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Abstract

Current fMRI data modeling techniques such as Independent Component Analysis (ICA) and 

Sparse Coding methods can effectively reconstruct dozens or hundreds of concurrent interacting 

functional brain networks simultaneously from the whole brain fMRI signals. However, such 
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reconstructed networks have no correspondences across different subjects. Thus, automatic, 

effective and accurate classification and recognition of these large numbers of fMRI-derived 

functional brain networks are very important for subsequent steps of functional brain analysis in 

cognitive and clinical neuroscience applications. However, this task is still a challenging and open 

problem due to the tremendous variability of various types of functional brain networks and the 

presence of various sources of noises. In recognition of the fact that convolutional neural networks 

(CNN) has superior capability of representing spatial patterns with huge variability and dealing 

with large noises, in this paper, we design, apply and evaluate a deep 3D CNN framework for 

automatic, effective and accurate classification and recognition of large number of functional brain 

networks reconstructed by sparse representation of whole-brain fMRI signals. Our extensive 

experimental results based on the Human Connectome Project (HCP) fMRI data showed that the 

proposed deep 3D CNN can effectively and robustly perform functional networks classification 

and recognition tasks, while maintaining a high tolerance for mistakenly labelled training 

instances. Our work provides a new deep learning approach for modeling functional connectomes 

based on fMRI data.
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I. Introduction

Inferring functional brain networks from FMRI data has become a popular method to better 

understand human brain functions recently. Typically, dozens or hundreds of concurrent 

functional brain networks can be effectively and robustly reconstructed from whole brain 

functional magnetic resonance imaging FMRI data of an individual brain using independent 

component analysis ICA [1]–[5] or sparse representation [6]–[12]. For instance, by using the 

online dictionary learning and sparse coding algorithm [13], several hundred of concurrent 

functional brain networks, characterized by both temporal time series and spatial maps, can 

be decomposed from either task based FMRI (tFMRI or resting state FMRI (rsFMRI data of 

an individual brain [14 ]. Pooling and integrating the spatial maps of those functional 

networks from many brains can significantly advance our understanding of the regularity 

and variability of brain functions across individuals and populations [15]. For example, by 

clustering hundreds of thousands of functional brain networks from Autism Spectrum 

Disorder (ASD patients and healthy controls, our recent work identified 1 group-wisely 

common intrinsic connectivity networks (ICNs shared between ASD patients and healthy 

control subjects, where some ICNs are substantially different between the two groups [15]. 

Specifically, spatial map of the default mode networks ICN and fusiform gyrus activation 
ICN are found to have decreased connectivity in patient group than control group after 
statistical test. The atypical patterns of those ICN maps between two groups brought insight 
into the investigations of the spatial maps of the reconstructed networks from the original 
fMRI images. In general, quantitative mapping of spatial maps of functional networks across 

individuals and populations offers a very powerful way to understand the brain functions in 

healthy brains and their alterations in brain disorders [14], [16], [17].
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However, pooling and integration of spatial maps of functional networks across individuals 

and populations is not an easy task. Here, we briefly introduce our own experiences in 

attempting to accurately and robustly aggregate spatial network maps across multiple brains. 

In our earlier effort of developing the Holistic Atlases of Functional Networks and 

Interactions (HAFNI system [6], [11], [14], 23 task-invoked group wise consistent networks 

and 10 resting state networks were identified and confirmed by manual visual inspections, 

assisted by simple temporal and spatial similarity metrics such as Pearson correlations of 

time series and overlaps of spatial maps. Though this approach worked reasonably well for 

small scale studies, it is still very time-consuming, prone to inter-expert variability, less 

robust to variability and noises, and not able to scale up to large scale dataset. In another 

study [11], we proposed a statistical coefficient map (SCM) method to integrate multiple 

spatial maps across individuals and populations, which is essentially the statistical test of the 

network dictionaries’ coefficient distribution maps over the brain volume. Conceptually, the 

