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ABSTRACT The early replication of certain prion strains within Peyer's patches in the
small intestine is essential for the efficient spread of disease to the brain after oral expo-
sure. Our data show that orally acquired prions utilize specialized gut epithelial cells
known as M cells to enter Peyer's patches. M cells express the cellular isoform of the
prion protein, PrP<, and this may be exploited by some pathogens as an uptake recep-
tor to enter Peyer’s patches. This suggested that PrP< might also mediate the uptake
and transfer of prions across the gut epithelium into Peyer’s patches in order to estab-
lish infection. Furthermore, the expression level of PrP< in the gut epithelium could in-
fluence the uptake of prions from the lumen of the small intestine. To test this hypothe-
sis, transgenic mice were created in which deficiency in PrP< was specifically restricted
to epithelial cells throughout the lining of the small intestine. Our data clearly show that
efficient prion neuroinvasion after oral exposure occurred independently of PrP¢ expres-
sion in small intestinal epithelial cells. The specific absence of PrP< in the gut epithelium
did not influence the early replication of prions in Peyer's patches or disease susceptibil-
ity. Acute mucosal inflammation can enhance PrP< expression in the intestine, implying
the potential to enhance oral prion disease pathogenesis and susceptibility. However,
our data suggest that the magnitude of PrP< expression in the epithelium lining the
small intestine is unlikely to be an important factor which influences the risk of oral
prion disease susceptibility.

IMPORTANCE The accumulation of orally acquired prions within Peyer’s patches in the
small intestine is essential for the efficient spread of disease to the brain. Little is known
of how the prions initially establish infection within Peyer’s patches. Some gastrointesti-
nal pathogens utilize molecules, such as the cellular prion protein PrP<, expressed on
gut epithelial cells to enter Peyer's patches. Acute mucosal inflammation can enhance
PrP< expression in the intestine, implying the potential to enhance oral prion disease
susceptibility. We used transgenic mice to determine whether the uptake of prions into
Peyer's patches was dependent upon PrP< expression in the gut epithelium. We show
that orally acquired prions can establish infection in Peyer's patches independently of
PrP< expression in gut epithelial cells. Our data suggest that the magnitude of PrP< ex-
pression in the epithelium lining the small intestine is unlikely to be an important factor
which influences oral prion disease susceptibility.

KEYWORDS Peyer's patches, PrP, gut epithelium, intestine, prions, transmissible
spongiform encephalopathies

rions cause chronic neurodegenerative diseases that affect humans and some
domesticated and free-ranging animal species for which there are no treatments.
Bovine spongiform encephalopathy (BSE) prions also have zoonotic potential (1),
exerting high societal and economic costs. The precise nature of the infectious prion is
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uncertain, but an abnormal, relatively proteinase-resistant isoform (PrP5c) of the host
cellular prion protein (PrP<) copurifies with prion infectivity in diseased tissues (2), and
host cells must express cellular PrP< to sustain prion infection (3).

Many natural prion diseases are acquired by oral consumption of contaminated
food or pasture. The gut-associated lymphoid tissues (GALT) within the lining of the
intestine, such as the tonsils, Peyer’s patches, appendix, and colonic and cecal patches,
together with the mesenteric lymph nodes (MLN), help to provide protection against
intestinal pathogens. However, orally acquired prions exploit the GALT to achieve host
infection (4-8). The early replication of prions within Peyer’s patches in the small
intestine is essential for their efficient spread from the gut to the brain (termed
neuroinvasion), as oral prion disease susceptibility is blocked in their absence (5, 9-11).

Orally acquired prions utilize an elegant cellular relay in the GALT in order to
establish host infection. After ingestion, the prions are first transported across the
follicle-associated epithelium (FAE), which covers the lumenal surface of Peyer’s
patches by M cells (12-16). The prions are then acquired by mononuclear phagocytes
within the GALT, which they appear to use as “Trojan horses” to shuttle them toward
the follicular dendritic cells (FDC) in the B cell follicles (17-19). The subsequent
replication of the prions on FDC is essential for efficient neuroinvasion from the
intestine (4, 5, 17, 20). The prions then infect nearby enteric nerves before spreading
along fibers of the sympathetic and parasympathetic nervous systems to the brain,
where they ultimately cause neurodegeneration and death (17, 21).

