
152 NIGRIN, KOHANE, Temporal Expressiveness in Database Queries

Application of Information Technology n

Temporal Expressiveness in
Querying a Time-stamp–
based Clinical Database

DANIEL J. NIGRIN, MD, MS, ISAAC S. KOHANE, MD, PHD

A b s t r a c t Most health care databases include time-stamped instant data as the only
temporal representation of patient information. Many previous efforts have attempted to provide
frameworks in which medical databases could be queried in relation to time. These, however,
have required either a sophisticated database representation of time, including time intervals, or
a time-stamp–based database coupled with a nonstandard temporal query language. In this
work, the authors demonstrate how their previously described data retrieval application,
DXtractor, can be used as a database querying application with expressive power close to that of
temporal databases and temporal query languages, using only standard SQL and existing time-
stamp–based repositories. DXtractor provides the ability to compose temporal queries through an
interface that is understood by nonprogramming medical personnel. Not all temporal constructs
are easily implemented using this framework; nonetheless, DXtractor’s temporal capabilities
provide a significant improvement in the temporal expressivity accessible to clinicians using
standard time-stamped clinical databases.

n JAMIA. 2000;7:152–163.

As medical data are increasingly stored in a comput-
erized, structured way, the ability to analyze large vol-
umes of patient data has been greatly enhanced. Crit-
ical to these analyses is the ability to investigate
time-based relationships between facts. Many previ-
ous efforts have attempted to provide frameworks in
which medical databases could be queried in relation
to time. Of these, two broad categories of approaches
have emerged: creation of a sophisticated internal da-
tabase representation of time (including time inter-
vals), with an equally sophisticated temporal query
language and database management system1,2; and
use of a simple, time-stamp–based database architec-
ture coupled with a sophisticated temporal query lan-
guage.3

Affiliation of the authors: Children’s Hospital, Boston, Massa-
chusetts.

This work was supported by research fellowship award 1-F38-
LM00055 from the National Library of Medicine and by equip-
ment grants from Hewlett-Packard.

Correspondence and reprints: Daniel J. Nigrin, MD, MS, Divi-
sion of Endocrinology, Children’s Hospital, 300 Longwood Av-
enue, Boston, MA 02115; e-mail: ^nigrinod@a1.tch.harvard.edu&.

Received for publication: 4/13/99; accepted for publication:
10/26/99.

The fundamental starting point of the work described
in this paper is the following assumption: At present
and for the foreseeable future, the temporal represen-
tation of most health care databases consists of time-
stamped events, such as time of admission, time a lab-
oratory specimen was received, time a laboratory
result was reported, and time medication was dis-
pensed. Far more rare are databases in which intervals
are represented, such as the start and end of the ad-
ministration of a medication, the duration of validity
of a problem on the problem list, or the duration of a
symptom. Similarly, very few clinical databases in
production use any of the proposed or designed tem-
poral extensions to the standard relational model. Yet
the importance of rich temporal representations and
query languages for reflecting effectively and accu-
rately the course of a patient’s health care has been
repeatedly described. Consequently, the goal of the
work described here has been to achieve a significant
breadth of temporal expressiveness using existing
time-stamped databases.

In working toward this goal, we developed a prag-
matic hybrid of the two approaches mentioned in the
first paragraph. Since the vast majority of existing
medical databases contain time information that is
represented as time-stamped instants, we felt com-

Journal of the American Medical Informatics Association Volume 7 Number 2 Mar / Apr 2000 153

pelled to use only this form of time information. In
addition, we wanted to use standard SQL queries, so
that the techniques could be easily implemented using
existing off-the-shelf Web and database interface tech-
nologies and could be ported to other databases and
institutions. We then constructed an intermediate rep-
resentation of the results of queries made against the
standard time-stamped clinical databases. We de-
signed this intermediate representation (of sets of
time-stamped instants) so that it could be easily que-
ried by means of operators borrowed from a well-
tested point-based temporal logic, the Temporal Util-
ity Package (TUP),4 which has been used in several
medical applications.5,6 This provided us with the full
expressivity of TUP’s point-based logic and, in addi-
tion, enabled us to express the entire set of interval
queries described by Allen.7,8 We were able to do this
because it was previously shown that these interval
relations could be expressed in a point-based logic,
and we illustrate this again in this paper. Further-
more, by allowing for the iterative use of a series of
simple time-based and Boolean operations, we were
able to achieve much of the temporal expressiveness
achieved by more complex temporal data models or
databases and by more sophisticated query tech-
niques. This is illustrated below through examples of
queries that have been identified by other investiga-
tors as difficult to express in standard relational query
languages.

In the sections that follow, we describe the underlying
database that we used as well as the clinical applica-
tion that populates and maintains it. We then describe
the operation of the clinician-oriented data retrieval
and mining tool, DXtractor, that we have developed.
We explain its population query procedures as well
as its first-class set operations and temporal querying
capabilities. We describe how DXtractor’s temporal
operators map to those of the TUP and, by extension,
to the interval representations of Allen. We then de-
scribe how DXtractor’s temporal functions can be
combined sequentially to achieve rich expression in
the time-based domain. This is illustrated by clinical
examples. Finally, we describe the general limitations
of DXtractor’s temporal operations.

The primary motivation for developing DXtractor was
not the exploration of temporal expressivity in data-
base query languages but, rather, a service mission.
Clinicians and clinical researchers have many poten-
tial uses for the information stored in medical data
repositories. Many of these uses, however, are not met
by the traditional ‘‘results reporting’’ functionality
that most electronic medical record systems provide.
Broad population-based exploration with these sys-
tems is difficult and costly, in the use of both com-

putational and programmer resources, since the
systems center on single patient-focused retrieval ap-
plications. In addition, exploration based on temporal
constraints is not commonly supported in current sys-
tems. It is important to note that population-wide ‘‘ex-
ploration’’ requests do not necessarily represent eso-
teric information needs. Many physicians, nurse
practitioners, and administrative personnel routinely
require this type of information in their everyday
work.