SCM has three key advantages including its simplicity, robustness to noises, comparability 

across subjects and groups, and reliability. However, the SCM methodology still relies on 

accurate registration and spatial alignment of those large scale spatial maps, which is still a 

very challenging and open problem. 0ore recently, we developed a novel spatial network 

descriptor of connectivity map [15] to facilitate effective clustering and recognition of 

spatial networks from individuals and populations. The basic idea is to unfold the spatial 

network pattern of volumetric voxels by projecting them to points on a unit sphere. Then, by 

sampling the distribution of points on the sphere, a 1-dimensional numerical vector can be 

obtained to describe the distribution pattern of the spatial map. Intuitively, the connectivity 

map model has the several advantages including its compactness, simplicity, fast computing 

speed, and insensitivity to small component changes. Though promising results have been 

achieved by using the connectivity map model [15], it is still not able to deal with the 

tremendous variability of various types of functional brain networks and the presence of 

various sources of noises due to the limited spatial pattern description ability of the model, 

which motivated us to explore novel methods to describe and represent spatial maps of 
fMRI-derived brain networks.

After several years of attempts at dealing with abovementioned challenges when integrating, 

pooling and comparing spatial network maps across individuals and populations, we realized 

that the major challenge is the lack of ability to effectively describe spatial volume maps of 

brain networks. As a result, developing a descriptive model that can sufficiently deal with 

spatial pattern variability of brain networks, as well as large noises, is the key towards 

automatic, effective and accurate classification and recognition of those large numbers of 

FMRI-derived functional brain networks. Previously, ICNs decomposed using ICA method 
have been investigated for removal of artifact-contaminated components, which is 
essentially a 2-class classification problem, and thus automated classification of ICA 
results are needed [18], including visual inspection [19], time courses and spatial template 
matching [20], and some advanced methods using machine learning schemes such as 
SVM [18]. Since our previous HAFNI work aimed to decompose many more networks 
than traditional methods like ICA, this automated network classification is much desired. 

Fortunately, plenty of recent studies in the deep learning field have demonstrated that 

convolutional neural network (CNN) [4], [21]–[27] has superior spatial pattern 
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representation ability, e.g., as shown in many visual object recognition tasks [22], [23], [28], 

high accuracy achieved using deep 3D CNN in human action recognition [29], and also great 
improvements in diagnosing using brain imaging data via deep learning strategies [30]. 

Inspired by the tremendous successes of CNNs in automated, accurate spatial object 

recognition and their excellent ability of spatial pattern description, we design and employ a 

3D CNN [31] framework for functional brain networks identification and recognition in this 

paper.

Specifically, in this paper, an effective 3D CNN framework with two convolutional layers, 

one pooling layer and one fully connected layer, was designed for functional network map 

recognition. Then more than 5000 manually labelled resting state networks (RSNs (1 labels 

for 10 RSNs for each of subject’s fMRI 1 resting-state and 7 task-based scan sessions) 

derived from our HAFNI project [6], [14] were utilized for training the deep 3D CNN. 

Afterwards, a series of experiments were performed to evaluate and compare the proposed 

3D CNN framework for automatic recognition of FMRI-derived spatial RSN maps. 

Extensive experimental results showed that our designed 3D CNN’s recognition accuracy is 

94.61%, substantially higher than the accuracy achieved by using traditional methods such 

as the overlap rate. Our work demonstrated the superior capability of 3D CNNs in dealing 

with various types of functional RSN maps. It is even surprising that 3D CNN can correct 

the wrongly labeled RSNs maps by human experts, significantly advancing the state-of-the-

art methods and results reported in previous studies. In general, our proposed deep 3D CNN 

framework exhibited great robustness and effectiveness in functional network identification 

and recognition, contributing a new deep learning approach for modeling functional 

connectomes based on fMRI data in cognitive and clinical neuroscience.

II. Materials And Methods

A. Experimental Dataset

The Human Connectome Project (HCP dataset is considered as a systematic and 

comprehensive mapping of connectome-scale functional networks and core nodes over a 

large population in the literature [32]. Based on HCP task based and resting state fMRI 

datasets, our HAFNI project [6], [14] has generated many robust task-evoked and resting 

state networks via whole brain sparse representation of fMRI data. Specifically, in this study, 

our experimental datasets are based on the 1 common RSNs reconstructed and labeled on 

HCP dataset in the HAFNI project [14].

