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ABSTRACT The laboratory mouse Fv1 gene encodes a retroviral restriction factor
that mediates resistance to murine leukemia viruses (MLVs). Sequence similarity be-
tween Fv1 and the gag protein of the murine endogenous retrovirus L (MuERV-L)
family of ERVs suggests that Fv1 was coopted from an ancient provirus. Previous
evolutionary studies found Fv1 orthologs only in the genus Mus. Here, we describe
identification of orthologous Fv1 sequences in several species belonging to multiple
families of rodents outside the genus Mus. We show that these Fv1 orthologs are in
the same region of conserved synteny, between the genes Miip and Mfn2, suggest-
ing a minimum insertion time of 45 million years for the ancient progenitor of Fv1.
Our analysis also revealed that Fv1 was not detectable or heavily mutated in some
lineages in the superfamily Muroidea, while, in concert with previous findings in the
genus Mus, we found strong evidence of positive selection of Fv1 in the African
clade in the subfamily Muridae. Residues identified as evolving under positive selec-
tion include those that have been previously found to be important for restriction of
multiple retroviral lineages. Taken together, these findings suggest that the evolu-
tionary origin of Fv1 substantially predates Mus evolution, that the rodent Fv1 has
been shaped by lineage-specific differential selection pressures, and that Fv1 has
long been evolving under positive selection in the rodent family Muridae, support-
ing a defensive role that significantly antedates exposure to MLVs.

IMPORTANCE Retroviruses have adapted to living in concert with their hosts
throughout vertebrate evolution. Over the years, the study of these relationships re-
vealed the presence of host proteins called restriction factors that inhibit retroviral
replication in host cells. The first of these restriction factors to be identified, en-
coded by the Fv1 gene found in mice, was thought to have originated in the genus
Mus. In this study, we utilized genome database searches and DNA sequencing to
identify Fv1 copies in multiple rodent lineages. Our findings suggest a minimum
time of insertion into the genome of rodents of 45 million years for the ancestral
progenitor of Fv1. While Fv1 is not detectable in some lineages, we also identified
full-length orthologs showing signatures of a molecular “arms race” in a family of ro-
dent species indigenous to Africa. This finding suggests that Fv1 in these species has
been coevolving with unidentified retroviruses for millions of years.

KEYWORDS Fv1 restriction factor, gammaretrovirus restriction, mouse leukemia
viruses, rodent evolution

As obligate intracellular parasites, retroviruses have been coevolving with their hosts
for more than 450 million years (1). While successful infection of a cell by a

retrovirus requires cooption of cellular proteins, host cells have also evolved innate
immune restriction factors to block viral infection (2). The first host restriction factor to
be identified, Fv1, was discovered when it was observed that certain isolates of murine
leukemia virus (MLV) were unable to replicate in some strains of laboratory mice (3).
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Several decades later, the gene responsible for this restriction, Fv1, was identified by
positional cloning (4) and shown to be related to the gag gene of a group of
endogenous retroviruses (ERVs) in mice called MuERV-L (murine endogenous retrovirus
L) (4, 5). This finding, however, did not lead to other studies designed to describe the
origin of Fv1 or its likely retroviral progenitor.

In laboratory and wild mice, 3 major variants of Fv1 have been identified (6). The
Fv1n and Fv1b variants were originally discovered in NIH Swiss and BALB/c mice and are
permissive to infection by N- and B-tropic MLVs, respectively (7). The Fv1nr variant was
later found in inbred laboratory mice, as well as some wild mouse species, and is
permissive to infection only by the NR-tropic subset of N-tropic MLVs (8). In addition to
these variants, the null Fv1� allele was found in some wild mice that were later shown
to be lacking a functional open reading frame (ORF) of Fv1 (9), and another restrictive
allele, Fv1d, was found in DBA strain mice (10, 11). MLVs that are not restricted by any
of these alleles are termed NB tropic (7).

Functional studies of Fv1 alleles and different MLV strains led to the identification of
amino acid residue 110 in the viral gag capsid gene as the main determinant of N- and
B-tropism (11). Several other residues in the MLV capsid were subsequently identified
as important for NB- and NR-tropism (8, 12). These findings indicate that Fv1 targets the
capsid protein of MLV for restriction. On the host side of this antagonistic relationship,
the three major Fv1 variants in laboratory mice differ at only 3 amino acid residues (352,
358, and 399) and in the size and sequence of the N-terminal tail (4, 13, 14). Despite
these findings, the exact mechanism of Fv1 restriction is still a mystery, although it has
been shown that Fv1 acts to block virus replication after reverse transcription and
before integration (15).

