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Abstract

Most older individuals develop inflammageing, a condition characterized by elevated levels of 

blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, 

and premature death. Potential mechanisms of inflammageing include genetic susceptibility, 

central obesity, increased gut permeability, changes to microbiota composition, cellular 

senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional 

mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor 

for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. 

Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, 

depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects 

the clinical course of non-CVD health problems is controversial. This uncertainty is an important 

issue to address because older patients with CVD are often affected by multimorbidity and frailty 

— which affect clinical manifestations, prognosis, and response to treatment — and are associated 

with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation 

affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and 

interfering with homeostatic signalling is supported by mechanistic studies but requires 

confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset 

of cardiovascular frailty should be tested in clinical trials.

With the extension of life expectancy and the rising percentage of older individuals in the 

general population, understanding why ageing results in progressively higher susceptibility 

to chronic morbidity, disability, and frailty has become a public health priority1. An 
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interesting hypothesis stems from the observation that older organisms tend to develop a 

pro-inflammatory status that is characterized by high levels of pro-inflammatory markers in 

cells and tissues, a condition often named inflammageing, a term first coined in 2000 by 

Claudio Franceschi2. Strong evidence indicates that inflammageing is a risk factor for 

cardiovascular disease (CVD), in addition to many age-associated chronic diseases and other 

adverse health outcomes. Whether inflammageing contributes causally to CVD and other 

comorbid conditions or is instead a noncausal marker of some other underlying mechanisms 

is still debated. Other than calorie restriction and physical activity, treatment options for 

inflammageing rely on small molecules or antibodies that interfere with inflammatory 

mediators or their biological targets rather than targeting the underlying causes, resulting in 

highly heterogeneous efficacy.

In this Review, we summarize the current understanding of inflammageing. We explore risk 

factors and speculate on potential causes, and we look at possible roles of inflammageing in 

CVD and other conditions that are highly prevalent and often coexist with CVDs in older 

individuals. We report on findings from intervention studies aimed at modulating 

inflammation in different diseases, and in particular whether these interventions prevent or 

attenuate the clinical course of CVD. We continue by examining the role of inflammation in 

conditions that are typical of ageing and often comorbid with CVD, such as multimorbidity, 

sarcopenia, and frailty. Finally, we identify gaps in our knowledge and suggest priorities for 

future research.

Risk factors and causes of inflammageing

Ageing is associated with immune dysregulation, of which the most evident characteristics 

are high blood levels of pro-inflammatory immunogenic stimulations3,4. The pro-

inflammatory state is characterized by high circulating levels of pro-inflammatory markers, 

including IL-1, IL-1 receptor antagonist protein (IL-1RN), IL-6, IL-8, IL-13, IL-18, C-

reactive protein (CRP), IFNα and IFNβ, transforming growth factor-β (TGFβ), tumour 

necrosis factor (TNF) and its soluble receptors (TNF receptor superfamily members 1A and 

1B), and serum amyloid A. At this time, a comprehensive list of pro-inflammatory markers 

that are associated with ageing has not been compiled owing to the difficulty of applying 

high-sensitivity discovery proteomics in plasma and serum. High levels of age-associated 

pro-inflammatory markers are detected in the majority of older individuals, even in the 

absence of risk factors and clinically active diseases3,5–7. Despite its fundamental 

physiological role as a defence mechanism against infections or extraneous molecules, when 

inflammation becomes sustained and prolonged it becomes detrimental to health. According 

to the antagonistic pleiotropy theory of ageing, inflammation might have been evolutionarily 

selected because of beneficial effects early in life and in adulthood, although it becomes 

detrimental in old age when the effect of natural selection is no longer active8. 

