require further exploration with gene-
specific experiments.

Numerous factors affect the temporal profiles of drug-
responsive proteins, such as early receptor signaling, transcrip-
tional effects, and post-transcriptional factors, including
miRNA. Additionally, the kinetics of mRNA and protein
turnover also govern their temporal responses. Common
hepatic transcription factors such as HNF-4a, NFE2L2, and
SMARCB1 were posed as factors contributing to the common
temporal characteristics of the clusters (Fig. 4A). Of emerging
interest is the role of miRNAs as mediators of glucocorticoid
signaling and response (Clayton et al., 2018). On the basis of
this analysis, 20 genes were found to interact with at least
one miRNA in murine or rodent models. Additionally, the
expression of 16 interacting miRNAs were reported to be
glucocorticoid-regulated (Fig. 4B; Supplemental Table 1). Our
analysis is limited in that it considered studies that reported
glucocorticoid-dependent regulation ofmiRNAs across any type
of cell line and tissue (i.e., not liver-specific). However, these
findings provide some basis to warrant further investigation of
miRNAs as mediators in hepatic glucocorticoid actions.
A large group of genes that showed time-dependent in-

creases in transcript and protein expression were well cap-
tured bymodel A, which assumed a nuclear complex-mediated
stimulation of mRNA synthesis rate. Genes described by this

Fig. 8. Representative fittings of genes
described by models D and E. Solid circles
are the mean gene array data, and the
open circles depict the mean protein data.
Solid lines are fittings for eachmRNA and
dashed line for each protein after MPL.
Lines colored in blue are fits by model
D and black lines are fits by model
E. Estimated parameter values for each
mRNA and protein are listed in Table 4
(model D) and Table 5 (model E).

TABLE 4
Pharmacodynamic parameters for genes fitted by model D

No. Gene Name Symbol
kSR SSR(mRNA) kd,mRNA IC50, DRn(mRNA) kd,protein g

Est %CV Est %CV Est %CV Est %CV Est %CV Est %CV

h21 (fmol/mg)21 h21 fmol/mg h21

1 Adenosine kinase Adk 1.4 42 0.005 62 0.75 78 98.6 280 0.03 95 1.0 Fixed
2 Arginase 1 Arg1 0.04 40 0.017 54 1.2 52 100 Fixed 0.01 95 1.0 Fixed
3 Cystathionine-beta-synthase Cbs 0.22 49 0.005 113 0.5 164 139 540 0.08 68 1.4 43
4 Heat shock protein HSP 90b Hsp90ab 0.38 46 0.003 102 0.76 146 262 292 0.04 176 1.0 Fixed
5 Sulfotransferase 1A1 Sult1a1 0.07 36 0.01 28 1.2 63 64.6 280 0.05 94 1.0 Fixed

See eqs. (10), (14), and (18) for definition of parameters. Est, estimate.
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model included well studied biomarkers of CS such as
Tat, Got1, and Tdo2, as well as several genes related to
such cell regulatory processes as transcription and translation
(e.g., nucleolin and nucleophosmin). Enhancement of the
mRNAs and proteins of genes involved in amino acid break-
down, such as Tat, Got1, and Tdo2, by MPL can be confirmed
by the presence of at least one GRE sequence within each of
their promoter regions (Jantzen et al., 1987; Comings et al.,
1995; Garlatti et al., 1996). It was recently demonstrated that
hepatic cytochrome P450 reductase (Por) mRNA and protein
were modestly up-regulated following a single 1.5 mg/kg i.p.
dose of dexamethasone in rats (Hunter et al., 2017). This is
comparable to our findings. The similar magnitude of induc-
tion despite amuch lower dosewas possibly attributable to the
higher potency of dexamethasone compared with MPL.
Some genes exhibited a time-dependent down-regulation at

bothmRNAand protein levels afterMPL dosing. For example,
Mug-1/2mRNA and protein expression was reduced by about
50% in our studies, consistent with a previous report demon-
strating transient down-regulation in Mug-1/2 mRNA at
4 hours after a 4-mg/kg dexamethasone injection in rats