Fv1 is absent from the genome of the rat (4, 9), and a previous report suggested that
it could not be amplified from Apodemus sylvaticus, suggesting it was acquired more
recently in rodents (16). In the genus Mus, which includes laboratory mice, Fv1 is
missing from species at the base of the phylogenetic tree, suggesting it originated in
the genus between 4 and 7 million years ago (mya) (16, 17). We have previously shown
that Fv1 has evolved under positive selection in the genus Mus, suggesting an evolu-
tionary “arms race” between Fv1 and retroviruses that are antagonized by Fv1 (17).
However, since infection with MLVs dates only to the divergence of Mus musculus
subspecies (0.5 to 1.0 mya), the evidence of an older arms race suggested that Fv1
antagonizes other retroviruses (17). This was confirmed by the demonstration that Fv1
has antiviral activity against foamy viruses and equine infectious anemia virus (EIAV), a
lentivirus (16).

Because Fv1 has broad antiretroviral activity that is not restricted to MLVs, it is
possible that this restriction factor, derived from an ERV family whose acquisition
significantly predates Mus, MuERV-L, may have unidentified orthologs in other rodent
species. In this study, we report identification of Fv1 orthologs in several species
belonging to multiple families of the suborder Myomorpha outside the genus Mus. Our
analysis also shows that these Fv1 orthologs are in the same region of conserved
synteny as the Fv1 ortholog found in M. musculus. In addition, we demonstrate that Fv1
displays signatures of positive selection in an African clade of the subfamily Muridae.
Taken together, these data suggest a minimum insertion time for the progenitor of Fv1
into the genome of Muroidea of approximately 45 million years (18–22) and further
substantiates the earlier conclusion that that Fv1 must have had antiviral activity well
before the appearance of MLVs.

RESULTS
Identification of Fv1 in murids outside the genus Mus. During an in silico search

for MuERV-L elements that resemble Fv1 in the genomes of rodents, we identified
several hits with high identity to Fv1 in multiple species outside the genus Mus. This
prompted us to conduct an extended search for Fv1-like elements in the genomes of
rodents with published and assembled genomes. Using the Fv1 ORF sequence from the
mouse reference assembly (NM_010244) as the probe, we searched the individual
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genomes of each rodent species with assembled genomes in the GenBank database
(Table 1). This analysis revealed Fv1-like sequences in several species outside the genus
Mus, including two species of the genus Apodemus, two species that belong to the
subfamily Gerbillinae, several species in the family Cricetidae, and Nannospalax galili, a
species in the family Spalacidae (Fig. 1). This in silico search also revealed that the Fv1
sequence was not detectable in several species (Fig. 1). It has been previously shown
that Fv1 is absent in Mus pahari and Rattus norvegicus (4, 9, 17). Our present analysis
failed to identify Fv1 in five species that belong to the subfamily Arvicolinae, indicating
possible loss in a common ancestor, as well as in another species in the family
Cricetidae; Peromyscus maniculatus (Fig. 1). Moreover, none of the Fv1 orthologs iden-
tified in the species outside the genera Apodemus and Mus contained a full-length
intact ORF (Fig. 1; see Data Set S1 in the supplemental material). The Fv1 genes found
in species outside the family Muridae contain insertions and deletions that all introduce
premature stop codons (see Data Set S1 in the supplemental material).

This initial search for Fv1 outside the genus Mus relied on previously assembled
genome data. However, Fv1 shares homology with repetitive elements in the MuERV-L
class of ERVs (5, 23), and despite the improvements in whole-genome sequencing and

TABLE 1 Genome assemblies analyzed for Fv1 orthologs

Species
Assembly GenBank
ID no. Fv1 sequence location

Assembly level/scaffold or
contig N50c

Mus musculus 5015798 Chromosome 4; 147868979–147870358 Chromosome/52,589,046
Mus spretus 3209118 Chromosome 4; 143977914–143979293 Chromosome/131,945,496
Mus carolia 4428938 Chromosome 4; 137705488–137706894 Chromosome/122,627,250

Chromosome 6; 29191993–29193375
Mus pahari 4428958 No Fv1 Chromosome/111,406,228
Apodemus sylvaticus 2366688 Scaffold 32866; 29576–30952 Scaffold/245,982
Apodemus speciosusb 5057288 Scaffold 251367; 149–1069 Scaffold/49,031