To be self-contained, here we briefly introduce the HCP dataset, preprocessing steps, 

HAFNI and the generated common RSNs networks. In HAFNI, the Q1 release of HCP 

fMRI dataset were chosen for experiments, which contained 68 subjects with 7 tasks and 1 

resting state fMRI data. The acquisition parameters of tfMRI data are as follows:90×104 

matrix, 220 mm FOV, 72 slices, TR=0.72s, TE=33.1ms, flip angle = 52°, BW=2290 Hz Px, 

in plane FOV=208×180 mm,2.0 mm isotropic voxels [32]. The preprocessing pipelines for 

tfMRI data included skull removal, motion correction, slice time correction, spatial 

smoothing, global drift removal (high-pass filtering , all implemented by FSL FEAT. For the 

rsfMRI data, the acquisition parameters were as follows: 2×2×2 mm spatial resolution, 0.72 

s temporal resolution and 1200 time points. The pre-processing of rsfMRI data also include 
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skull removal, motion correction, slice time correction, spatial smoothing. 0ore details about 

acquisition parameters of rsfMRI data and preprocessing are referred to [33].

After preprocessing, dictionary learning and sparse coding techniques were exploited for 

functional brain networks reconstruction, as summarized in Fig. 1. The input for dictionary 

learning is a matrix X ∈ ℜt × n with t (number of time points rows and n columns containing 

normalized fMRI signals from n brain voxels of an individual subject. The output contains 

one learned dictionary D and a sparse coefficient matrix α ∈ ℜm × n, w.r.t, X =D × α + ε, 

where ε is the error term and m is the predefined dictionary size. Each row of the output 

coefficient matrix α was then mapped back to the brain volume space as a spatial map of 

functional brain network. According to [6], dictionary size was empirically set to for a 

comprehensive functional brain networks reconstruction. Each subject with 7 task-based and 
1 resting-state fMRI data is labelled using 10 RSN templates, making the total number of 
RSNs for 68 subjects 68*80=5440. Since some subjects have missing task-based fMRI data 
or fMRI-derived brain networks, the final number of the RSNs is 5275. The labeling process 
using 2D image visualization is shown in Supplemental Fig. 1. Even though the use of the 
2D image visualization will compromise the 3D pattern distribution in the manual 
distribution, using 48 informative slices 2D image is still more intuitive and faster than using 
the 3D overlap images. The reason is that experts need to examine the overlap information 
of the input map and the templates respectively, and generating the 3D images needs fine 
threshold tuning and would cost a huge amount of time for the whole labeling process 
(Supplemental Fig. 2). More importantly, our results showed that the mislabeled maps will 
be corrected by the proposed CNN structure. Thus 3D overlap visualization is only used 
when comparing the CNN prediction discrepancies with the original labels. All of the RSNs 

(5275 in total in the HCP Q1 dataset with manual labels of 1 RSNs are visualized at (http://

hafni.cs.uga.edu/finalizednetworks_Resting.html. Due to the spatial resolution of 2mm, the 

initial voxel dimension of one volume map is 91×109×91.In order to reduce computational 

burden, all of the functional RNSs maps were down sampled from the resolution of 

91×109×91 to 45×54×45.

B. Computational Frameworks

An fMRI oriented 3D CNN structure was designed for the problem of RSNs identification 

and recognition. The overall computational framework contains the two key steps, CNN 

training and testing (Fig. 2). Both training set and testing set were selected among the 5070 

manually labelled RSNs. Specifically,80% of the labelled data were randomly selected as the 

training set, while the remaining 20% were treated as the testing set. Detailed information of 

the training and testing RSNs is summarized in Table 1. In particular, balanced amount of 

dataset of each label for the training set was maintained to achieve a balanced training 

performance for each label [34].

C. 3D CNN Structure

Prior studies have shown that a hierarchy of useful features can be learnt from CNN deep 

learning models. Such learning models can be trained with either supervised or unsupervised 

approaches. However, many previous CNN-related researches are 2D-centric [35], which 

might not be optimal for 3D volumetric image representation and could potentially overlook 
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3D structure information like in our application scenario of 3D RSNs recognition. In this 

work, we adopt and improve an effective fully 3D CNN framework [31] to train 

convolutional neural networks that aim to classify and recognize RSNs reconstructed by 

dictionary learning and sparse coding methods. This powerful 3D convolutional architecture 

can well incorporate 3D structure information as intrinsic features, and effectively model the 

variability of the RSNs volume maps for classification and recognition, as demonstrated in 

the result section. Besides, the deep-layered nature of CNNs can effectively extract more 

abstract feature representation of the input RSN maps with deeper layers. These promising 

characteristics of 3D CNN make it suitable and ideal for automatic, effective and accurate 

classification and recognition of these large numbers of FMRI derived functional brain 

networks. The proposed 3D CNN structure is summarized in Fig. 3. The detailed 

information of each layer and training procedure will be explained in the following sections, 

respectively.