M cells are specialized, highly phagocytic, intestinal epithelial cells that facilitate the
uptake and transepithelial transfer of particulate antigens and microorganisms into the
GALT from the gut lumen (22). The transcytosis of particulate antigens by M cells is an
important initial step in the induction of efficient mucosal immune responses against
certain pathogenic bacteria (23, 24) and the commensal bacterial flora (25). However,
some orally acquired bacterial (26-28) and viral (29, 30) pathogens utilize M cells to
achieve host infection. Prions also exploit M cells in order to enter Peyer’s patches and
establish host infection (13, 16). Furthermore, the density of M cells in the gut
epithelium directly limits or enhances disease susceptibility. In the specific absence of
M cells, the accumulation of prions in Peyer’s patches and subsequent spread of the
disease to the brain are blocked (13, 16). In contrast, increased M cell density at the time
of oral exposure enhances prion disease susceptibility approximately 10-fold by in-
creasing the uptake of prions from the gut lumen (16).

M cells are considered to express a variety of “immunosurveillance” receptors on
their apical surfaces, which enable them to acquire certain pathogens and antigens. For
example, glycoprotein 2 (GP2) can act as a receptor for FimH™ bacteria such as
Escherichia coli and Salmonella enterica serovar Typhimurium (23). Uromodulin (also
known as Tamm-Horsfall protein) may similarly mediate the uptake of certain strains of
Lactobacillus acidophilus (31). Some pathogenic microorganisms appear to use recep-
tors on M cells to aid host infection. The complement C5a receptor is expressed on the
apical surface of M cells and aids the uptake of Yersinia enterocolitica to establish
infection (32). Interactions between the type A1 botulinum neurotoxin complex and
GP2 on the M cell surface have also been shown to mediate the intestinal translocation
of the toxin in order to exert its toxic effects (33). M cells express the cellular isoform
of the prion protein, PrP<, on their apical surfaces (26, 34). Data suggest that the
pathogenic Gram-negative bacterium Brucella abortus utilizes PrP< on the M cell surface
as an uptake receptor to enter Peyer’s patches (26).

Whether the uptake and transcytosis of prions across the gut epithelium into Peyer’s
patches in order to establish infection predominantly occurs via constitutive sampling
of the lumenal contents or via binding to specific receptors such as PrP< is not known.
Treatments that impede the early accumulation of prions within the GALT can impede
their spread to the brain and reduce disease susceptibility (4, 13, 16, 18). Thus, the
identification of the molecular factors that facilitate the uptake of prions into the GALT
will help the design of novel intervention targets and enhance our understanding of
the factors that influence the risk of infection. Therefore, in the current study, trans-
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FIG 1 Cyplal is expressed in the follicle-associated epithelium and in M cells in the small intestine.
Shown is a comparison of CypTal, Prnp, and Gp2 mRNA expression levels in individual cell populations
in deep cap analysis of gene expression (CAGE) sequence data from the FANTOM5 project of the
FANTOM consortium (38). Each bar shows the relative expression level of each gene per million reads in
each sample [RLE normalized tags/million]. The blue-hatched box highlights the small intestine-derived
glycoprotein 2-expressing (GP2*) M cell and the follicle-associated epithelium data sets. The red-hatched
box highlights the brain-derived data sets.

genic mice were created in which Prnp expression (encoding PrP<) was specifically
ablated in epithelial cells throughout the lining of the small intestine. These mice were
then used to determine whether the absence of PrP¢ expression in the epithelium
lining the small intestine influences oral prion disease susceptibility and the early
replication of prions in the GALT.

RESULTS

Conditional ablation of Prnp throughout the small intestinal epithelium. The
expression of Cre recombinase under the control of the rat CypTal promoter element
in Cyplal-Cre mice has been used in a series of studies to inducibly ablate the
expression of LoxP site-flanked target genes in small intestinal progenitor cells and
intestinal epithelial cells (IEC) following B-naphthoflavone (BNF) treatment (35-37). The
FANTOMS project of the FANTOM consortium (38) has collated a large collection of cap
analysis of gene expression (CAGE) data from multiple mouse tissues and cells (http://
fantom.gsc.riken.jp/zenbu). We used this publicly available data resource to compare
the expression levels of CypTal, Gp2, and Prnp in multiple data sets derived from mouse
FAE, M cells, lymphocytes, leukocytes, and brain-derived cells. This analysis confirmed
that CypTal and Prnp were expressed highly in the FAE and in GP2+ M cells (Fig. 1).
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However, Cyplal expression was absent in B cells, T cells, and macrophages as well as
in brain-derived microglia, astrocytes, and neurons (Fig. 1).