Scaffold 156636; 1512–1851
Rattus norvegicus 1156538 No Fv1 Chromosome/14,986,627
Psammomys obesus 4676748 Contig 23267; 10866–12468 Contig/76,398
Meriones unguiculatus 4620268 Scaffold 711; 275895–277120 Scaffold/374,687
Mesocricetus auratus 562298 Scaffold 00091; 8678386–8679260 Scaffold/12,753,307
Phodopus sungorus 3400648 Contig MCBN011381412; 114–977 Contig/2,392
Cricetulus griseus 301008 Scaffold 5243; 56464–56406 Scaffold/1,147,233
Microtus ochrogaster 504458 No Fv1 Chromosome/17,270,019
Microtus agrestis 2366748 No Fv1 Scaffold/896,668
Myodes glareolus 2366508 No Fv1 Scaffold/364,535
Ellobius talpinus 3342798 No Fv1 Scaffold/15,246
Ellobius lutescens 3342778 No Fv1 Scaffold/242,123
Peromyscus maniculatus 869028 No Fv1 Scaffold/3,760,915
Neotoma lepida 3322358 Scaffold 7; 325138–326237 Scaffold/119,373
Nannospalax galili 1095108 Scaffold 1225; 281074–282189 Scaffold/3,618,479
Jaculus jaculus 406368 No Fv1 Scaffold/22,080,993
Dipodomys ordii 1420568 No Fv1 Scaffold/11,931,245
Castor canadensis 4088328 No Fv1 Scaffold/317,708
Spermophilus dauricus 5170358 No Fv1 Scaffold/1.761.345
Ictidomys tridecemlineatus 317808 No Fv1 Scaffold/8,192,786
Marmota marmota 2704858 No Fv1 Scaffold/31,640,621
Fukomys damarensis 1195548 No Fv1 Scaffold/5,314,287
Heterocephalus glaber 362148 No Fv1 Scaffold/20,532,749
Cavia porcellus 175118 No Fv1 Scaffold/27,942,054
Cavia aperea 1067048 No Fv1 Scaffold/24,928,671
Tympanoctomys barrerae 5381778 No Fv1 Scaffold/4,698
Octomys mimax 5381798 No Fv1 Scaffold/4,874
Octodon degus 375158 No Fv1 Scaffold/12,091,372
Chinchilla lanigera 397218 No Fv1 Scaffold/21,893,125
Homo sapiens 5800238 No Fv1 Chromosome/59,364,414
Oryctolagus cuniculus 182491 No Fv1 Chromosome/35,972,871
aTwo Fv1 copies were found in the Mus caroli genome, on different chromosomes.
bA single Fv1 ortholog is split between two scaffolds with overlapping sequences in Apodemus speciosus.
cScaffold N50, length such that scaffolds of this length or longer include half the bases of the assembly; contig N50, length such that sequence contigs of this length
or longer include half the bases of the assembly.
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assembly made in recent years, sequencing mistakes involving such repeat sequences
are still common (24). To confirm our findings from the database search, we sequenced
Fv1 orthologs and the immediate surrounding regions from three species outside the
genus Mus; Cricetulus griseus (Chinese hamster), Mesocricetus auratus (golden hamster),
and Meriones unguiculatus (Mongolian gerbil). These species show different levels of
genome assembly completeness (Table 1). Our results revealed only minor differences
between the sequences in the database assemblies and the sequences obtained via
PCR and Sanger sequencing for all three species (see Data Set S2 in the supplemental
material). These results confirm the accuracy of these particular assemblies in the
region surrounding the Fv1 ortholog.

Fv1 genes of the superfamily Muroidea map to regions of conserved synteny.
In the mouse genome, Fv1 is located between the genes Miip and Mfn2. Since these
genes are present in all the annotated genomes of rodents and primates in the NCBI
database, we can use them as a guide to establish that the recovered Fv1-like se-
quences are orthologs that map to regions of conserved synteny. To this end, we
extracted and aligned genomic sequences from 19 species, including mouse, rabbit
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FIG 1 An Fv1 ortholog is present in several rodent families. Shown is a cladogram illustrating the evolutionary relationship between rodent species
with a genome assembly in the NCBI database. The species tree was generated with TimeTree (20). Genus, family, subfamily, and superfamily
classifications for a subset of species are indicated on the right. � indicates the presence of an Fv1 ortholog or an Fv1 ORF as identified via BLAST
searches of each genome assembly. The suggested positions of the Fv1 insertions into the rodent genomes are indicated by arrows. The solid
arrow indicates the location of the minimum insertion time suggested by the database analysis, while the dashed arrow indicates the possible
Fv1 insertion at the base of the suborder Myomorpha. *, the Fv1 ORF of Apodemus speciosus is split between two overlapping scaffolds. Merinones
unguiculatus and Psammomys obesus contained only a partial ORF with premature stop codons.
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(Oryctolagus cuniculus), and human (Homo sapiens), as references, using the alignment
program MultiPipMaker (25). As shown in Fig. 2, all Fv1 orthologs that were identified
via Basic Local Alignment Search Tool (BLAST) search map between Miip and Mfn2. In
addition, alignment of the region between Fv1 and Miip revealed an approximately
1.9-kb deletion that was identified only in the genus Mus (data not shown). The
presence of an Fv1 ortholog in this genomic region in Nannospalax galili and its
absence from all of the more distantly related species in the order Rodentia suggest a
minimum insertion time for the presumed retroviral ancestor of Fv1 into the genome
of the common ancestor of Muroidea that is between 42 and 49 million years (18–20,
26, 27). However, since we have access to the genome of only one species, Jaculus
jaculus, outside the superfamily Muroidae, in the suborder Myomorpha, we cannot be
certain whether this species completely lost Fv1 from its genome, as have some other
species in Muroidea, or if it never inherited Fv1 from the common ancestor of all
dipodids. Hence, the insertion time point of the retroviral ancestor of Fv1 could be at
the base of the suborder Myomorpha, moving the estimated insertion to between 50
and 59 mya (18–20, 26, 27).