Epidemiological studies have found that inflammageing is a risk factor for CVD, cancer, 

chronic kidney disease, dementia, and depression as well for global indicators of poor health 

status, such as multimorbidity, mobility disability and disability in activities of daily living, 

sarcopenia, frailty, and premature death9–19. On the basis of these findings, many 

researchers have proposed that inflammageing is a marker of accelerated ageing and should 

be considered to be one of the pillars of the biology of ageing20. The root causes of 
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inflammageing are poorly understood, as are the mechanisms that connect inflammageing 

with CVD and with many other health outcomes. A critical question is whether 

inflammation directly causes the associated pathology or is instead a biomarker for the rate 

of biological ageing. The answer to this question might depend on the age of the patients and 

whether we consider CVD by itself or CVD in the context of associated multimorbidity, 

impairments, and disabilities.

Genetic susceptibility.

Studies in large populations have identified a multitude of genetic variants that affect blood 

levels of inflammatory mediators21. We focus on associations that have been confirmed by 

multiple studies and are functionally relevant21–25. Examining common variants of the 

IL1RN gene revealed that the rs4251961 minor allele is associated with a lowered serum 

level of IL-1RN and that the rs579543 single nucleotide polymorphism (SNP) is also 

independently associated with IL-1RN levels, whereas the IL1RN 1018 haplotype correlates 

with higher concentrations of IL-1β and IFNγ22. These findings have been confirmed in 

three independent cohorts26, and further research has demonstrated that these factors affect 

the pathophysiology of human infections27 and the risk of developing insulin resistance28 

and knee osteoarthritis29.

A SNP in the promoter region of IL6 at position−174G > C magnifies IL-6 production in 

response to inflammatory stimuli, but this SNP has been associated inconsistently with 

baseline IL-6 levels. Carriers of the−174G > C mutation have an increased risk of 

developing various major diseases, including Alzheimer disease30, CVD31, non-insulin-

dependent diabetes mellitus32, bone fragility33, and systemic-onset juvenile chronic 

arthritis34. A genome-wide association study comparing >2,000 Chinese centenarians to 

middle-aged controls found that the SNP rs2069837 in IL6 was significantly associated with 

extreme longevity, confirming the role of IL-6 in conditioning morbidity and mortality, 

especially in old age35. Confirming the role of IL-6 in health, in a large Mendelian 

randomization analysis, the IL6R SNP rs7529229, marking a non-synonymous IL6R variant 

(rs8192284; p.Asp358Ala), was associated with increased circulating IL-6 levels24. Variants 

in the IL6R gene have been found to be associated with increased risk of coronary artery 

disease24, rheumatoid arthritis, atrial fibrillation, and abdominal aortic aneurysm, and with 

increased susceptibility to asthma, type 1 diabetes, and depression36,37. Multiple SNPs in the 

CRP gene are associated with higher CRP levels and increased risk of myocardial infarction 

and CVD-related death38.

These data indicate that genetic variability affects the plasma levels of several inflammatory 

markers and, through this mechanism, increases the risk of many apparently uncorrelated 

diseases. Therefore, the cumulative effect of these genetic polymorphisms might be a risk 

factor for multimorbidity and frailty, although this hypothesis has never been fully tested. A 

gene-expression study conducted on whole-blood RNA samples from a large population 

cohort in Europe and the USA revealed that immune response and inflammation were the 

most highly upregulated pathways in association with ageing39. A few gene transcripts 

mediate the age–IL-6 association, among which the largest affected transcript, SLC4A10 
mRNA (encoding the sodium-driven chloride bicarbonate exchanger), explains as much as 
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19% of this association40. Interestingly, this study did not detect an age-related increase in 

IL6 mRNA transcript levels, suggesting that the overproduction of circulating proteins 

occurs in peripheral tissues rather than in blood cells.

Accumulating evidence shows that cellular changes that contribute to inflammageing are 

mediated by microRNAs (miRNAs), which are non-coding, single-stranded RNAs spanning 

17–25 nucleotides that generally modulate protein-expression programmes by interacting 

with mRNAs that share partial complementarity, thereby reducing mRNA stability and/or 

translation41. Studies have shown age-related differences in the abundance of specific 

miRNAs in circulating cells, plasma, and whole blood from older compared with younger 

individuals42–48. Findings from these studies are inconsistent, possibly owing to differences 

in sample size, age composition, and health status of the examined individuals, and because 

miRNA detection methods vary widely in specificity, accuracy, and sensitivity. In addition, 

given that miRNAs mostly function as intra-cellular modulators of mRNAs, their 

concentration in whole blood might be a poor indicator of their physiological effects. 