Background

The historical relational data model (HRDM) provides
an example of a highly sophisticated representation of
the temporal validity of assertions to a database.9 It
allows a user or applications programmer to specify
the temporal interval over which an assertion is valid
at the table level, the tuple level, or the attribute level.
This internal temporal representation provides the
user with a detailed and accurate view of the chron-
ologic history of the database. Unfortunately, there are
no widely distributed industrial implementations of
HRDM or similar temporally oriented database man-
agement systems.

Most medical databases use the temporal model pro-
posed for the time-oriented database (TOD).10 This
model assigns each patient attribute a time-stamped
instant, which corresponds to the time of the attri-
bute’s occurrence (e.g., the time of a clinic visit or the
time a laboratory value was obtained). This triad of
parameters (patient identifier, attribute, and times of
occurrence) creates a three-dimensional, or cubic,
view of the stored data. Many temporal operations
can be performed on this form of data; temporal
intervals, however, cannot be elicited from such
a schema without the use of application-level pro-
cessing.

Das and Musen2 have introduced temporal database
systems (TimeLine SQL and the Chronus System) that
add the ability to support interval semantics. These
systems provide a framework for both the storage and
the manipulation of time-based clinical data, which
includes specification of intervals of time. This ap-
proach calls for the addition of a temporal dimension
at the level of the database tuple, with an associated
temporal extension to SQL to allow queries of com-
plex temporal features. Das and Musen demonstrate
several classes of queries, which are either very diffi-
cult or impossible to express in SQL, that are enabled
by these interval-based databases.

Apart from the literature on temporal databases, there
have been at least two decades of research in temporal

154 NIGRIN, KOHANE, Temporal Expressiveness in Database Queries

F i g u r e 1 Diagram of a patient subpopulation gener-
ated from a Dxtractor query. Each patient may have one
or more event dates, which represent the time stamps of
the queried-for events.

logics. This research includes the temporal logics of
McDermott,11 the interval logics of Allen,7,8 and the
point-based logics of Dean12 and Kohane.4 Kohane
was able to show that most temporal relationships in
medicine, could be expressed by simply specifying
partial orders of point relations, including elaborate
interval relationships and alternative possible chro-
nologies.

Design and Implementation

CWS Database

The Clinician’s Workstation System (CWS)13 was in-
troduced at Boston Children’s Hospital in July 1991
and is still actively used. It allows for formatted data-
entry of clinical notes into a relational database. These
notes result from all patient visits to four ambulatory
clinics at the hospital—the diabetes, general endo-
crine, general renal, and renal transplant clinics. Cli-
nicians use a printed sheet to record notes during a
patient visit; these sheets have several clearly defined
areas for recording physical examination findings ob-
tained during the visit. Administrative assistants then
use CWS to transfer these findings, with a variety of
other demographic elements, into the database. Dic-
tated portions of the clinic notes are segmented by the
assistants into sections (e.g., past medical history, as-
sessment, and plan) and are entered into the database
as free-text fields. Laboratory data are automatically
transferred from the hospital’s central laboratory re-
pository into the CWS database daily. All data ele-
ments have an associated simple time stamp; no
temporal intervals or other sophisticated temporal
representations are coded into the database. In this
regard, the CWS database utilizes the TOD model
mentioned above.

Currently, the CWS database contains data for more
than 10,000 distinct patients, representing more than
34,000 visits, 180,000 distinct clinical measurements,
and 2 million laboratory findings. More than 12,000
problem list entries have been coded for this group of
patients. This large database has already been suc-
cessfully used in several clinical research projects.14–16

DXtractor

We have previously described DXtractor.17 To sum-
marize briefly, DXtractor allows for the effective re-
trieval of patient subpopulations from the CWS da-
tabase. It queries for patient populations on the basis
of specific clinical, demographic, and temporal con-
straints. Its functionality was conceptualized by the
development, first, of a series of prototypical clinical
queries that we, as clinicians, wanted to make of the

database. Several of these queries, in clinical endocri-
nology, involve analyses that demonstrate significant
temporal complexity:

n Generate a list of type I diabetic patients who have
each had a glycohemoglobin (hemoglobin A1c, or
HbA1c) value greater than 10 percent, excluding
the first such value.

n Generate a list of all girls in the pediatric endocri-
nology program who developed Tanner stage II pu-
bic hair at least one year before developing Tanner
stage II breasts.

n Generate a list of all patients in the pediatric en-
docrinology program who are currently less than
18 years of age and whose last visit to a physician
was between one and two years ago.

‘‘Atomic’’ Queries

DXtractor’s fundamental, or ‘‘atomic,’’ query is a pop-
ulation query. Each patient group retrieved by a query
is characterized by one or more clinical or demo-
graphic features. Each patient identified in a sub-
population has an associated list of one or more time
stamps representing the transactional time of the que-
ried event (Figure 1). This permits the user to execute
temporal interval and point operations within and be-
tween retrieved patient population sets. This is de-
scribed in greater detail below.