Fv1 coding potential in African murids. Our in silico and subsequent PCR/
sequencing analyses indicated that the full-length Fv1 ORF was limited to species
belonging to the subfamily Murinae. However, this analysis included only the genera
Mus and Apodemus in the subfamily Murinae, as well as only two species in the
subfamily Gerbillinae (Fig. 1). To get a better picture of Fv1 ORF retention in the family
Muridae, we sequenced Fv1 from the genomic DNA of several members of the family
Muridae that are indigenous to sub-Saharan Africa (28). Of the 9 species surveyed, all
but one contained a full-length Fv1 ORF (see Data Set S3 in the supplemental material).
This result also revealed the presence of a full-length Fv1 ORF in two species outside the
subfamily Murinae: Lophuromys sikapusi and Lophuromys flavopunctatus.

One species originally identified as Mylomys dybowskii had a premature stop codon
and clustered with species outside its expected subfamily, Murinae, in maximum-
likelihood trees, suggesting a misidentification in its species designation (Fig. 3A; see
Data Set S3 in the supplemental material). To resolve this discrepancy and to confirm
the identities of the other tested species, we sequenced part of exon 1 of Rbp3
(encoding retinol binding protein 3), a highly conserved gene frequently utilized in
phylogenetic analyses (18, 22, 29), from the genomic DNA of the African murid samples
in our possession. We then aligned these sequences with Rbp3 sequences from the
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FIG 2 Conserved synteny of Fv1. Genomic segments containing Fv1, Miip, and Mfn2 were extracted from the NCBI genome
database for each indicated species. Cross-species homologies were analyzed using the MultiPipMaker alignment tool (25).
Exons of Miip, Mfn2, and Fv1 are shown as black boxes in the mouse reference assembly. The Fv1 sequence is boxed in
red. Regions with more than 50% but less than 75% identity are shown as green boxes. Regions with more than 75%
identity are shown as red boxes. A cladogram representing the phylogenetic relationships between the species is shown
on the left. The species tree was generated with TimeTree (20).
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other rodents and generated a phylogenetic tree (Fig. 3B; see Data Set S4 in the
supplemental material). As shown in Fig. 3B, a maximum-likelihood tree generated
using Rbp3 sequences is very similar to the one generated using Fv1 (compare Fig. 3A
and B). Rbp3 from what was originally identified as Mylomys dybowskii also clustered
outside the subfamily Murinae with a member of the subfamily Gerbillinae (Fig. 3B). A
BLAST search of the NCBI nucleotide collection database using the partial exon 1 of
Rbp3 from this sample as a probe revealed �98% identity to sequences from several
species from the genus Gerbilliscus. Hence, we relabeled this sample Gerbilliscus sp.
(Fig. 3B).

Results from these phylogenetic analyses confirmed the identification of an Fv1 ORF
in 6 species of the subfamily Murinae outside the genus Mus, as well as two species in
the family Muridae, Lophuromys sikapusi and Lophuromys flavopunctatus, indicating that
Fv1 coding potential extends outside the subfamily Murinae.