Nonetheless, miR-25–3p, miR-92a-3p, miR-93–5p, miR-101–3p, miR-106b-5p, miR-142–

5p, miR-151a-3p, and miR-181a-5p tend to be under-represented, whereas miR-21–5p and 

miR-126–3p are over-represented at older ages47,49,50. Age-related changes in miRNAs have 

been suggested to contribute to inflammageing. For example, miR-126–3p inhibits 

endothelial inflammation, and low levels of miR-126–3p were found in patients with CVD 

and diabetes50, whereas miR-21–5p levels are correlated negatively with CRP and 

fibrinogen levels, and miR-21–5p levels are higher in patients with CVD than in age-

matched controls44. Other miRNAs, such as miR-146 and miR-155, might also have a role 

in inflammageing by affecting cellular senescence or modulating immune responses, 

although these activities might not be reflected by changes in miRNA concentration or these 

miRNAs might be detected only in exosomes or other structures carrying miRNAs51. 

Overall, the contribution of miRNAs to inflammageing is an active area of investigation with 

high translational potential.

Visceral obesity.

Epidemiological studies provide some information about the origin of inflammageing. 

Obesity — particularly central obesity — is strongly associated with a pro-inflammatory 

state52–54. Adipocytes in abdominal, intramuscular, liver, and pericardial fat can produce 

pro-inflammatory and chemotactic compounds, such as IL-6, IL-1β, TNF, and C-C motif 

chemokine 2 (CCL2), as well as hormones that modulate inflammation, such as adiponectin 

and leptin54. The visceral fat tissue of obese individuals is infiltrated by T lymphocytes, 

macrophages, and monocytes. T lym-phocytes secrete IFNγ, which stimulates the 

production of several chemokines from adipocytes, including CCL2, CCL5, C-X-C motif 

chemokine 9 (CXCL9), and CXCL10, which further amplify tissue T cell migration. The 

number of B lymphocytes and macrophages in visceral adipose tissue from obese 

individuals is also increased and is correlated with BMI55. Studies with animal models 

suggest that a specific subset of B cells expressing the TNF ligand superfamily member 9 

and producing TNF, IFNγ, and granzyme B is increased in the peritoneal cavity during 

ageing56. Cytokines released by B cells contribute to the phenotypic switch of adipocytes in 

the visceral cavity, causing them to release adipokines, other pro-inflammatory markers, and 
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cell debris52. Activated monocytes that give rise to M1 and M2 macrophages produce even 

more inflammatory compounds that probably appear in the circulation57. Weight loss 

through reduced dietary intake and possibly bariatric surgery is associated with reductions in 

primary pro-inflammatory markers, in part owing to normalized expression of inflammation-

related genes in white adipose tissue and to downregulation of the NLRP3 

inflammasome58–61. In addition, calorie restriction in humans is associated with a 

substantial reduction in pro-inflammatory markers in the blood62. Weight loss combined 

with exercise improves functional status and reduces some of the features of frailty in obese 

older individuals, improves the cardiovascular risk profile, and reduces the risk of CVD, 

although whether these beneficial effects are caused by reduced inflammation remains 

unclear63–65.

Microbiota and gut permeability.