Here, Cyp1al-Cre mice were crossed with Prnp™F mice, which carry a “floxed” Prnp
gene (39), to enable the inducible ablation of Prnp specifically in IEC. Since the reliable
detection of PrP< in the gut epithelium by immunohistochemistry (IHC) is technically
challenging, these mice were additionally crossed with ROSA26F/F reporter mice (40) to
enable the cellular specificity of the Cre-mediated gene ablation to be readily assessed
by histological assessment of B-galactosidase (LacZ) expression. The resultant progeny
Cyplail-Cre ROSA26"/F Prnp™F mice were termed Prnp”'¢ mice here.

Female Prnp”'E¢ mice were treated with BNF (or the vehicle alone as a control) for
5 days to specifically ablate Prnp expression in IEC, and tissues were analyzed 14 days
later. Whole-mount histological analysis showed LacZ expression indicative of efficient
Cre-mediated gene recombination throughout the small and large intestines of BNF-
treated Prnp”'®¢ mice (Fig. 2a). Analysis of tissue sections showed strong LacZ expres-
sion in IEC and crypts throughout the small intestine (Fig. 2c). The Cre-mediated gene
recombination in the small intestinal crypts of BNF-treated Prnp”'t¢ mice was highly
efficient (99.5% = 1.1%) (Fig. 2e). In contrast, the Cre-mediated gene recombination in
colonic crypts and IEC in the large intestine was less efficient (64.1% = 8.6%) (Fig. 2f)
and presented as a mosaic pattern (Fig. 2c). No other cellular sites of Cre-mediated
recombination were observed throughout the intestines of BNF-treated Prnp'E¢ mice.
LacZ expression was absent within the submucosa (Fig. 2c) and also in the subepithelial
dome and FDC-containing B cell follicle regions of the GALT (Fig. 2g). As anticipated, no
LacZ expression was detected throughout the small and large intestines of vehicle-
treated Prnp®'C control mice (Fig. 2b, d to f, and h). LacZ expression was also
undetectable throughout the small and large intestines of untreated Prnp~'¥¢ control
mice and BNF-treated Prnp™F (Cre-deficient) control mice (Fig. 2e and f). These data
clearly demonstrate that Cre-mediated gene recombination is restricted to IEC in the
small intestines of BNF-treated Prnp®'EC mice.

Effect of IEC-restricted Prnp ablation on prion accumulation in lymphoid tis-
sues. To determine the effects of IEC-specific PrP< deficiency on oral prion disease
pathogenesis, groups of female Prnp®'E¢ mice were treated with BNF for 5 days to
specifically ablate Prnp expression in IEC. Untreated Prnp®''¢ mice, vehicle-treated
Prnp~'B< mice, and BNF-treated Prnp™’F (Cre-deficient) mice were used as controls.
Fourteen days later, 10 mice/group were subsequently orally exposed to ME7 scrapie
prions, and tissues were collected at 70 days postinfection. The presence of prion
disease-specific, abnormal accumulations of PrP (referred to as PrPd), which occur only
in the tissues of affected animals, was detected by IHC (4, 5, 11, 13, 16, 19, 41-43).
However, since the IHC analysis cannot unequivocally discriminate between PrP>c and
cellular PrP<, paraffin-embedded tissue immunoblot analysis of adjacent membrane-
bound sections was also used to confirm that these PrP< aggregates contained prion
disease-specific, relatively proteinase K (PK)-resistant PrP>c. As anticipated, abundant
PrPs< accumulations were detected in association with FDC (CD21/35™ cells) in Peyer’s
patches of control Prnp~'®¢ mice (Fig. 3a, arrows). Abundant FDC-associated PrPsc
accumulations were also detected in Peyer's patches of BNF-treated Prnp®'E¢ mice.

Consistent with the IHC data (Fig. 3a), high levels of prion infectivity were detected
in Peyer’s patches of mice from each control group (median infectivity level, 6.0 to 6.6
log,, intracerebral [i.c.] 50% infectious dose [ID,] units/g; n = 2 to 4 mice/group) (Fig.
3b). IEC-restricted Prnp ablation did not influence the early accumulation of infectious
prions within Peyer’s patches, as high levels of prion infectivity were also detected in
tissues from BNF-treated Prnp”'®¢ mice (median infectivity level, 6.1 log,, i.c. IDs,
units/g; n = 4 mice) (Fig. 3b).