Rapid evolution of Fv1 in African murids. Genes can evolve under negative
(purifying) selection to retain function or under positive (diversifying) selection, which
results in adaptive mutational changes. These different evolutionary pathways are
defined by the ratio of the rate of nonsynonymous (amino acid-altering; dN) and
synonymous (amino acid-preserving; dS) substitutions in related species (30, 31). The
vast majority of genes in mammalian genomes are under negative selection, with dN/dS
(�) values well below 1, as amino acid-changing substitutions are less likely to be
tolerated (30). On the other hand, host genes that are involved in the antagonism of
pathogens, such as Fv1, are found to have experienced positive (or diversifying)
selection, with dN/dS values above 1. Such genes are said to be involved in an “arms
race” with pathogens with which they interact (30–32).
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We have previously shown that Fv1 displays signatures of positive selection in the
genus Mus (17). However, as our present analysis has shown so far, Fv1 had apparently
retained full coding potential for millions of years before the appearance of the genus
Mus (see Data Set S3 in the supplemental material). We extended this positive-selection
analysis of Fv1 to include other clades in the family Muridae. Since all our genomic-DNA
samples were obtained from species with overlapping ranges in sub-Saharan Africa
(28), this presented us with a unique opportunity to study Fv1 evolution in a specific
geographical location. Hence, for this expanded analysis of positive selection, we
combined our sample set of African murids with five other species in the genus Mus,
subgenus Nannomys. These murids also have ranges in sub-Saharan Africa (28). Using
aligned Fv1 sequences from these species, a maximum-likelihood tree was generated
(Fig. 4; see Data Set S5 in the supplemental material). Next, the free-ratio model of
PAML (Phylogenetic Analysis by Maximum Likelihood) was used to calculate dN/dS
values in each branch (33). As shown in Fig. 4, several branches of the tree showed
dN/dS values of �1, including those outside the genus Mus. This result suggests that
Fv1 genes from several species, including Grammomys dolichurus, several species in the
African clade of the genus Mus, two species in the genus Praomys, and a species in the
family Muridae, Lophuromys flavopunctatus, are evolving under positive selection.

To detect recurrent positive selection at specific amino acid residues of Fv1 from
African murids, we utilized four programs: PAML, MEME, REL, and FEL (33–36). The
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for a subset of species are indicated on the right of the tree.
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codon-based sites model implemented in the codeml program of PAML revealed that
Fv1 from these species is evolving under positive selection, since codon models that
allowed positive selection (dN/dS � 1) fit our data significantly better than models that
did not allow positive selection (P � 0.000001) (Table 2). Moreover, Bayes empirical
Bayes (BEB) analysis of posterior probabilities identified 20 amino acid residues under
positive selection with a posterior probability of �0.95 (Table 2) (37). Subsets of these
20 were also identified by MEME (14 sites), FEL (10 sites), and REL (14 sites) (Table 3).
A total of 17 sites were found to be under positive selection by at least 2 different
programs (Table 3 and Fig. 5), and 4 sites (258H, 352S, 393T, and 399R) were found to
be under positive selection by all 4 programs (Fig. 5). Interestingly, 3 of these 4 sites
(258H, 352S, and 399R) were previously reported to be under positive selection in Mus
(17), and 2 additional sites in the broader set of 20, 270K and 401T, were also among
the 6 sites under positive selection in Mus (Fig. 5).

Over the years, several studies on Fv1 identified multiple residues and regions
involved in restriction activity (13, 14, 16). Our analysis shows that most of the positively
selected residues of Fv1, identified through PAML, in African murids (14/20) are
concentrated in three regions in the C-terminal half of the gene, previously named
variable regions A to C (VA to VC) (Fig. 5) (16) on the basis of sequence variants in Mus.
One of these regions (VA) overlaps the conserved major homology region (MHR), found
in all retroviral capsids, which contains 2 positively selected residues (268R and 270K)
(17, 38). Moreover, all 6 residues that we previously found to be under positive selection
in Mus (17) were identified as evolving under positive selection in our expanded sample
set of African murids (Fig. 5). Taken together, these data suggest that Fv1 has evolved
under positive selection in African murids, and there is a significant overlap between
positively selected residues of Fv1 and residues previously determined to have signif-
icant functional impact (14, 16).

DISCUSSION

In this study, we identified previously unreported Fv1 orthologs in the rodent
families Muridae, Cricetidae, and Spalacidae. These families are thought to have evolved

TABLE 2 PAML analysis of Fv1 from African murids

�0a

Codon
frequency

M1-M2 M7-M8

Tree lengthc dN/dS (%)
Residuesd with dN/dS of >1 and prg of
>0.952�b P value 2� P value

0.4 f3 � 4 76.7 �0.000001 80.6 �0.000001 1.57915 7.94 (3.4) 216Re, 217Te, 257Nf, 258Hf, 261Ne, 265Hf,
268Rf, 270Ke, 305Le, 349Ef, 351Ye,
352Sf, 354Ee, 355Df, 359Re, 393Te,
399Rf, 401Te, 419Se, 429Ie

1.8 f3 � 4 76.7 �0.000001 80.6 �0.000001 1.57915 7.94 (3.4) 216Re, 217Te, 257Nf, 258Hf, 261Ne, 265Hf,
268Rf, 270Ke, 305Le, 349Ef, 351Ye,
352Sf, 354Ee, 355Df, 359Re, 393Te,
399Rf, 401Te, 419Se, 429Ie