Convolutional layers: The convolutional layer of the CNN structure is denoted as 

C(f,d,s), where f is the number of filters or kernels, also the number of feature maps after 

filtering; d is the size of the 3D filter; s is the stride step. (ach convolutional layer is followed 

by a leaky rectified nonlinearity unit (ReLU) [36] with parameter 0.1, which is not shown in 

Fig. 3. for brevity. The initialization scheme of the convolutional layers was adopted from 

the methods in [27]. After the training stage, RSNs specific filters were obtained for all the 

convolutional layers, as shown in Fig. 4 and Fig. 5 for the purpose of visualization of filters 

in convolutional layer 1 and 2.

Notably, the input RSNs can be well represented using feature maps obtained by convolving 

with the well -trained filters. To demonstrate this point, an example of a default mode 

network (DMN) [37] as input is shown in Fig. 6 to illustrated the powerful feature extraction 

ability of the proposed 2 layered convolutional structure. Typically, DMN has 6 meaningful 

regions of interests (ROIs , which can be well captured through different perspectives after 

convolutional layers (due to limited number of slices selected for visualization, only 4 ROIs 

are displayed in feature map1 and feature map2 in Fig. 6), as shown in Fig. 6.

Pooling layer: A pooling layer is connected to down sample the convoluted feature maps. 

This layer reduces the size of the input for the following classification layers, which 

substantially reduces redundant input information. Also, due to the translation-invariance 

properties of the pooling layer [38], the global shift resulted by preprocessing steps (such as 

image registration) and the intrinsic shape and size variability of RSNs from different brains 

can be significantly alleviated and accounted for. This is one of the major advantages of 

using 3D CNN for automatic and robust recognition of RSNs, compared to other methods 

reviewed in the introduction section. In this paper, a max pooling scheme with pooling size 

of 2 was adopted and it turned out to work well.

Fully connected layer and output layer: These two layers are functioning as the 

classification/recognition component in the overall 3D CNN framework. With well-extracted 

features as input, 128 nodes of the fully connected layer can effectively perform the 

classification task. The output layer contains 10 nodes, each of which predicts the 

corresponding RSN label probability for each input map by adopting the SoftMax action 
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function. CNN training: The neural network weights training was performed by the classic 

Stochastic Gradient Descent (SGD with momentum. The objective loss function to be 

optimized is the multinomial negative log-likelihood with a λ (set to 0.01) times the L2 

norm of the network weights as regularization term, as shown in equation (1).

L(θ) = − 1
m ∑

i = 1

m
∑
j = 1

k
1 · yi = j log θTxi

j + λ θ 2 (1)

where m is the number of samples in one batch (empirically set to 32), and K is the number 

of the output classes (10 output RSN classes) and log(θTxi) j is the log-likelihood activation 

value of the jth output node.The momentum parameter was set to 0.9. In this work, the 

widely-used dropout technique was adopted for each layer during the training process to 

reduce the overfitting problem that may be caused by large amount of weights to be trained 

and to reduce testing errors [22], [39].The convolutional layers were initialized using the 

similar scheme proposed in [27], and the dense layers were initialized with a Gaussian 

distribution with μ=0, σ = 0.01.Training was performed by utilizing GPU (NVidia Quadro 

M4000 8GB memory) for 80 epoches.During training, we choose the batch size to be 2048, 
and each training instance is a 47*56*47 3D volume. So the data usage is 0.94GB as the 32 
bits float type, and the total usage of GPU memory during training is 1.17GB. For all the 

3754 training RSNs samples, the total training time is less than 20 minutes. This scale of 

training time cost makes the proposed 3D CNN framework very suitable for future cognitive 

and clinical neuroscience applications.