More formally, set S contains all unique pairs [Patient,
Timestamp], where each time stamp represents the
time of the event that satisfies the query criteria. Of-
ten, there are many time-stamped instances for a pa-
tient in a set. The set S may, therefore, be represented
as:

[PatientA, TimestampA1(, TimestampA2, . . . ,
Timestamp An)]

[PatientB, TimestampB1(, TimestampB2, . . . ,
TimestampBn)]

?
?
?
[PatientN, TimestampN1(, TimestampN2, . . . ,

TimestampNn)]

Journal of the American Medical Informatics Association Volume 7 Number 2 Mar / Apr 2000 155

F i g u r e 2 The Dxtractor main screen. Population queries are performed by selecting one of the buttons that appear
across the top of the screen. The buttons have self-explanatory names like ‘‘Doctor,’’ ‘‘Clinical,’’ ‘‘Diagnosis,’’ and ‘‘Lab,’’
which select a group of patients based on, respectively, which doctor cares for them, a specific clinical finding on
physical examination, a diagnosis, or a specific laboratory finding. The results of several queries are visible in the list
of sets. Set 3 represents girls in the diabetes clinic who had a history of elevated glycohemoglobin (HbA1c) values—
that is, values greater than or equal to 12 percent. (Names and medical record numbers have been masked to pre-
serve confidentiality.) The Event Date column shows that many patients have had multiple occurrences of the elevated
value.

where N is the number of patients that satisfy the
query criteria and n is the number of time stamps for
each patient that represent events that satisfy the
query criteria. The value of n varies for each patient
and must be at least 1.

DXtractor’s main screen is shown in Figure 2. Results
of queries are displayed as sequentially numbered
one-line summaries in the top panel, the query sum-
mary area. When a query summary is highlighted in
this area, the full list of patients is displayed in the
lower panel, the query detail area, with a field called
‘‘Event Date’’ for each patient. The event date corre-
sponds to the time stamp at which the queried-for
event occurred. For example, when a query has been
made for a specific diagnosis, the event date corre-
sponds to the date the diagnosis was assigned to the
patient; for laboratory queries, the event date corre-
sponds to the date the specified laboratory test and
range of values were obtained for the patient. If the
patient had multiple occurrences of the queried-for
event (i.e., n > 1), then the word ‘‘multiple’’ appears
in the Event Date column.

Boolean Combinations

Although useful in themselves, the ‘‘atomic’’ queries
become even more powerful when their results are
combined. Logical set combinations may be formed in
DXtractor using standard Boolean set operators
(AND, OR, and NOT, including parentheses); these
are entered in the field to the left of the ‘‘Execute
combo’’ button shown in Figure 2. Query subpopu-
lations are referenced by their query number, which
is found in the query summary area. The logical op-
erations are based on the patients contained in the
query subpopulations. The time stamps of patients in
the resulting set are always those that appeared in
both the original sets (i.e., the union of the patient’s
time stamps). So, for example, if two query sub-
populations are listed in the query summary area,
then the Boolean expression ‘‘1 AND 2’’ will generate
a new set, Set 3, which is the intersection of patients
in the two original sets. The set of time stamps asso-
ciated with each patient in this new Set 3 is the union
of all time stamps for that patient in Sets 1 and 2.
Similarly, ‘‘1 NOT 2’’ will generate a new set, which
contains patients in Set 1 who are not in Set 2. These

156 NIGRIN, KOHANE, Temporal Expressiveness in Database Queries

logical expressions may be of unlimited complexity
(e.g., nested parentheses are allowed, as in ‘‘1 AND (2
NOT (3 OR 4))’’).

The formal relationships are defined below:

if Set A = {[PatientA, TimestampA1(, . . . ,
TimestampAi)], . . .}

and all Set A’s distinct patients are represented
as PatientsA,

and Set B = {[PatientB, TimestampB1(, . . . ,
TimestampBj], . . .}

and all Set B’s distinct patients are represented
as PatientsB,

AND case:
then A AND B = {PatientC, TimestampC1(, . . . ,

TimestampCk)], . . .}
where each PatientC is in PatientsA and PatientsB,
and where TimestampC1, . . . , Ck is the set of all time

stamps associated with PatientC that appear in
either Set A or Set B

OR case:
then A OR B = {PatientC, TimestampC1(, . . . ,

TimestampCk)], . . .}
where each PatientC is in PatientsA or PatientsB,
and where TimestampC1, . . . , Ck is the set of all time

stamps associated with PatientC that appear in
either Set A or Set B

NOT case:
then A NOT B = {PatientC, TimestampC1(, . . . ,

TimestampCk)], . . .}
where each PatientC is in PatientsA and not in

PatientsB,
and where TimestampC1, . . . , Ck is the set of all time

stamps associated with PatientC that appear in
Set A

A simple example—that of finding all patients with
diabetes and histories of elevated glycohemoglobin
values—illustrates the use of a Boolean set combina-
tion. This becomes a simple task of first finding all
patients with diabetes, then all patients with elevated
glycohemoglobin values, and then performing a Bool-
ean AND operation between them. This is illustrated
in Figure 3.

A drawback of these Boolean set operations is that the
temporal information contained in the combined set
may no longer be meaningful, as shown in the ex-
ample above. While the time stamps stored in Set 1
represent the date of a patient’s diagnosis of diabetes,
and those in Set 2 the date(s) of their elevated labo-
ratory value(s), the combined temporal values have
no easily definable meaning. This limits the use of
Boolean-combined subpopulations in the temporal
operations described next.

Temporal Combinations

Temporal combinations are a powerful adjunct to
DXtractor’s atomic queries and Boolean combinations.
They are based on the fact that each patient identified
in a query subpopulation has an associated list of one
or more time stamps representing the time of the que-
ried event. In providing temporal combinations, we
permit the user to execute temporal interval and point
operations within and between retrieved patient sets.
These temporal expressions are entered into the field
to the left of the ‘‘Execute temporal’’ button on Figure
2. The temporal operators BEFORE, AFTER, EQUALS,
EARLIEST, and LATEST are available for these tem-
poral operations.