(Northemann et al., 1989). The mechanism for the direct,
receptor-mediated down-regulation of Cyp2c18 mRNA by
MPL is supported by the presence of GREswithin its sequence
(de Morais et al., 1993). In contrast with our microarray data
set, a relatively lower proportion of down-regulated proteins
were mined from the proteomics data set. This could be
because low-abundance proteins were not detectable, espe-
cially upon down-regulation by MPL. Furthermore, some
proteins may not have met cut-off criteria during mining
(e.g., quantification at all time points).
Models involving primary and secondarily induced mecha-

nisms of actions were needed to describe select genes that
showed more complex biphasic temporal patterns. For in-
stance, the polypyrimidine tract binding protein 1 (Ptbp1)
gene showed a profile in which its mRNA and protein were
enhanced but then fell below baseline before returning to
steady-state. As indicated by our miRNA analysis, miR-124
interacts with Ptbp1. The miRNA-dependent regulation of
genes can occur through endonucleic cleavage of the target
mRNA upon it base-pairing with the miRNA (Valencia-
Sanchez et al., 2006). In addition, the expression of miR-124

TABLE 5
Pharmacodynamic parameters for genes fitted by model E

No. Gene Name Symbol
kSR IC50, SR(mRNA) kd,mRNA IC50, DRn(mRNA) kd,protein g

Est %CV Est %CV Est %CV Est %CV Est %CV Est %CV

h21 fmol/mg h21 fmol/mg h21

1 Adenosine kinase Adk 0.32 94 154.6 75 1.4 42 369.2 120 0.02 116 1.0 Fixed
2 Arginase 1 Arg1 0.14 76 76.3 47 2.8 35 162.0 79 0.01 93 1.0 Fixed
3 Cystathionine-beta-synthase Cbs 0.19 71 191.5 31 1.1 69 799.6 79 0.1 73 1.5 46
4 Heat shock protein HSP 90-beta Hsp90ab1 0.07 72 274.0 52 2.1 207 4063 135 0.04 115 1.0 Fixed
5 Sulfotransferase 1A1 Sult1a1 0.17 43 54.0 39 2.4 19 154.7 55 0.03 47 1.0 Fixed

Est, estimate.

Fig. 9. Representative fittings of genes described by models F. Solid circles are the mean gene array data, and the open circles depict the mean protein
data. Solid lines are fittings for each mRNA and dashed line for each protein after MPL. Estimated parameter values for each mRNA and protein are
listed in Table 6 (model F).
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can be induced by endogenous and exogenous glucocorticoids
(Clayton et al., 2018). In summary, CS induces the expression
of a regulator (miR-124) that mediates the destabilization of a
primary gene (Ptbp1), secondary to the enhancement of Ptbp1
mRNA by CS. Although these molecular mechanisms have
been elucidated primarily in neuronal systems (Makeyev
et al., 2007), this mechanistic hypothesis is testable through
measurement of miR-124 dynamics in liver, where expression
of this miRNA has been confirmed (Liu et al., 2016a). Two
other genes with evidence for secondary regulation by tran-
scription factors are arginase 1 (Arg-1) and sulfotransferase
1A1 (Sult1a1), which are regulated by C/EBP (Gotoh et al.,
1997; Jin et al., 2003) and the constitutive androgen receptor
(CAR) (Duanmu et al., 2001; Fang et al., 2003).
Most genes in cluster 2 displayed patterns with down-

regulated mRNA and up-regulated proteins. Our understand-
ing of the biology and mechanisms behind this observation is
limited. However, recent studies in macrophages by Kong
et al. (2017) have provided key insights into a novel post-
translational mechanism of glucocorticoid signaling. They
demonstrated that dexamethasone-activated GR acts in a
rapid, transcription-independent manner to interact with an
inflammation-related cytoplasmic protein IRAK1 and thus
interferes with protein-protein interactions between IRAK1
and b-TrCP (an E3 ligase), and subsequently suppresses K48
linkage-specific ubiquitination of IRAK1. In essence, the
cytosolic drug-receptor complex rapidly acts to inhibit the
degradation rate of IRAK1, and possibly other target proteins
in a like manner, via inhibition of the ubiquitin-mediated
proteasomal degradation of proteins. This formed the mech-
anistic basis for our mathematical model (model F) that
captured several cluster 2 genes reasonably well. However,
more detailed in vitro experiments in hepatocyte systems,
possibly similar to those conducted by Kong, are necessary to
validate the applicability of this model to describe specific
genes.
Although the literature confirms that CS alters expression

of many mRNAs and proteins that we observed, it is some-
times difficult to compare our results with previous work,
especially for the genes with biphasic patterns found to be
regulated differently at different times. Questions of drug,
dose, time, in vitro/in vivo differences, and quantification
methods arise (Jin et al., 2003). An extensive comparative
analysis of our -omics data sets to those reported by others is