0.4 f61 75.9 �0.000001 78 �0.000001 1.51197 7.77 (3.2) 11Se, 21Ee, 138Ee, 216Re, 217Te, 257Nf,
258Hf, 261Nf, 265Hf, 268Rf, 270Ke,
305Le, 344Se, 349Ef, 351Ye, 352Sf,
354Ef, 355Df, 359Re, 393Te, 399Rf,
401Te, 428Le, 429Ie

1.8 f61 75.9 �0.000001 78 �0.000001 1.51197 7.77 (3.2) 11Se, 21Ee, 138Ee, 216Re, 217Te, 257Nf,
258Hf, 261Nf, 265Hf, 268Rf, 270Ke,
305Le, 344Se, 349Ef, 351Ye, 352Sf,
354Ef, 355Df, 359Re, 393Te, 399Rf,
401Te, 428Le, 429Ie

a�o denotes the initial seed value of � used.
b2�, two times the difference of the natural log values of the maximum likelihood from pairwise comparisons of the different models.
cTree length is defined as the sum of the nucleotide substitutions per codon at each branch.
dResidue numbers are based on the Fv1 found in the Mouse Reference Genome (NP_034374).
eP � 0.95.
fP � 0.99.
gpr, posterior probability.
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separately for approximately 45 million years (18–20, 22, 27). This suggests a minimum
insertion time of 45 million years for the presumed proviral progenitor of Fv1. This time
estimate can be expanded to 55 million years to include all of the suborder Myomorpha.
None of the species studied here contained an expanded ERV at the Fv1 site or an
Fv1-like ERV elsewhere in their genomes. However, use of RepeatMasker indicated that
Nannospalax galili has repetitive elements surrounding the Fv1 site that appear to be
the remnants of an ERV-L like element (data not shown). While this element was far too
fragmented to reconstruct a recognizable provirus, this finding opens the possibility
that further study of the region around Fv1 or the ERV-L sequences in other rodent
lineages may lead to the identification of the ancient provirus that gave rise to Fv1. It
will be particularly interesting to analyze the sequences around Fv1 orthologs in other
members of the family Spalacidae to determine whether a more intact ERV-L element
can be identified.

ERVs comprise a large component of vertebrate genomes, determined to be 10% in
the mouse genome (39). While most of these ERVs are nonfunctional and contain
mutations and indels, over the course of vertebrate evolution, some components of
ERVs have been coopted for host cell functions (4, 40, 41). The most prominent example
of such cooption are the syncytins, env genes of ERVs that function in placenta
formation (40). In Myomorpha, a suborder of rodents, two syncytins have been traced
to the common ancestor of the families Spalacidae, Cricetidae, and Muridae, making it
the oldest ERV with a coopted ORF in rodents (42). Our studies suggest a similar
insertion time frame for the acquisition of Fv1 (Fig. 1). However, unlike syncytins, most
of the species in the genome database that contained an Fv1 ortholog did not have a
full-length ORF. In fact, several species in the family Cricetidae did not have an
identifiable Fv1 ortholog at all in their genomes. With increased availability of whole-

TABLE 3 Positively selected residues of Fv1 identified by four different programs

Amino acid residuea

Selection programd

PAML MEME FEL REL

46V � � � �
164A � � � �
165R � � � �
198V � � � �
216R � � � �
217T � � � �
240T � � � �
257N � � � �
258Hb � � � �
261Nc � � � �
265H � � � �
268Rc � � � �
270Kc � � � �
271A � � � �
302P � � � �
305L � � � �
344S � � � �
349Ec � � � �
351Y � � � �
352Sb,c � � � �
354E � � � �
355D � � � �
359R � � � �
393Tb � � � �
399Rb � � � �
401T � � � �
419S � � � �
429I � � � �

aResidues refer to the Fv1 found in the Mouse Reference Genome (NP_034374).
bResidue was found to be under positive selection by all four programs.
cResidue was previously identified as important in restriction of MLV, EIAV, and FFV.
d�, positive; �, negative.

Evolution of the Fv1 Restriction Factor in Rodents Journal of Virology

September 2018 Volume 92 Issue 18 e00850-18 jvi.asm.org 9

https://www.ncbi.nlm.nih.gov/protein/NP_034374
http://jvi.asm.org


genome sequences, it has become apparent that gene loss is an evolutionary phenom-
enon observed in many lineages (43). In the case of Fv1, an intronless remnant of an
ERV, its function as an innate restriction factor that antagonizes retroviruses suggests
the possibility that the lineages that lost Fv1 either did not encounter or were not
significantly threatened by a retrovirus subject to Fv1 restriction. In the absence of
selection pressure, Fv1 would be expected to have the same fate as other nonfunctional
ERVs, that is, annihilation by the accumulation of progressive mutations (39). It is
important to note that, while our database searches suggested loss of Fv1 in a variety
of species (Fig. 1), some of these genome assemblies have higher-level coverage/
completeness than others (Table 1). Hence, further studies are required to obtain a
complete picture of Fv1 loss in different subfamilies or genera belonging to the
superfamily Muroidea.