Within weeks after oral exposure, high levels of ME7 scrapie prions first accumulate
on FDC in Peyer’s patches and subsequently are disseminated via the blood and lymph
to most other lymphoid tissues, including the MLN and spleen (4, 5, 11, 13, 16, 18, 19,
44). The levels of prion infectivity detected in the MLN and spleens from mice from each
treatment and control group were also similar (Fig. 3c and d, respectively).
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FIG 2 Cre-mediated gene recombination is restricted to IEC in the small intestines of BNF-treated Prnp'®c mice. Female
Prnp”E¢ mice were treated with B-naphthoflavone (BNF) for 5 days to specifically ablate Prnp expression in intestinal epithelial
cells, and tissues were analyzed 14 days later. Prnp”'€¢ mice treated with the vehicle alone (Veh.) were used as controls. (a and
b) Whole-mount histological analysis of LacZ expression (blue) in the intestines of BNF-treated Prnp2'¥C mice (a) or vehicle-
treated Prnp”'E< control mice (b). S, small intestine; L, large intestine. (c and d) Histological analysis of LacZ expression (blue)
in IEC and crypts in the intestines of BNF-treated Prnp~'t¢ mice (c) or vehicle-treated Prnp”¢ control mice (d). Sections were
counterstained with nuclear fast red to detect cell nuclei (red). SM, submucosa. (e and f) Comparison of the percentages of
LacZ-expressing crypts in the small (e) and large (f) intestines of BNF-treated Prnp™F control mice. Untreated Prnp~'E¢ mice,
vehicle-treated Prnp'®¢ mice, and BNF-treated Prnp™F mice were used as controls. Data represent mean percentages of
LacZ-expressing crypts/mouse (n = 5 mice/group; 50 to 105 crypts/mouse). (g and h) Histological analysis of LacZ expression
(blue) in Peyer’s patches and colonic patches of BNF-treated Prnp2't¢ mice (g) or vehicle-treated Prnp”'¥¢ control mice (h). SED,
subepithelial dome; Fo, follicle.

These data clearly show that IEC-restricted Prnp ablation does not affect the early
accumulation of orally acquired prions within Peyer’s patches or their subsequent
dissemination to the MLN or spleen.

IEC-restricted Prnp ablation does not influence oral prion disease susceptibil-
ity. Female Prnp”'E¢ mice were treated with BNF for 5 days to ablate Prnp expression
in IEC, and 14 days later, they were subsequently orally exposed to ME7 scrapie prions.
Untreated Prnp”'t¢ mice, vehicle-treated Prnp”'t¢ mice, and BNF-treated Prnp™’F (Cre-
deficient) mice were used as controls. As anticipated, all of the orally exposed untreated
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FIG 3 Effect of intestinal epithelial cell-restricted Prnp ablation on prion accumulation in lymphoid tissues. Female PrnpA'ec
mice were treated with BNF for 5 days to specifically ablate Prnp expression in intestinal epithelial cells. Untreated Prnp~'ec
mice and Prnp”'E¢ mice treated with the vehicle alone (Veh.) were used as controls. Fourteen days later, the mice were
orally exposed to ME7 scrapie prions, and Peyer’s patches, mesenteric lymph nodes (MLN), and spleens were collected at
70 days postinfection. (@) Immunohistochemical analysis reveals high levels of disease-specific PrP (PrP9) (middle row, red,
arrows) detected in association with FDC (CD21/35* cells) (top row, red) in Peyer’s patches from mice from each group.
Sections were counterstained with hematoxylin to detect cell nuclei (blue). Analysis of adjacent sections by paraffin-
embedded tissue immunoblotting confirmed the presence of prion-specific PK-resistant PrP5¢ (blue/black). Data are
representative of results for tissues from 6 mice/group. (b to d) Prion infectivity levels were assayed in Peyer's patches (b),
MLN (c), and spleens (d) from mice from each group collected at 70 days postinfection. Prion infectivity titers (log, i.c. IDs,
per gram of tissue) were determined by injection of tissue homogenates into groups of C57BL/Dk indicator mice (n = 4
recipient mice/tissue). Each symbol represents data derived from an individual tissue. Red line, median prion infectivity titer
for groups in which all samples contained >1 log,, i.c. ID5,/g tissue. Data below the broken horizontal line indicate disease
incidence in the recipient mice of <100%, which were considered to contain trace levels of prion infectivity.