Let us formally define these operators. First, we will
concentrate on the EARLIEST and LATEST operators:

if Set A = {[PatientA1, TimestampA1a(, TimestampA1b,
. . . , TimestampA1n)], . . .}

then EARLIEST/LATEST (Set A) = {[PatientA1,
TimestampA Earliest/Latest1],}

where TimestampA Earliest/Latest1 = EARLIEST/LATEST
(TimestampA1a(, TimestampA1b, . . . ,
TimestampA1n))

For example, entering ‘‘EARLIEST 1’’ will create a
new Set 2, containing the earliest event time stamp
associated with each patient in Set 1 (Figure 4). Sim-
ilarly, ‘‘LATEST 1’’ will retrieve the latest time for each
patient in Set 1. Defining the starting and ending time
stamps associated with a particular patient attribute
makes the specification of event intervals possible.
This expressiveness is further explored below.

The relative temporal operators (BEFORE, AFTER,
and EQUALS) support time-based relationships be-
tween sets. Their formal definitions are:

if
Set A = {[PatientA1, TimestampA1a(, TimestampA1b,

. . . , TimestampA1n)], . . .}
and whose distinct patient members are represented

as PatientsA,

and
Set B = {[PatientB1, TimestampB1], . . .},

and whose distinct patient members are represented
as PatientsB,

then
Set C contains all [Patient, Timestamp(, . . .)] pairs

such that

PatientsC are members of (PatientsA AND PatientsB)

Journal of the American Medical Informatics Association Volume 7 Number 2 Mar / Apr 2000 157

F i g u r e 3 Diagram of a Boolean combination of two re-
trieved patient subpopulations. Only patients present in
both sets are present in the AND combination of the two.
All time stamps for patients in both sets are passed to
the output set, Set 3. After they are combined, these
‘‘event’’ time stamps may, however, no longer have a
meaningful interpretation. HbA1c indicates glycohemo-
globin, or hemoglobin A1c.

F i g u r e 4 Diagram of the temporal set operation
‘‘EARLIEST 1.’’ Only the earliest time stamp for each pa-
tient is passed to the output set. If a patient has only one
associated time stamp in the original set, then that time
stamp is passed to the output set.

F i g u r e 5 Diagram of the temporal set operation ‘‘1
BEFORE 2.’’ Only patients in both sets are in the result
set. For these patients, only the event dates that satisfy
the temporal condition are passed to the result set.

and
TimestampsCi are members of
(TimestampAia(, TimestampAib, . . . ,

TimestampAin))BEFORE/AFTER/EQUALS
TimestampBi

when Patient Ai = Patient Bi

where Set C’s distinct patient members are
represented as PatientsC,

and each of Set C’s patients, i, has associated
TimestampCi

Entering ‘‘1 BEFORE 2’’ (and similarly ‘‘1 AFTER 2’’)
will create a new Set 3, containing only patients for
whom the event time stamp(s) in Set 1 comes before
the event time stamp for that patient in Set 2 (Figure
5). Entering ‘‘1 EQUALS 2’’ retrieves those members
of each set that have matching time stamps. In these
examples, DXtractor requires that the time stamps in
Set 2 be distinct for each patient; that is, no multiple
time stamps are permitted in the second set of the
expression. It is important to note that only patients
in both sets are ‘‘eligible’’ to appear in the result set;
this is equivalent to performing a Boolean AND op-
eration between the sets prior to the temporal opera-
tion. Also, DXtractor allows for an absolute date to be
specified as the second field in these relationships, as
in ‘‘1 AFTER 07/28/1997.’’

The relative temporal operators can be further aug-
mented by specifying the amount of time one event
occurred before or after another, using the BY or
WITHIN descriptors. For example, ‘‘1 BEFORE 2 BY
6 MONTHS’’ selects patients from Set 1 who have at
least one event time stamp that precedes that patient’s
time stamp in Set 2 by at least six months. That is, the
BY operator specifies a lower bound on the temporal
relationship between the two point events. Similarly,
‘‘1 EQUALS 2 WITHIN 3 DAYS’’ selects for patients
whose time stamps in the two sets differ by up to
three days. That is, the WITHIN operator specifies an
upper bound on the temporal relationship between
two point events.

Combined Use of Techniques

Combined use of the Boolean and temporal operators
allows for the specification of arbitrarily complex
combinations of temporal interval and point patterns.
Before proceeding to motivating clinical examples, we
illustrate how DXtractor can be used to express the
following point relation in the TUP:

(RREL ^p1& ^p2& ^lb& ^ub&)

This is TUP’s syntax, which specifies that there is a
range relation (RREL) between point p1 and point p2

158 NIGRIN, KOHANE, Temporal Expressiveness in Database Queries

that has a lower bound of lb and an upper bound of
ub. The lower bound is always less than the upper
bound. Possible values for bounds range from nega-
tive to positive infinity with all the real numbers in
between. So, for example,

(RREL onset–headache Temperature–of–99F
(25 minutes) (2 hours))

specifies that the onset of headache occurred from two
hours before the temperature of 997F was recorded to
five minutes after the temperature of 997F was re-
corded, and

(RREL serum–sodium–measurement serum–
potassium–measurement (0 seconds)
(0 seconds))

specifies that the time of the two measurements was
identical.

Consequently, if we perform the following two
DXtractor queries,

1 BEFORE 2 BY 5 days
1 BEFORE 2 WITHIN 10 days

and combine their results with the AND operator,
DXtractor will return all those cases in which 1 oc-
curred 5 to 10 days prior to 2. This is equivalent to
TUP’s

(RREL 1 2 (5 days) (10 days))

In general, by combining results of the BY and
WITHIN operators, we can express all bound pair val-
ues for the lower and upper bounds between two time
points. This provides the expressivity of a point-based
system such as the TUP.