III. Results

In this section, a variety of experiments and comparisons are conducted to evaluate the 

performance of the proposed 3D CNN framework. Traditional automated RSN identification 

method using overlap rate was performed in comparison to our proposed RSN identification 

framework using CNN structure. This overlap rate based method is very intuitive by using 
the calculated overlap rates between input network and RSN templates as the similarity 
metric. The overlap rate is calculated according to equation (2).

overlap rate = ∑
K = 1

V min(Vk,Wk)
(Vk + WK)/2 (2)

where VK and Wk are the activation score of voxel k in RSN volume maps V and W, 

respectively. According to [14], row of the dictionary learning and sparse coding α matrix 
represents the spatial volumetric distributions that have references to certain dictionary 
atoms. Spatial activation score at each voxel is the normalized coefficient in the 
corresponding column of α matrix after dictionary learning and sparse coding. After 
pairwise overlap rate calculation between each RSN and the 10 templates, the template with 
the maximum overlap rate to the RSN was assignest with the template’s label to the RSN. 
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Two additional widely-used classifiers, including the logistic regression and multi-class 
linear support vector machine (SVM), are also used for comparisons.

For 1521 testing RSN samples, based on the originally manually labelled RSNs, 94.61% 

accuracy was achieved by using the proposed 3D CNN framework. In contrast, only 

˙85.93% accuracy was achieved by overlap rate, and 91.98% and 91.78% accuracies were 
achieved by the logistic regression and multi-class SVM respectively, which are all 
outperformed by our CNN classifier. Since spatial overlap rate is a widely-used way to 
evaluate the spatial maps, in the following discussion, we only compare the spatial overlap 
rate method with our proposed CNN methods. Among the 5.39% CNN-based error rate (82 

testing errors) and 14.07% overlap-based error rate (214 testing errors), there were 4.4% (67 

testing case errors) in common. Overall, CNN classification results significantly 

outperformed overlap-based results by round 10%. The promising results indicated the 

powerful spatial description ability of CNN. Through the detailed analysis and visualization 

of CNN classification error patterns in the following sub-sessions, we will further 

demonstrate that our designed CNN framework has the ability of accommodating major 

distributions of the training samples and ignoring outliers in the training samples, thus 

correcting the wrongly labelled RSNs due to the manual labelling mistakes. For the rest of 

the sub-sections, the 10 common RSNs templates derived from our HAFNI project [14] are 

visualized in Fig. 7 and will be used as a common spatial reference for evaluations and 

comparisons.

A. Correction of Wrongly Manually-Labeled RSNs by 3D CNN

Among a large portion of CNN-based RSN classification errors (82 in total), there are 

actually testing cases that were originally wrongly labeled by experts. For each of these 10 

RSNs we selected one representative example of CNN classification error for visualization 

in Fig. 8 to demonstrate the CNN’s ability of manual label correction. In this case, the real 

meaning of “wrong” CNN classification is that its prediction does not agree with the 

expert’s manual labeling. Therefore, if this scenario is double-checked and confirmed, 

CNN’s prediction can be used to correct the originally wrongly labeled RSNs by expert. As 

shown in Fig. 8, CNN classified labels appear to be more reasonable than the original 

manual labels, which has been confirmed by separate senior experts other than the original 

experts. In addition, quantitative measurement of the probability (the softmax values of the 

output layer of correct labeling by both CNN and original manual labeling is provided for 

each representative case on the top of each figure panel in Fig. 8. Among all the 82 testing 

cases with CNN’s “wrong” classifications, 63 of them are considered as CNN’s corrections 

of original wrongly-labeled RSNs (see Table 2. for detailed numbers for each of 10 RSN 

types), while still 15 of them are remained controversial. For the visualizations of all of 82 

CNN prediction errors, please refer to http://hafni.cs.uga.edu//CNNClassification/

errorCheckCNNerrorAll/index1.html.

It is noted that the original expert manual labelling of 10 RSNs was based on 2D 

visualization of RSNs’ volume slices as shown in Fig. 8. In this study, to double-check and 

confirm the CNN’s corrections of those wrongly manually-labelled RSNs, we conducted a 

more informative 3D visualization of those RSNs using input map 1 in Fig. 8 together with 
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RSN 1 and RSN 2 as illustration examples, as shown in Fig. 9. It is evident that the CNN’s 

predicted labels truly to be more reasonable than the original manual labels.