Prnp”'EC (control) mice succumbed to clinical prion disease (mean survival time of 307 + 23
days; median of 300 days; n = 10/10) (Table 1). Furthermore, IEC-restricted Prnp ablation
did not affect disease duration (survival times) or susceptibility, as all of the BNF-treated
Prnp®'EC mice also succumbed to clinical prion disease with similar survival times (mean
of 306 = 11 days; median of 306 days; n = 12/12; P = 0.673 by one-way analysis of
variance [ANOVA] with Dunnett’s posttest) (Table 1).
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TABLE 1 Prnp deficiency in the gut epithelium does not influence oral prion disease
susceptibility

No. of animals with
No. of animals histopathological

with clinical signs of prion disease
Mean survival Median disease/total in brain (spongiform
time (days) + survival no. of animals encephalopathy)/total
Mouse model? SDe time (days) tested no. of animals tested
PrnpAiEc 307 £23 300 10/10 10/10
Prnp”EC + Veh 303 +12 303 10/10 10/10
Prnp®'EC + BNF 308 = 11 306 12/12 12/12
Prnp¥F + BNF 313+ 19 305 9/9 9/9

aWhere indicated, mice were given daily intraperitonal injections of B-napthoflavone (BNF) or corn oil
(vehicle control [Veh]) for 5 days. Mice were orally exposed to ME7 scrapie prions 14 days after the last
treatment.

bDuration from the time of injection with prions to culling at the clinical endpoint. No statistical differences
in survival times were observed between groups (P = 0.673 by one-way ANOVA with Dunnett’s posttest).

All the brains from the clinically affected mice in each group displayed the charac-
teristic spongiform pathology (vacuolation), PrP>c accumulation, astrogliosis, and mi-
crogliosis, which is associated with terminal infection with ME7 scrapie prions (Fig. 4A
and B). The severity and distribution of the spongiform pathology were also similar in
the brains of the clinically affected mice from each group (Fig. 4C).

Together, these data clearly show that efficient prion neuroinvasion after oral
exposure occurs independently of PrP< expression in IEC in the small intestine.

DISCUSSION

The initial transport of prions across the gut epithelium by M cells into small
intestinal Peyer’s patches is essential to establish efficient infection after oral exposure
(13, 16). However, whether the uptake and translocation of prions across the gut
epithelium involves a specific receptor is uncertain. Treatments that prevent the initial
replication of prions within the GALT impede the spread of prions to the brain and
reduce disease susceptibility (4, 13, 16, 18). Thus, the identification of the molecular
factors that facilitate the uptake of prions into the GALT will help the design of novel
intervention strategies and enhance our understanding of the factors that influence the
risk of infection. Small intestinal M cells express cellular PrP< on their apical surfaces,
and this may be used by certain gastrointestinal pathogens as an uptake receptor to
infect Peyer’s patches (26, 34). Independent IHC-based tracing studies have suggested
that orally administered prion protein can be transported across the gut epithelium of
PrPC-deficient mice (14, 17), but whether the expression of PrP< on IEC populations
contributed to the establishment of host infection had not been assessed. Data in the
current study clearly show that prion neuroinvasion after oral exposure occurs inde-
pendently of PrP< expression in small intestinal IEC.

Orally acquired prions first replicate in the small intestinal GALT and subsequently
spread to most other secondary lymphoid tissues, including the large intestinal GALT.
Since oral prion disease susceptibility is substantially reduced in the specific absence of
the small intestinal GALT (11), this suggests that the early replication of prions within
Peyer's patches is essential to establish efficient host infection after oral exposure. The
small intestinal GALT also appear to be the important early sites of prion replication in
natural host species (45-47). Although we observed highly efficient Cre-mediated gene
recombination in intestinal crypts and IEC throughout the small intestines of BNF-
treated Prnp”'®C mice, the efficiency in the colon was lower and presented a mosaic
pattern (Fig. 2c) (35). The less efficient Prnp ablation in the large intestine was unlikely
to have influenced oral prion disease pathogenesis in the current study, as the large
intestinal GALT, such as the colonic patches, are not important early sites of prion
replication and neuroinvasion (11).