Now that we have shown that DXtractor temporal op-
erators can express the point relations of the TUP, we
demonstrate the expressive power available through
the use of DXtractor’s simple combination mecha-
nisms. We present several clinical examples that illus-
trate the following complex operations—ordinal se-
lection, time windows, and two interval relations.
Some of these operations have been identified by
other researchers as being either awkward or impos-
sible to implement using standard (e.g., not tempo-
rally enhanced) SQL.18

Example I: Ordinal Selection. How can the group of
patients with type I diabetes who have had at least
two glycohemoglobin (HbA1c) values greater than
10 percent be retrieved from the database? Such a

query would benefit health care providers who may
be managing a group of patients with diabetes, since
it readily identifies those patients who have histories
of poor glycemic control. The set of all patients who
have each had only one glycohemoglobin value
greater than 10 percent is less helpful, since many
newly diagnosed diabetics will have had such a value
at diagnosis. Therefore, the exclusion of the first such
value would yield a more useful and meaningful
group of patients. To create this list of patients, we
could generate the following hypothetic subpopula-
tions in DXtractor:

Set 1: Diagnosis: Type I diabetes mellitus;
604 patients

Set 2: Lab: HbA1c > 10%; 516 patients
Set 3: Temporal: EARLIEST 2; 516 patients
Set 4: Temporal: 2 AFTER 3; 198 patients
Set 5: Boolean: 1 AND 4; 165 patients

Set 4 represents only those patients who have had at
least two occurrences of glycohemoglobin values
greater than 10 percent; if a patient only had one oc-
currence of the elevated laboratory value, they would
not have a temporal value AFTER the EARLIEST one
isolated in Set 3, and so would not be included in Set
4. Set 5 represents the goal group—only diabetic pa-
tients with at least two occurrences of glycohemoglo-
bin values greater than 10 percent. This set could be
further pruned to be even more clinically useful, per-
haps by limiting it to those patients in whom the gly-
cohemoglobin values occurred only within the last
year, for example.

Ordinal selection of time points is also possible with
one additional procedure; in the example above, the
second occurrence of a glycohemoglobin value greater
than 10 percent could be isolated by inserting the fol-
lowing step:

Set 5: Temporal: EARLIEST 4; 198 patients
Set 6: Boolean: 1 AND 5; 165 patients

The time stamp for each patient in Set 5 represents
the date and time of the second elevated glycohemo-
globin value, since Set 4 included only those patients
who had two or more occurrences, and the EARLIEST
of those must be the second. To limit this group to the
diabetic patients only, we must again use AND on our
final set with the group of diabetic patients, Set 1.

It is important to note that the temporal information
stored in the final set (Set 6) is not the time of the
second occurrence of the elevated glycohemoglobin
value. This is because the Boolean combination com-

Journal of the American Medical Informatics Association Volume 7 Number 2 Mar / Apr 2000 159

bines all temporal information between the two sets
and renders it uninterpretable.

If the nth occurrence of an elevated glycohemoglobin
value is desired, this is just a recursive generalization
of steps 4 and 5 in the last example. In many ways,
this procedure is conceptually similar to the technique
in the Lisp or Scheme programming language of
‘‘CDRing down a list’’ of temporal events until we
arrive at the nth term in the sequence. We repeatedly
strip away the first term in the sequence (the EAR-
LIEST one)—the CAR—and leave the remaining
terms to work with (those AFTER the EARLIEST)—
the CDR. Although an nth operator is not itself im-
plemented in DXtractor, repeated iterations of the pro-
cedure above effectively allow for retrieval of nth
instances, if n is not especially large.

The previous example, however, contains an inten-
tional flaw to allow for a more detailed analysis of
DXtractor’s capabilities. The retrieved sequence of
temporal occurrences of elevated glycohemoglobin
values does not guarantee that the first, excluded
value occurred around the time of the patient’s initial
diagnosis of diabetes, and it is only these initial values
that should be excluded. The query sequence must be
refined, therefore, to exclude only those patients
whose first elevated glycohemoglobin value occurred
around the time (say, within one month) of their di-
agnosis. This can be done with the following hypo-
thetic DXtractor query sequence:

Set 1: Diagnosis: Type I diabetes mellitus;
604 patients

Set 2: Lab: HbA1c > 10%; 516 patients
Set 3: Temporal: 2 AFTER 1; 405 patients
Set 4: Temporal: EARLIEST 3; 405 patients
Set 5: Temporal: 4 EQUALS 1 WITHIN 1 MONTH;

315 patients
Set 6: Temporal: 3 AFTER 5; 252 patients
Set 7: Boolean: 3 NOT 5; 90 patients
Set 8: Boolean: 6 AND 7; 342 patients

Set 3 represents all patients with diabetes who have
had an elevated glycohemoglobin value at any time
after their diagnosis date. Set 5 represents those pa-
tients for whom the earliest recorded high glycohe-
moglobin value was around the time of their diag-
nosis. Set 6 represents those patients who have had at
least one other high glycohemoglobin value after the
time of their diagnosis; this is part of our goal popu-
lation.

The remaining patients for whom we are looking are
those with one or more high values, the first of which
did not come around the time of their diagnosis. This
group is represented by Set 7. Finally, we join these

last two groups in the final step and generate our goal
population, Set 8. Restated, this patient set represents
the group of all diabetic patients who have had at
least one elevated glycohemoglobin value that is not
coincident with the time of their diagnosis.

It is important to note that Sets 1 and 3 were used
several times in this sequence of steps. This helps il-
lustrate one of the advantages of performing complex
queries in a stepwise fashion—that is, the interme-
diary query subpopulations may be used several
times in the process.