In this study, we expanded our previous demonstration that Fv1 is under positive
selection in Mus by analyzing several species belonging to the family Muridae outside
the genus Mus that are indigenous to sub-Saharan Africa (17, 28). We found substan-
tially more positively selected amino acid sites in this subset than in the genus Mus (Fig.
5 and Table 3). This is likely due to the fact that the species included in our current
study encompass a much larger evolutionary timeline and that multiple residues,
especially in the Fv1 variable regions, can influence antiviral activity. Our findings
indicate that Fv1 sequences from African murids are under intense selection pressure
and have likely been antagonized by multiple retroviruses over the course of their
evolution. Further study of the potential restriction function of these newly identified
Fv1 orthologs from African murids using known retroviruses may or may not reveal
useful information for the evolution of Fv1 in these species. The retroviruses encoun-
tered by these animals during their evolution are unknown and may no longer be
extant, so we may not be able to identify retroviruses that may have been engaged in
an arms race with Fv1 during the course of their coevolution.

Fv1 was originally identified in inbred laboratory strains as a restriction factor against
MLVs, a group of gammaretroviruses that are found only in subspecies of M. musculus
(10, 44, 45). However, later studies identified functionally active Fv1 in species that do
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FIG 5 Positive selection of Fv1 in African murids. A graphical representation of the Fv1 protein is shown, with highlighting to indicate the three variable regions
previously identified as important in restriction (16). Amino acid residues that were identified as evolving under positive selection by four programs are shown
above the Fv1 protein with differently colored arrows. Amino acid alignment of five segments of Fv1 in African murids (with Fv1 from the Mouse Reference
Genome on top) are shown below, with residues under positive selection (as identified by PAML) shaded blue. The arrows below the alignments indicate
previously identified positively selected sites in the genus Mus (17). The MHR of Fv1 is boxed.
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not harbor these viruses (16, 17). In concert with this finding, Fv1s from different species
of the genus Mus were shown to have restriction activity against retroviruses other than
MLV, such as feline foamy virus (FFV) and EIAV (16). That study also identified several
polymorphic residues in Fv1 (amino acids 261, 268, 270, 349, and 352) that had a
substantial impact on restriction of these viruses. In our analysis of Fv1 evolution in
African murids, we demonstrated that all 5 of the amino acid residues implicated in the
Fv1 restriction of FFV and EIAV are under positive selection (Table 3). In the laboratory
mouse Fv1 variants, all three residue differences are associated with resistance, but only
two of the three are under positive selection in the genus Mus; interestingly, the residue
with the largest impact on the relative restriction of N- versus B-tropic viruses, 358K, is
not under positive selection in the genus Mus or in other murids (13, 14, 17). This
restriction is associated with a single substitution, K358E, in M. musculus, and the failure
to identify this mutation in other species suggests that the polymorphism is retrovirus
target specific. The present analysis underscores the power of this type of evolutionary
analysis to identify functionally important residues in host proteins that have antago-
nistic relationships with pathogens.

Despite decades of functional and genetic studies, the mechanism of Fv1 restriction
of MLVs has not been determined. While these studies revealed that Fv1 targets the
viral capsid, we have no structural details of this interaction, as Fv1 has not been
amenable to structural resolution (11, 46, 47). The expanded evolutionary history of Fv1
we present in this study will likely open new avenues of research. These include
investigations of restriction of various known and newly described retroviruses by Fv1
found in species outside the genus Mus, as well as structural studies to describe the
physical interaction of these Fv1 proteins with the viral capsid.

MATERIALS AND METHODS
Rodent genome sources. Thirty-four rodent genome assemblies in the NCBI database were used for

database searches for Fv1 orthologs and for extraction of Rbp3 exon 1 sequences (Table 1). Genomic-DNA
samples from African murids collected in Uganda were a kind gift from Peter D’Eustachio and Yvonne
Cole (New York University, New York, NY) (48). Fv1 sequences from African pygmy mice were obtained
from the GenBank database with the following accession numbers: Mus triton, FJ603557; Mus gratus,
FJ603556; Mus setulosus, FJ603555; Mus minutoides, FJ603554; Mus musculoides, FJ603558 (17). Genomic
DNA from E36 (Cricetulus griseus), BHK (Mesocricetus auratus), and GeLu (Meriones unguiculatus) cells were
isolated with a PureLink DNA minikit (Thermo Fisher) following the manufacturer’s instructions. GeLu
cells (ATCC CCL-100) were obtained from the ATCC (Manassas, VA), and BHK cells were from M. Eiden
(NIMH, Bethesda, MD).