Despite the potentially widespread exposure of the United Kingdom population to
BSE-contaminated food in the 1980s, there have fortunately been many fewer clinical
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FIG 4 Intestinal epithelial cell-restricted Prnp ablation does not influence development of the histopathological
signs of prion disease in the brains of clinically affected mice. Female Prnp”'t¢ mice were treated with BNF for 5
days to specifically ablate Prnp expression in intestinal epithelial cells. Untreated Prnp®'E< mice and Prnp't¢ mice
treated with the vehicle alone (Veh.) were used as controls. Fourteen days later, the mice were orally exposed to
ME7 scrapie prions and culled when they succumbed to clinical prion disease. (A) High levels of spongiform
pathology (hematoxylin and eosin [H&E] stain), heavy accumulations of disease-specific PrP (PrP9) (brown), reactive
astrocytes expressing GFAP (brown), and active microglia expressing Iba-1 (brown) were detected in the brains of
all orally exposed mice with clinical prion disease. Clin., clinical prion disease status; pos., clinically positive.
Individual survival times are shown (dpi, days postinfection). Sections were counterstained with hematoxylin to
detect cell nuclei (blue). (B) Immunoblot analysis of brain tissue homogenates confirms the presence of high levels
of prion-specific, relatively proteinase K (PK)-resistant PrP5¢ within the brains of the clinically affected mice from
each group. Samples were treated in the presence (+) or absence (—) of PK before electrophoresis. After PK
treatment, a typical three-band pattern was observed between molecular mass values of 20 and 30 kDa,
representing unglycosylated, monoglycosylated, and diglycosylated isomers of PrP (in order of increasing molec-

(Continued on next page)
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cases of variant Creutzfeldt-Jakob disease in humans than the original estimates
suggested (48) (178 definite or probable cases, as of 4 May 2018 [http://www.cjd.ed
.ac.uk/]). This implies that additional factors could potentially influence an individual’s
susceptibility to oral prion infection by enhancing or impeding the initial uptake of
prions from the gut lumen. In support of this hypothesis, we have shown that stimuli
that increase the density of M cells in the gut epithelium also increase oral prion disease
susceptibility approximately 10-fold by enhancing the uptake of prions into Peyer’s
patches (16). The expression level of PrP< in host cells such as neurons and FDC directly
influences survival times of prion-infected mice (43, 49-51). Acute mucosal inflamma-
tion following oral infection with S. Typhimurium and treatment with dextran sodium
sulfate have each been shown to enhance PrP¢ expression in the large intestine,
implying the potential to enhance oral prion disease pathogenesis and susceptibility
(52, 53). Conversely, PrP< expression was reported to be downregulated in the small
intestines of mice treated with the nonsteroidal anti-inflammatory drug indomethacin
and coincided with a modest increase in survival time after oral exposure to ME7
scrapie prions (54). Although the cellular sites of PrP< expression were not determined
in the above-mentioned studies, our data suggest that the magnitude of PrP< expres-
sion in IEC throughout the small intestine is unlikely to be an important factor which
influences the risk of oral prion disease susceptibility.

In sheep with natural scrapie (55) or orally exposed to BSE prions (56), prion
accumulation is first detected in the palatine tonsils in addition to Peyer’s patches.
Natural prion disease-susceptible host species such as sheep and cervids also have
highly developed olfactory systems, which they use to detect food, select mates, and
sense predators. A series of experimental studies in rodents and sheep showed that
prion infections can be established via the nasal cavity (57-59). Thus, it cannot be
excluded that soil-bound prions might also be inhaled and infect the host as the animal
forages for food. Although M cells are present in the epithelia covering the nasal-
associated lymphoid tissue (60), studies in hamsters indicate that this prion uptake
across the nasal epithelium occurs independently of M cells (61). Whether prion uptake
across the mucosal surfaces in the upper gastrointestinal and upper respiratory tracts
of natural host species is also PrP¢ independent remains to be determined.

In conclusion, we show that oral prion disease neuroinvasion occurs independently
of PrP< expression in IEC in the small intestine. Whether prions exploit other receptors
on the apical surfaces of M cells to establish host infection is uncertain. The specific
targeting of vaccine antigens to M cells has been shown to be an effective method to
induce protective antigen-specific mucosal immunity (62). Mucosal immunization has
also been shown to provide promising protection against oral prion infections in mice
(63) and white-tailed deer (64). Thus, a thorough understanding of the mechanisms that
prions exploit to establish infection within the GALT may help to identify important
factors which influence disease susceptibility or identify novel targets for prophylactic
intervention.