Example II: Time Windows. The ability to determine
the temporal relationship between two events is an-
other important aspect of medicine. Often, it is desir-
able to know that two events occurred within a certain
amount of time of each other or that they were
separated by at least a certain amount of time.
These ‘‘time windows’’ are completely specifiable by
DXtractor. For instance, to find those patients with
congenital hypothyroidism who were not seen in the
endocrine clinic after their most recent elevated thy-
rotropin (TSH) laboratory result (i.e., a value greater
than or equal to 10 mU/ml), the following hypothetic
query sequence could be performed:

Set 1: Diagnosis: congenital hypothyroidism;
68 patients

Set 2: Lab: TSH $ 10 mU/mL; 262 patients
Set 3: Temporal: LATEST 2; 262 patients
Set 4: Visit: Visit # {Current Date}; 3962 patients
Set 5: Temporal: 4 AFTER 3; 205 patients
Set 6: Boolean: 2 NOT 5; 57 patients
Set 7: Boolean: 1 AND 6; 6 patients

Set 3 represents patients with a history of elevated
thyrotropin values and, for each, the associated time
point that represents the most recent occurrence of an
elevated value. Set 5 represents the patients who vis-
ited the clinic after their most recent thyrotropin ele-
vation (the opposite of what we are looking for). Set
6 excludes the patients who were seen after the most
recent elevation from all those who had elevated val-
ues. In our goal set, Set 7, we find the intersection of
Set 6 and Set 1, those who have the diagnosis of con-
genital hypothyroidism.

This example demonstrates a qualitative temporal re-
lationship. If we want to examine a more quantitative
relationship, such as the group of patients who were
seen within one month after an elevated thyrotropin
level, we can simply modify Set 5 above to:

Set 5: Temporal: 4 AFTER 3 WITHIN 1 MONTH;
140 patients

160 NIGRIN, KOHANE, Temporal Expressiveness in Database Queries

Example III: Time Intervals MEETS and MET-BY.
Finding the interval of time that a certain character-
istic holds true for a patient is possible in the DXtrac-
tor environment. An example of this draws on the
CWS clinical data described earlier. Let us determine
the interval of time that a group of patients in a pe-
diatric endocrinology clinic population was noted to
have a minimal amount of breast development, de-
scribed as ‘‘Tanner Stage 2 breasts.’’ The following hy-
pothetic query sequence in DXtractor generates the
desired information:

Set 1: Clinical: Tanner breast = 2; 819 patients
Set 2: Temporal: EARLIEST 1; 819 patients
Set 3: Temporal: LATEST 1; 819 patients

For each patient in this subpopulation, the interval of
time during which they had Tanner Stage 2 breasts is
delimited by the starting date (the Event Date for that
patient in Set 2) and the ending date (the Event Date
for that patient in Set 3).

We may want to know whether this interval is punc-
tuated by periods during which the patient did not
have Tanner Stage 2 breasts. Clinically, this scenario
occurs with girls who present initially to a pediatric
endocrinologist with the chief complaint of premature
breast development (Tanner Stage 2). If this problem
presents in infancy, it usually resolves with no inter-
vention and the child regresses to a prepubertal state
(Tanner Stage 1). During a normal puberty, these chil-
dren will eventually develop Tanner Stage 2 breasts
again. They will then have been followed through the
sequence of Tanner breast Stages 2, 1, and 2. In other
words, the total interval of time represented by the
earliest to the latest dates of Tanner Stage 2 really rep-
resents a concatenated series of two shorter intervals.
To generate the list of patients in whom a Tanner
Stage 2 breast characterization has been uninterrupted
by a Tanner Stage 1 characterization (as described
above), we can perform the following hypothetic
query sequence:

Set 1: Clinical: Tanner Breast = 2; 819 patients
Set 2: Temporal: EARLIEST 1; 819 patients
Set 3: Temporal: LATEST 1, 819 patients
Set 4: Clinical: Tanner Breast = 1; 1427 patients
Set 5: Temporal: EARLIEST 4; 1427 patients
Set 6: Temporal: LATEST 4; 1427 patients
Set 7: Temporal: 6 BEFORE 2; 515 patients
Set 8: Temporal: 5 AFTER 3; 50 patients
Set 9: Boolean: 7 OR 8; 565 patients

Set 7 contains those patients for whom all episodes of
‘‘Tanner Breast = 1’’ occur before the first occurrence

of ‘‘Tanner Breast = 2’’; Set 8 contains patients for
whom all episodes of ‘‘Tanner Breast = 1’’ occur after
the last occurrence of ‘‘Tanner Breast = 2.’’ The union
of these groups (in Set 9) represents the goal popu-
lation, those patients in whom the Tanner Stage 2
characterization has been uninterrupted by a Tanner
Stage 1 characterization.

This example illustrates some of the 13 temporal re-
lations described in Allen’s interval algebra7—specif-
ically, the MEETS and MET-BY relations. We could
also have looked for those patients in whom the Tan-
ner 2 characterization was interrupted by a Tanner 1
characterization. This would have illustrated Allen’s
DURING and CONTAINS relations. In a similar man-
ner, judicious use of our temporal operators allows us
to express the remaining nine relations—EQUALS,
OVERLAPS, OVERLAPPED-BY, STARTS, STARTED-
BY, ENDS, ENDED-BY, BEFORE, and AFTER. Previ-
ously, we have shown how all 13 interval relations
specified by Allen can be expressed as conjunctions of
upper and lower bounds on pairs of points (in this
case, interval endpoints) using the range relation of
the TUP. Since we have already shown that we can
test for all values of upper and lower bounds between
two time points (i.e., a TUP range relation), we can
also query for all 13 interval relations. The next ex-
ample illustrates the OVERLAPS and OVERLAPPED-
BY relations.

Example IV: Time Intervals OVERLAPS and OVER-
LAPPED-BY. Some patients with insulin-dependent
diabetes mellitus and a long history of very high gly-
cohemoglobin values are at risk of developing renal
complications, including proteinuria. To monitor for
this condition, endocrinologists routinely test patients’
urine for microalbuminuria. This finding may often
persist even after patients have improved their gly-
cemic control and glycohemoglobin values. The fol-
lowing query sequence finds patients with these find-
ings—elevated glycohemoglobin value (greater than
12 percent), followed by onset of microalbuminuria,
followed by a glycohemoglobin value less than 12
percent, but with persistence of microalbuminuria.