also challenging, as most have investigated transcriptomics or
proteomics at single time points after dosing. Nonetheless,
changes in Tat protein were validated with measurements of
enzyme activity in the same animals (Ayyar et al., 2018), and
the pathways perturbed within our transcriptomic and pro-
teomic data sets are, in terms of function, in agreement with
recognized adverse and therapeutic effects of CS (Ayyar
et al., 2017).
In this analysis, we modeled simultaneously the mRNA and

protein dynamics corresponding to individual genes. The
estimated rate and effect parameters for hypothetical regula-
tors may represent a composite of multiple steps in the
absence of the true biologic mediators. Further integrated
models incorporating RNA-protein, protein-protein, and
protein-DNA interactions and their inter-regulation will pro-
vide additional insights into signaling networks at molecular,
cellular, and systemic levels. This type of approach was
adopted in a more focused modeling analysis that integrated
selected signaling pathways with physiologic PD endpoints of
MPL efficacy and toxicity (Ayyar et al., 2018). The present
models serve to analyze the time course of CS-regulated
transcriptomics and proteomics as a whole to provide hypoth-
eses on howmRNAand protein turnover is controlled by direct
and secondary factors.
In addition to the technical limitations with use of micro-

arrays (Jin et al., 2003), this study was limited by technical
factors such as sensitivity limits in our proteomics methodol-
ogy, use of nonperfused versus perfused livers for our tran-
scriptomics versus proteomics animal studies, and limitations
in the sensitivity of clustering analysis. Male ADX rats were
used in our experiments to obviate endogenous effects of
corticosterone, which could have altered the natural physio-
logic response to CS. Transcriptomics and proteomics were
assessed at a single dose of MPL, which obliged use of linear
stimulation constants instead of more appropriate nonlinear
Hill-type functions. It has been recognized that chronic MPL
dosing introduces added complexities in pharmacogenomic
responses (Hazra et al., 2008). Certain parameters are
associated with relatively high %CV, especially for describing
genes with more complicated behaviors, suggestive of model
overparameterization. This issue was limited when possible
by fixing parameters to physiologically plausible values. For
six genes (five described by model A and one by model
B) yielding poor precision on kd, protein, values were fixed to

TABLE 6
Pharmacodynamic parameters for genes fitted by model F

No. Gene Name Symbol
IC50DR*(protein) kd,mRNA IC50, DRn(mRNA) kd,protein

Est %CV Est %CV Est %CV Est %CV

fmol/mg h21 fmol/mg h21

1 17b-Hydroxysteroid dehydrogenase type II Hsd17b2 0.056 82 0.31 9 8.9 35 0.35 42
2 Acetyl-coenzyme A

acyltransferase 2
Acaa2 2 48 0.26 52 508.2 43 0.34 53

3 Acyl-CoA dehydrogenase long chain Acadl 1.1 37 0.96 41 729.1 25 0.33 41
4 Alcohol dehydrogenase 4 Adh4 1.3 62 0.59 49 543.9 31 0.24 67
5 Aldehyde dehydrogenase 3 member A2 Aldh3a2 0.54 74 0.98 34 368 22 0.1 84
6 Cytochrome P450 2A12 Cyp2a12 0.7 33 0.61 22 280.8 15 0.28 36
7 Cytochrome P450 2C40 Cyp2c40 0.72 29 1.3 58 971.3 24 0.52 30
8 Glutathione S-transferase A3 Gsta3 0.93 41 0.17 28 267.9 37 0.21 32
9 Isocitrate dehydrogenase 1 Idh1 0.63 91 0.87 17 66.7 13 0.2 92
10 Nucleotide pyrophosphatase 1 Enpp1 0.33 30 2.5 47 845.7 25 0.45 22

Est, estimate.
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0.3 hours21, which is the mean of all kd, protein values obtained
for all other genes in cluster A that were estimated with
reasonable precision by model fitting. The reasons for
selecting the current high dose employed (50 mg/kg) were: 1)
In conducting -omics assessments, it was our aim to evoke the
largest number of changes of expressed transcripts and
proteins possible within the tissue, and 2) we aimed to perturb
drug-regulated mRNA and proteins toward a system-capacity
from their baseline, which would allow for better resolution of
their temporal properties, and consequently aid our modeling
efforts.
In summary, we employedmicroarray technologywithmass

spectroscopy-based proteomics methods to jointly analyze
temporal changes in steroid-regulated genes and proteins to
evaluate underlying pharmacogenomic processes and to
evolve our generalized mathematical models of receptor/
gene/protein dynamics. This enhances our understanding on
the global actions of CS in liver and provides some insights
into how gene expression is controlled by turnover at various
steps.
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