MATERIALS AND METHODS

Mice. The following mouse strains were used in this study where indicated: Cyplal-Cre (35); the
ROSA26F/F reporter strain (40); and PrnpF/F mice (strain Prnpt™2Tuz), which have LoxP sites flanking exon
3 of the Prnp gene (39). C57BL/Dk mice were also used where indicated. All mice were bred and
maintained under specific-pathogen-free (SPF) conditions. All studies and regulatory licenses were
approved by the institute’s ethics committee and carried out under the authority of a United Kingdom
Home Office project license. Prior to the use of mice in experiments, the genotype of each mouse was
confirmed by PCR analysis of tail DNA (Table 2).

FIG 4 Legend (Continued)

ular mass). (C) The severity and distribution of the spongiform pathology (vacuolation) within each brain were
scored on a scale of 1 to 5 in nine gray matter areas: dorsal medulla (G1), cerebellar cortex (G2), superior colliculus
(G3), hypothalamus (G4), thalamus (G5), hippocampus (G6), septum (G7), retrosplenial and adjacent motor cortex
(G8), and cingulate and adjacent motor cortex (G9). Each point represents the mean vacuolation score = SD (n =

10 to 12 mice/group).
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TABLE 2 PCR primers used to confirm mouse genotypes®

Allele Description Primer sequence Product size (bp)
Cre Fwd CGAGTGATGAGGTTCGCAAGAACC 786
Rev GCTAAGTGCCTTCTCTACACCTGC
LacZ Fwd TACCACAGCGGATGGTTCGG 300
Rev GTGGTGGTTATGCCGATCGC Recombined Prnp*, 344
Prnpflex 1 AATGGTTAAACTTTCGTTAAGGAT Prnp*, 210
2 GCCGACATCAGTCCACATAG Prnp™*, 167
3 GGTTGACGCCATGACTTTC
Prnp* Fwd TCATCCCACGATCAGGAAGATGAG 600
Rev ATGGCGAACCTTGGCTACTGGCTG

aFwd, forward primer; Rev, reverse primer; Recombined PrnpF, Cre-mediated DNA recombined allele.

B-Naphthoflavone treatment. Where indicated, mice were given five daily intraperitoneal injections
of B-naphthoflavone (80 mg/kg of body weight; Sigma-Aldrich, Poole, UK) dissolved in corn oil (Sigma-
Aldrich) and analyzed 14 days after the last injection or used in subsequent experiments. Where
indicated, some mice received either corn oil alone (vehicle) or no treatment as controls.

Histological assessment of LacZ expression. Tissues were first immersed in LacZ fixative
(phosphate-buffered saline [PBS] [pH 7.4] containing 2% paraformaldehyde, 0.2% glutaraldehyde, 0.02%
Nonidet P-40, 0.01% sodium deoxycholate, 5 mM EGTA, and 2 mM MgCl,) and washed in LacZ wash
buffer (PBS [pH 7.4] containing 0.02% Nonidet P-40, 0.01% sodium deoxycholate, and 2 mM MgCl,).
Tissues were subsequently incubated in 15% (wt/vol) sucrose in PBS overnight, followed by a further
overnight incubation in 30% (wt/vol) sucrose in PBS, and embedded in Tissue-Tek OCT compound (Bayer
PLC, Newbury, UK). Serial sections (thickness, 8 mm) were cut on a cryostat and stained overnight with
LacZ staining solution (Glycosynth, Warrington, UK). The staining reaction was stopped by washing in
LacZ wash buffer followed by distilled water. Sections were counterstained with nuclear fast red (Vector
Laboratories, Peterborough, UK). Intestinal whole mounts were prepared luminal side up, as described
previously (65), and fixed in ice-cold 2% formaldehyde-0.2% glutaraldehyde in PBS (pH 7.4) for 1 h
before overnight incubation in LacZ staining solution.