B. Overlap-based Classification Error Analysis

In comparison with 82 cases of CNN’s disagreements with original manual labels, overlap-

based method has 214 disagreements with original manual labels. It turns out that overlap-

based method shares common disagreements with original manual labels with the CNN 

method (to be detailed in section 3.3), and overlap-based method can be more reasonable 

than the original manual label in some cases. For example, in Fig. 1 , for RSN map 1, 3, 6, 

overlap-based prediction labels seem to be more reasonable. However, in many cases, 

manual labels are more reasonable. As shown in Fig. 1 , for RSN map 2, 3, , 1 , overlap-

based method had made obviously less reasonable predictions. Among those 21 

disagreements with original manual labels by overlap-based methods, ˙9 of them are 

believed to be truly wrong classification. In this sense, CNN method certainly significantly 

outperforms overlap-based method. All the visualizations of the 21 overlap-based 

predictions can be found on http://hafni.cs.uga.edu/CNNClassification/

errorCheckOverlapAll/index1.html.

As examples, Fig. 11 confirms that for input map 2 in Fig. 10, overlap-based method really 

made wrong classification. This wrong classification might be caused by a variety of 

reasons, among which spatial registration, alignment error and noise sources could be a 

major issue; Fig. 12 confirms that for input map 4 in Fig. 10, overlap-based method made 

unreasonable classification. This type of wrong classification is due to the intrinsic 

heterogeneous activities of intermixed neurons in the same brain region or voxel [40].

C. Common Disagreements with Manual Labels by CNN and Overlap-based Method

Our experiment results show that CNN and overlap-based method share 67 common 

disagreements with the original manual labels. Interestingly, all of these 67 RSN maps tend 

to be manually assigned with wrong labels. Among the 67 classifications, 64 of them were 

predicted with the same label using both CNN and overlap-based method. However, there 

are other 3 RSNs that have different annotations from manual labelling, CNN and overlap-

based method, and these 3 RSNs and their different labels by three methods are visualized in 

Fig. 13. As we can see, among the 3 CNN labels, the RSN map 2 has the highest CNN 

prediction probability (99%), while the other two RSN maps have relatively low 

probabilities. From visual inspections, we really cannot tell which classes the input RSN 

map 1 and 3 should belong to. This problem might be caused by the relative low quality of 

the input RSN maps. Nevertheless, it is certain that input RSN map 2 should be assigned 

with label 7, which means the high prediction probability provided by CNN is quite reliable. 

For all the 67 common disagreements with the original manual labels, please refer to http://

hafni.cs.uga.eduCNNClassification/errorCommon/index1.html

D. Differentiation between Highly Spatially Overlapped RSNs

fMRI signal from each voxel reflects a highly heterogeneous mixture of functional activities 

of the entire neuronal assembly of multiple cell types in a voxel. In addition to the 

heterogeneity of neuronal activities, the convergent and divergent axonal projections in the 
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brain and heterogeneous activities of intermixed neurons in the same brain region or voxel 

demonstrate that cortical microcircuits are not independent and segregated in space, but they 

rather overlap and interdigitate with each other [40]. Thus spatial overlap of functional 

networks including RSNs is a natural property of functional organization of the human brain 

[41]. In this paper, among the 10 RSNs specifically, template RSN2 and RSN3, RSN1 and 

RSN2, RSN4 and RSN8, RSN1 and RSN4 have relative high spatial overlap rates (0.1665, 

0.1550, 0.1201 and 0.1062, respectively), which made the overlap-based method difficult to 

differentiate those pairs of highly overlapping RSN patterns. Four examples of such cases 

have been shown in Fig. 14 to demonstrate the advantages of CNN over overlap-based 

method when differentiating highly overlapped spatial patterns. More such examples can be 

found on the webpage showing CNN’s only disagreements with manual labels (http://

hafni.cs.uga.edu/CNNClassification/errorCheckOnlyCNN/index1.html) and overlap-based 

only method’s disagreements with manual labels (http://hafni.cs.uga.edu/CNNClassification/

errorCheckOnlyOverlap/index1.html)

IV. Discussion and conclusion

The HAFNI framework has enabled connectome-scale reconstruction of reproducible and 

meaningful functional brain networks on large-scale populations such as the HCP datasets. 