Database search for Fv1 orthologs. The Fv1 ORF sequence from the mouse reference assembly
(NM_010244) was used as a probe in a BLAST search (49, 50) of 34 individual rodent genome assemblies
housed in the NCBI database (Table 1). The following parameters were used for BLASTn: gap costs, 5 and
2 (existence and extension); match/mismatch scores, �2/�3; repeat masking filter turned off; Expect
threshold, 10�20.

Fv1 and Rbp3 cloning and sequencing. PCRs were performed using AmpliTaq Gold (Thermo Fisher)
with the following program: 95°C for 3 min; 35 cycles of 95°C for 30 s, 54°C for 30 s, and 72°C for 90 s;
and 72°C for 5 min.

Fv1 and its flanking regions were amplified from the genomic DNA of various African murids using
the following primers: 5= AAG ATG AAT TTC CHH CGT GCG CTT 3= and 5= CTC YTT AAC TGW TGC TTT GRT
RTT YMC AGG 3=. The primers used for amplification of Rbp3 from African murids were 119A2, 5= GTC CTC
TTG GAT AAC TAC TGC TT 3=, and 878F, 5= CTC CAC TGC CCT CCC ATG TCT 3= (21). The primers used for
amplification of the Fv1 flanking region from the genomic DNAs obtained from E36, BHK, and Gelu cells
were E36, 5= TCC TGC AGC GAA GAC TTA GA 3= and 5= GTG GCC TTC TAG CCC CTC TTA 3=; BHK, 5= CCT
GCA GCA GCG ACT TAG AAT 3= and 5= ACC TCG TAG TGA AAA GTT CCT ACA C 3=; Gelu, 5= GGA TCC GAA
GCT TTG CAG GAC 3= and 5= GTA GAG AGA AGC TGC AGT AGG G 3=. PCR products were analyzed by
1% agarose gel electrophoresis and cloned into the PCR 2.1 TOPO (Thermo Fisher) plasmid before
sequencing.

Sequence alignment and phylogenetic analysis. For the alignment of the genomic region around
Fv1, two strategies were utilized. For the genomes that have been annotated, the DNA sequence that
encompassed the genes Miip and Mfn2, based on the annotation, was extracted from the GenBank
database. For genomes without annotation, BLASTn was used with mouse genomic DNA as a probe to
search for the contig/scaffold that contained both Miip and Mfn2, and sequences encompassing these
genes were extracted. MultiPipMaker was used for aligning genomic sequences (25).

Fv1 and Rbp3 sequences were aligned using MUSCLE as implemented in Geneious 10.0.9 using
default settings (51, 52). Maximum-likelihood phylogenetic trees were generated using the RaxML
program with the GTR � G � I model and 500 bootstraps for branch support (53). Sequence alignments
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were not manually adjusted for construction of phylogenetic trees except for the trees generated for
positive-selection analysis, as described below.

Positive-selection analysis. For maximum-likelihood analysis of codon evolution, we used codeml
of PAML 4.9, in addition to three programs on the DataMonkey Web server: MEME, REL, and FEL (33–36).
Aligned Fv1 sequences from African murids were manually inspected to exclude any indels that occurred
in more than a few species, as recommended by the developers of PAML. The first 21 nucleotides, due
to the location of the forward primer used for amplification, as well as nucleotides past the stop codon
of Mus triton, were excluded from analysis. The DNA sample that was initially identified as being from
Mylomys dybowskii (here reclassified as Gerbilliscus sp.) was excluded from positive-selection analysis, as
it contained an early stop codon. To calculate branch-specific dN/dS values, we utilized the free-ratio
model in codeml. To detect specific codons under positive selection, F61 and F3x4 codon frequency
models in codeml of PAML 4.9 were used, with different initial seed values of �. Likelihood ratio tests
were performed to compare two pairs of site-specific models: M1, a neutral model that does not allow
positive selection, was compared to M2, a model that allows positive selection, and M7, another neutral
model with beta distribution of dN/dS values, was compared to M8, a positive-selection model with beta
distribution. In each case, chi-square analysis was done, and a model that allowed positive selection was
a significantly better fit to the data than the null (neutral) model (P � 0.000001). Posterior probabilities
of codons under positive selection were inferred using the BEB algorithm in the M8 model (37) (Table 2).
Alternative tests for positive-selection analyses were performed using the MEME, FEL, and REL programs
with recommended settings (34) and the following selection criteria for identification of positively
selected residues: MEME, P � 0.1; FEL, P � 0.1; and REL, Bayes factor � 50.

Accession number(s). The Fv1 and Rbp3 sequences are available in GenBank under accession
numbers MH270640 to MH270660.
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