Prion exposure and disease monitoring. For oral exposure, mice were fed individual food pellets
dosed with 50 ul of a 1.0% (wt/vol) dilution of scrapie brain homogenate (containing approximately 4.6
log,, i.c. IDsq, units) prepared from mice terminally affected with ME7 scrapie prions according to our
standard protocol (11, 16, 19). During the dosing period, mice were individually housed in bedding- and
food-free cages, with water provided ad libitum. A single prion-dosed food pellet was then placed in the
cage. The mice were returned to their original cages (with bedding and food ad libitum) as soon as the
food pellet was observed to have been completely ingested. The use of bedding- and additional
food-free cages ensured easy monitoring of consumption of the prion-contaminated food pellet.
Following prion exposure, mice were coded, assessed weekly for signs of clinical disease, and culled at
a standard clinical endpoint. The clinical endpoint of disease was determined by rating the severity of
clinical signs of prion disease exhibited by the mice. Mice were clinically scored as “unaffected,” “possibly
affected,” and “definitely affected” using standard criteria that typically are present in mice with terminal
ME7 scrapie prion disease. Clinical signs following infection with the ME7 scrapie prions may include
weight loss; starry coat; hunched, jumpy behavior (at early onset) progressing to limited movement;
upright tail; wet genitals; decreased awareness; discharge from eyes/blinking eyes; and ataxia of hind
legs. The clinical endpoint of disease was defined in one of the following ways: (i) the day on which a
mouse received a second consecutive “definite” rating, (ii) the day on which a mouse received a third
“definite” rating within four consecutive weeks, or (iii) the day on which a mouse was culled in extremis.
Prion diagnosis was confirmed by histopathological assessment of the magnitude of the spongiform
pathology (vacuolation) in nine distinct gray matter regions of the brain as described previously (66).

For bioassays of prion infectivity, individual tissues were prepared as 10% (wt/vol) homogenates, and
20 pl was injected i.c. into each of 4 recipient C57BL/Dk indicator mice. The prion infectivity titer in each
sample was determined from the mean incubation period in the indicator mice, by reference to a
dose/incubation period-response curve for ME7 scrapie-infected spleen tissue serially titrated in
C57BL/Dk indicator mice (67).

Immunohistochemistry. For the detection of disease-specific PrP (PrP9) in intestines and brains,
tissues were fixed in periodate-lysine-paraformaldehyde fixative and embedded in paraffin wax. Sections
(thickness, 6 um) were deparaffinized and pretreated to enhance the detection of PrP4 by hydrated
autoclaving (15 min, 121°C, hydration) and subsequent immersion in formic acid (98%) for 5 min.
Sections were then immunostained with 1B3 PrP-specific polyclonal antibody (pAb). For the detection of
FDC in intestines, deparaffinized sections were first pretreated with target retrieval solution (Dako) and
subsequently immunostained with anti-CD21/35 (clone 7G6; BD Biosciences). Paraffin-embedded tissue
immunoblot analysis was used to confirm that the PrP< detected by immunohistochemistry was proteinase
K-resistant PrPsc (68). Membranes were subsequently immunostained with 1B3 PrP-specific pAb.

For the detection of astrocytes, brain sections were immunostained with anti-glial fibrillary acidic
protein (GFAP; Dako, Ely, UK), and to detect microglia sections, they were immunostained with anti-
ionized calcium-binding adaptor molecule 1 (Iba-1; Wako Chemicals GmbH, Neuss, Germany).
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Following the addition of primary antibodies, biotin-conjugated species-specific secondary antibod-
ies (Stratech, Soham, UK) were applied, and immunolabeling was revealed using either alkaline phos-
phatase conjugated to the avidin-biotin complex (Vector Laboratories, Peterborough, UK), visualized
using Vector red, or horseradish peroxidase (HRP) conjugated to the avidin-biotin complex (Vector
Laboratories), visualized with 3,3’-diaminobenzidine (Sigma). Sections were counterstained with hema-
toxylin to distinguish cell nuclei.

Immunoblot detection of PrPs<. Brain homogenates (10%, wt/vol) were prepared in NP-40 lysis
buffer (1% NP-40, 0.5% sodium deoxycholate, 150 mM NaCl, 50 mM Tris HCI [pH 7.5]) and incubated at
37°C for 1 h with 20 pg/ml PK. Digestions were halted by the addition of 1 mM phenylmethylsulfonyl
fluoride. Samples were then subjected to electrophoresis through 12% Tris-glycine polyacrylamide gels
(NUPAGE; Life Technologies) and transferred to polyvinylidene difluoride (PVDF) membranes by semidry
blotting. PrP was detected using anti-mouse PrP-specific monoclonal antibody (mAb) 7A12 (69), followed
by horseradish peroxidase-conjugated goat anti-mouse antibody (Jackson ImmunoResearch), and visu-
alized by chemiluminescence (BM chemiluminescent substrate kit; Roche, Burgess Hill, UK).

Statistical analyses. Unless indicated otherwise, data are presented as means * standard deviations
(SD), and significant differences between groups were sought by Student’s t test. P values of <0.05 were
accepted as significant.
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