However, an unsolved problem in the HAFNI framework is the automatic recognition of 

HAFNI maps such as RSNs in each individual brain. The major problem in previous 

methods is that they are not able to deal with the tremendous variability of various types of 

functional brain networks (e.g. size, shape and location) and the presence of various sources 

of noises. In this study, we have proposed and applied a fully automatic 3D CNN deep 

learning framework to identify and classify different types of functional brain networks with 

promising performance. Our experimental results showed a promising classification 

accuracy of 94.61% by improving approximately 10% compared to overlap-based method. 

Furthermore, in the result subsections, we conducted comprehensive analysis of the 

disagreement patterns of CNN labels with manual labels, as well as the overlap-based 

method’s labels. Our results demonstrated the superior performance of CNN in recognizing 

ambiguous RSNs, spatially overlapping RSNs, and misaligned RSNs. In general, our work 

provides a new deep learning approach for modeling functional connectomes based on 

FMRI data, particularly fMRI big data in the future.

Despite the great promise of the proposed CNN framework, however, there also exist 

challenges and limitations for the current CNN framework. First, the training sample 

preparation is a difficult issue for training the CNN networks. As we can see, manually 

labelled RSNs derived from our previous HAFNI project were used in this study, which 

entailed huge amount of time devoted to manually labeling dozens of thousands of 

functional network maps, among which thousands of them are RSNs. Also, manual labeling 

mistakes and inter-rater variability of labels are inevitable. Though our CNN framework 

already exhibits the promising property of correcting wrongly manually labeled RSNs, as 

shown in the result sections, a reliable and fully or semi- automated network labelling 

method should be explored in the near future to enlarge the training samples and improve the 

training accuracy. Also, since the correction ability is supported by the training set 
distribution modelling process and the outliers or the wrongly labelled data are still a 
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minority, we plan to investigate what is the maximally allowed outlier portion in the 
training set in the future. Second, the problem of 10 RSN classifications was employed in 

this study for experiment setup, which was just a testbed and showcase for the efficiency of 

our CNN framework. In the future, we will develop and use larger scale training sample 

generation and build a CNN model for classifications and recognitions of many more types 

of functional networks such as hundreds of networks that were already revealed in our 

HAFNI project. Third, other advanced or sophisticated CNN structures, e.g., multi scale 

CNN [42] or truly deep CNN [23], [28], [43], will be explored in the near future. It is 

expected that these improved CNN structures will possess better ability of spatially 

representing 3D networks maps and thus will further generate better network classification 

results. Finally, we plan to adopt and apply these effective CNN frameworks on clinical 

fMRI datasets for the better understanding of altered brain networks in brain diseases such 

as Alzheimer’s disease and Autism. We envision that 3D CNN model will significantly 

advance current state-of-the-art fMRI data modeling approaches and pave the way for 

adopting fMRI into clinical management of brain disorders in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Functional brain networks reconstruction using dictionary learning and sparse representation 

of whole-brain fMRI signals. Each row of the coefficient matrix α is mapped back to the 
volume space as a spatial map for carrying out the the classification task.
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Fig. 2. 
Overview of the computational steps in the 3D CNN framework. All the obtained maps from 
Fig. 1 are evaluated manually with 10 RSN labels. Then the whole dataset is divided into a 
training set and testing set. Training module uses the training set to train the weights of the 
constructed CNN structure and then is applied to the testing set the get the predicted labels.
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Fig. 3. 
Overview of the 3D CNN structure. Input map and output of each feature extraction layer 

are visualized. C1 represents convolutional layer 1, which contains 32 types of kernels or 

filters of size Ȉ with a stride step 2; C2 represents convolutional layer 2, which contains 32 

types of kernels of filters of size 3 with a stride step 2;C2 represents pooling layer with 

pooling kernel size of 2; FC represents fully connected layer, with 128 nodes in this layer; 