Set 1: Lab: HbA1c > 12%; 112 patients
Set 2: Temporal: EARLIEST 1; 112 patients
Set 3: Temporal: LATEST 1; 112 patients
Set 4: Lab: Urine microalbumin > 20 mg/g;

21 patients
Set 5: Temporal: EARLIEST 4; 21 patients
Set 6: Temporal: LATEST 4; 21 patients
Set 7: Temporal: 2 BEFORE 5; 20 patients
Set 8: Temporal: 3 BEFORE 6; 13 patients
Set 9: Temporal: 5 BEFORE 3; 19 patients
Set 10: Boolean: 7 AND 8 AND 9; 12 patients

Journal of the American Medical Informatics Association Volume 7 Number 2 Mar / Apr 2000 161

This form of interval querying is possible in the
DXtractor environment, even though neither the un-
derlying database nor our query language directly
supports interval representations. Even so, it is often
not immediately obvious how to generate such re-
sults in DXtractor, primarily because of the many
steps required. In the Discussion section we address
how the complexity that may arise from the multi-
step composition of temporal operations can be sim-
plified for users by storing complex query sequences
for reuse.

Implementation

DXtractor is implemented in the Java computer lan-
guage and makes extensive use of Java database con-
nectivity (JDBC) methods for database operations. It
is a password-protected applet and is accessed via a
Web page using any Java-capable Web browser. The
Web page lies within the Children’s Hospital firewall,
adding another level of security. The CWS data are
stored in an Oracle 7 relational database. Execution
times for queries range from approximately two sec-
onds to ten minutes, depending on the complexity of
the query and the number of patients retrieved. None
of the individual queries contained in the examples
above took longer than one minute. DXtractor em-
ploys multi-threading techniques to allow many que-
ries to execute concurrently, preventing ‘‘downtime’’
while complex retrievals are being processed.

DXtractor is currently in its evaluation phase; mem-
bers of both the endocrinology and nephrology divi-
sions at Children’s Hospital are using the application
for a variety of clinical and basic science research ef-
forts as well as clinical management and administra-
tive tasks. DXtractor logs all user activity, and each
user completes a brief exit questionnaire when they
have completed their queries. This questionnaire asks
whether users were able to retrieve the data they were
seeking and whether they could have obtained these
same data expeditiously using another retrieval tech-
nique (e.g., by manual record review or with the help
of research assistants).

Discussion

We have described DXtractor, an application we de-
veloped to allow for population-based data mining by
clinicians of a large clinical database. We then out-
lined DXtractor’s basic operations and described how
the temporal operators of DXtractor can be combined
to create the expressivity of a point-based reasoner
such as the TUP. Furthermore, we demonstrated how
this expressivity allows DXtractor to test for the 13

temporal interval relations specified by Allen. We then
gave detailed examples of how DXtractor can be used
to address real clinical needs and questions, using ex-
isting time-stamped clinical databases.

The four examples also show how our application can
generate subpopulations of patients based on complex
temporal relationships. None of these temporal que-
ries are unique to DXtractor; what is unique, however,
is the way in which they are created. Most other ap-
proaches for temporal querying of databases use
methodologies that perform the search using a single
statement (possibly involving one or more subque-
ries). DXtractor’s stepwise method allows for the
same overall queries to be performed, but with mul-
tiple cascading queries. An advantage of this method
is that the subpopulations generated ‘‘along the way’’
remain clinically meaningful and can themselves be
useful to the clinician. Subpopulations may also be
used several times in the course of a complex overall
query.

DXtractor works with straightforward database im-
plementations of Wiederhold’s classic TOD model us-
ing standard SQL with no temporal extensions. Since
many (if not most) medical institutions now maintain
TOD-based databases, DXtractor’s operations and ar-
chitecture are available to them. This is in contrast to
approaches that require at least a re-engineering of
part of the database to permit extensions to its tem-
poral representations. Although the SQL queries nec-
essary to implement each of the ‘‘atomic’’ queries we
have defined are specific to our institution, it would
not be difficult to adapt them to other locations.

Initial use by nonprogramming clinicians has shown
that the concept of set-based manipulation of patient
populations is easily grasped. We speculate that this
comes from a broad familiarity with the overall ap-
proach, since it is similar to that used in PaperChase,19

Web search engines, and other routinely used com-
puter applications.

We informally evaluated this by asking a group of
four clinicians in the Division of Endocrinology at our
institution to perform a group of clinical queries using
DXtractor. The physicians were chosen on the basis of
their perceived familiarity with computers. One has a
strong computing background, including a degree in
computer science, whereas the other three have only
a standard working knowledge of commonly used
computer applications (such as word processors and
spreadsheets) and modest experience using the Inter-
net. Each clinician was present at a one-hour seminar
in which DXtractor was described and demonstrated,
but no further help in executing the queries was

162 NIGRIN, KOHANE, Temporal Expressiveness in Database Queries

given. Each clinician was asked to generate the fol-
lowing lists of patients:

n Your patients (patients primarily followed by you,
not ones you may have supervised in clinic)

n Your female patients

n Your female patients with insulin-dependent dia-
betes mellitus who have a history of at least one
glycohemoglobin value greater than or equal to 12
percent

n The patients who have both growth hormone defi-
ciency and hypothyroidism and were 8 years old or
older on Jan 1, 1998

n Of the patients found on the last query, those who
have never had a thyrotropin value greater than or
equal to 20 mU/mL

All four clinicians were able to successfully complete
all the queries. Although clearly not a rigorous or
comprehensive study, it does lend support to DXtrac-
tor’s fundamental querying framework and indicates
that other personnel could feasibly exploit the pro-
gram’s features, including both Boolean and temporal
set combinations.