Output layer contains 10 nodes representing each class of the 10 RSNs labels.
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Fig. 4. 
Visualization of the trained RSNs-specific filters for convolutional layer 1. This layer 

contains 32 different types of filters, each of which has a size of 5*5*5*32, with entire filters 

and clipped filters separated by a dashed line in the middle of each panel.
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Fig. 5. 
Visualization of the trained RSNs-specific filters for convolutional layer 2. This layer also 

contains 32 different types of filters, each of which has a size of 3*3*3*32 (32 input 

channels for this layers). Here, only the filters for the first channel of all the 32 are shown, 

with entire filters and clipped filters separated by a dashed line in the middle in each panel.
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Fig. 6. 
Extracted feature maps using trained CNN layers with DMN as an input example.
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Fig. 7. 
Visualization of 10 common RSNs templates derived in the HAFNI project. For each RSN, 

9 most informative slices are displayed.
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Fig. 8. 
Representative cases of CNN classification errors for 10 RSNs. CNN’s predicted labels 

(denoted as CNN label in the figure) appear to be more reasonable than the original manual 

labels by experts. Each panel has 3 columns, where the 1st column is the input map, the 2nd 

column is the RSN template with the CNN predicted label, and the 3rd column is the RSN 
template with the original label. CNN probability is the output value of the softmax 
representing the confidence of the predictions.
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Fig. 9. 
3D visualizations of input map 1 in figure 8 with RSN templates overlaid. Subfigure (1a), 

(1b) and (1c) are input maps (blue regions) with RSN1 overlaid (red regions). They are 

displayed with cross sections along the x, y and z axes respectively. Subfigure (2a), (2b) and 

(2c) are input maps (blue regions) with RSN2 overlaid (red regions). They are displayed 

with cross sections along the x, y and z axes respectively.
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Fig. 10. 
Representative cases of overlap-based classification results for 10 RSNs. Each panel has 3 
columns, where the 1st column is the input map, the 2nd column is the RSN template with 
the overlap rate predicted label, and the 3rd column is the RSN template with the original 
label. Overlap rate value calculated using equation (2) with the templates are shown 
correspondingly.
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Fig. 11. 
3D visualizations of input map 2 in figure 10 with RSN templates overlaid. Subfigure (1a), 

(1b) and (1c) are input maps (blue regions) with overlap-based classification of RSN2 

template overlaid (red regions). They are displayed with cross sections along the x, y and z 

axes respectively. Subfigure (2a), (2b) and (2c) are input maps (blue regions) with RSN3 

overlaid (red regions). They are displayed with cross sections along the x, y and z axes 

respectively. RSN3 should be the category for this input map, but overlap-based method 

gave the wrong result as RSN2.
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Fig. 12. 
3D visualizations of input map 4 in figure 10 with RSN templates overlaid. Subfigure (1a), 

(1b) and (1c) are input maps (blue regions) with overlap-based classification of RSN 

template overlaid (red regions). They are displayed with cross sections along the x, y and z 

axes respectively. Subfigure (2a), (2b) and (2c) are input maps (blue regions) with RSN˙ 

overlaid (red regions). They are displayed with cross sections along the x, y and z axes 

respectively. Due to that the major activation regions reside in the prefrontal lobes, RSN˙ 

should be the category for this input map, but overlap-based method gave the wrong result.
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Fig. 13. 
3 RSN classification discrepancies between CNN and overlap-based method in common 

prediction disagreement with the original manual labels. Each instance is shown using an 
entire row with 4 columns, with one input map, the RSN template of original label, CNN 
label and overlap label.
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Fig. 14. 
Illustration of CNN and overlap-based method’s performance when differentiating input 

RSN maps of high spatial overlaps. Each column represents one instance with 3 rows: the 
input map, the RSN template with the CNN label and the overlap label. As shown by each 
instance, all the input maps have relatively high overlap rate with both of the templates 
(>=0.10), making the overlap rate hard to predict correctly. However, CNN makes the 
correct prediction regardless of the high overlap rates.
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Table I.

RSNS NUMBERS OF TRAINING SETS AND TESTING SETS FOR 3D CNN TRAINING AND TESTING.

RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN7 RSN8 RSN9 RSN10 total

Training 377 373 380 361 384 380 354 373 382 390 3754

Testing 149 154 146 176 146 140 175 155 141 139 1521
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Table II.

CNN corrections of original wrong labels for each of the 10 RSN types.

RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN7 RSN8 RSN9 RSN10 total

Wrongly labelled 2 3 9 30 5 6 3 7 1 0 63
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