More sophisticated temporal queries may be awk-
ward to run routinely because of their length and
complexity. In this light, we are currently augmenting
DXtractor to allow users to store commonly per-
formed query operations. This will allow a series of
linked steps to be performed with a single command.
For instance, a diabetes nurse educator who routinely
wants to analyze the group of diabetic patients with
elevated glycohemoglobin levels will be able to store
the set of queries included in Example I and retrieve
this list of patients in one step, hiding the underlying
complexity. Essentially, these linked steps will be im-
plemented as macros for which parameters can be
specified, for which users need to enter only the spe-
cific values that interest them. (For example, the dia-
betes nurse educator would simply input the worri-
some glycohemoglobin value.) This macro language
will also enable us to provide higher-level abstrac-
tions of the more complex temporal operations de-
scribed in the examples above.

Finally, a programmatic interface to identified sub-
populations will also be created, to provide standard-
ized ways of delivering streams of subpopulation-spe-
cific data. This will allow other developers to create
applications that exploit these data sources, including
graphing, report generation, and machine learning
tools.

There is a large class of temporal operations that
DXtractor does not perform and has not been de-
signed to perform. For example, it can generate only
the most basic abstractions across intervals (e.g., an
interval in which no glycohemoglobin value was less
than 11 percent). It does not have, for example, the
abstraction mechanisms of the Resume20 or TrenDx5,6

systems that would enable it to describe multiphasic
trends over noisy data sets. Another temporal func-
tion for which it cannot test is periodicity of repetition
of a particular set of events. There are almost certainly
many more temporal queries that are difficult or im-
possible to make in the DXtractor framework. None-
theless, DXtractor’s temporal capabilities provide a
significant improvement in the temporal expressivity
accessible to clinicians using standard time-stamped
clinical databases, capabilities that address many of
the most routinely requested temporal data analyses
in medical environments.

References n

1. Combi C, Pinciroli F, Cavallaro M, Cucchi G. Querying tem-
poral clinical databases with different time granularities: the
GCH-OSQL language. Proc Annu Symp Comput Appl Med
Care. 1995:326–30.

2. Das AK, Musen MA. A temporal query system for protocol-
directed decision support. Methods Inf Med. 1994;33(4):
358–70.

3. Rucker DW, Maron DJ, Shortliffe EH. Temporal represen-
tation of clinical algorithms using expert-system and data-
base tools. Comput Biomed Res. 1990;23(3):222–39.

4. Kohane IS. Temporal reasoning in medical expert systems.
In: Salomon R, Blum B, Jørgensen M (eds). Medinfo. 1986:
170–4.

5. Haimowitz IJ, Kohane IS. Managing temporal worlds for
medical trend diagnosis. Artif Intell Med. 1996;8(3):299–321.

6. Haimowitz IJ, Kohane IS. Automated trend detection with
alternate temporal hypotheses. Proceedings of the 13th In-
ternational Joint Conference on Artificial Intelligence;
Chambery, France; Aug 28–Sep 3, 1993; pp 146–51.

7. Allen J. An interval-based representation of temporal
knowledge. Proceedings of the International Joint Confer-
ence on Artificial Intelligence; Vancouver, Canada; Aug 24–
28, 1981; pp 221–6.

8. Allen JF. Maintaining knowledge about temporal intervals.
Commun ACM. 1983;26(11):832–43.

9. Tansel AU, Clifford J, Gadia SK, Segev A, Snodgrass RT
(eds). Temporal Databases: Theory, Design, and Implemen-
tation. Redwood City, Calif: Benjamin/Cummings, 1993.

10. Wiederhold G, Fries JF, Weyl S. Structured organization of
clinical databases. Proceedings of the American Federation
of Information Processing Societies National Computer
Conference; Anaheim, California; May 19–22, 1975; pp 479–
85.

11. McDermott D. A temporal logic for reasoning about pro-
cesses and plans. Cognit Sci. 1982;6:101–55.

12. Dean T. Temporal reasoning involving counterfactuals and
disjunctions. Proceedings of the 5th International Joint Con-
ference on Artificial Intelligence; Los Angeles, Calif; Aug
18–23, 1985; pp 1060–2.

Journal of the American Medical Informatics Association Volume 7 Number 2 Mar / Apr 2000 163

13. Kohane IS. Getting the data in: three-year experience with
a pediatric electronic medical record system. Proc Annu
Symp Comput Appl Med Care. 1994:457–61.

14. Cohen LE, Wondisford FE, Salvatoni A, et al. A ‘‘hot spot’’
in the Pit-1 gene responsible for combined pituitary hor-
mone deficiency: clinical and molecular correlates. J Clin
Endocrinol Metab. 1995;80(2):679–84.

15. Kohane IS, Faizan K, Adjanee N, Najjar SS. Can cost effec-
tiveness of growth hormone be improved? Pediatr Res.
1993;33(suppl):S51.

16. Gordon CM, Rowitch DH, Mitchell ML, Kohane IS. Topical
iodine and neonatal hypothyroidism. Arch Pediatr Adolesc

Med. 1995;149(12):1336–9.
17. Nigrin DJ, Kohane IS. Data mining by clinicians. Proc AMIA

Symp. 1998:957–61.
18. Das AK, Musen MA. A comparison of the temporal expres-

siveness of three database query methods. Proc Annu Symp
Comput Appl Med Care. 1995:331–7.

19. Beckley RF, Bleich HL. PaperChase: a computer-based re-
print storage and retrieval system. Comput Biomed Res.
1977;10(4):423–30.

20. Shahar Y, Tu S, Musen M. Knowledge acquisition for tem-
poral abstraction mechanisms. Knowledge Acquisition.
1992;1(4):217–36.