A new hypothesis on the origin of inflammation highlights changes that occur in the gut 

microbiota with ageing as well as age- associated changes in gut permeability. Despite large 

variability in the gut microbiota found in different populations, geographic regions, and 

settings, evidence suggests that ageing is associated with a reduction in beneficial 

commensal microorganisms — such as Coprococcus, Faecalibacterium, and Lactobacillus 
— as well as a decrease in the Firmicutes: Bacteroidetes ratio66–68. The disappearance of 

these microorganisms is important because they normally counteract the expansion of 

pathogenic microbial communities, while also maintaining intestinal barrier integrity by 

fermenting starches and dietary fibres and producing mucus and lipid metabolites, such as 

short-chain fatty acids (primarily acetate, propionate, and butyrate)66–68. As beneficial 

intestinal bacteria decrease in abundance with ageing, other bacteria increase in relative 

abundance, including symbiotic bacteria that can become pathogenic under inflamed 

conditions, often termed pathobionts69. This category of microorganisms is enriched in the 

gut of older adults and is primarily dominated by facultative anaerobes — such as 

Fusobacterium and Staphylococcus — a state that has been associated with increased levels 

of inflammatory cytokines in plasma8,70.

Increased gut dysbiosis has been postulated to increase mucosal barrier permeability, 

thereby allowing bacteria and their products — including pathogen-associated molecular 

patterns (PAMPs), damage-associated molecular patterns (DAMPs), and microbial-

associated molecular patterns (MAMPs)— into the circulatory system. Together, these 

factors contribute to a chronic pro-inflammatory state71. This theory is supported by studies 

in animal models, but no definitive evidence exists of increased gut permeability and leakage 

of pro-inflammatory products in older individuals who are free from overt inflammatory 

disease72. Dysbiosis seems to be more severe in conditions in which prevalence increases 

with ageing, such as obesity and type 2 diabetes73. Of note, changes in gut microbiota 

composition have been shown to be associated with increased frailty74–76, which could be 

owing to gut dysbiosis-induced inflammation. Centenarians, who can be considered extreme 

examples of healthy ageing, have an enrichment of Akkermansia, Bifidobacterium, and 

Christensenellaceae in their intestinal flora67, which promote positive immune function, 

have anti-inflammatory activity, diminish the effects of obesity, and contribute to metabolic 

homeostasis77–79.
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Consistent with the notion that changes in the gut microbiota composition can affect healthy 

ageing, calorie restriction — the most powerful strategy to increase longevity in animal 

models — causes changes in microbiota composition, decreases inflammation, and improves 

gut barrier integrity80. A healthy intestinal tract flora can theoretically be promoted by the 

administration of probiotics, prebiotics, or a combination of the two81–83. Some studies have 

shown that this strategy can reduce systemic inflammation and progression of central 

obesity, but more research in this area is needed to substantiate this initial evidence and to 

assess whether the reduction of inflammation owing to microbiota changes has beneficial 

effects on health84,85.

Cellular senescence.

A number of biological mechanisms that have been identified as hallmarks or pillars of 

biological ageing might account for inflammageing86,87. Paramount among them is the 

accumulation of senescent cells in multiple tissues. Cellular senescence is generally 

considered to be a pre-encoded cancer suppressor mechanism characterized by cell cycle 

arrest, loss of proliferation capacity, global cell enlargement, characteristic misshaped 

nuclei, presence of chromatin foci with persistent DNA damage response, increased nuclear 

factor-κB (NF-κB) signalling, and resistance to apoptosis88,89. Senescent cells are 

recognized by specific markers, including cyclin-dependent kinase inhibitor 2A (commonly 

known as p16INK4A) and increased lysosome β-galactosidase activity, although these 

markers are neither fully sensitive nor specific and, despite intense research, no gold-

standard biomarker of cellular senescence has been established90. Jeck and colleagues 

hypothesized that genetic variants associated with general susceptibility to multiple diseases 

are enriched in specific areas of the genome. Interestingly, SNPs located near regulators of 

senescence and inflammation are particularly associated with diseases of ageing, such as 

cancer, CVD, and type 2 diabetes, and the strongest association was found with a variant in 

the CDKN2A gene, which encodes the p16INK4A protein that is over-expressed in many 

forms of senescence. These findings were replicated in a meta-analysis that included 410 

genome-wide association studies91,92. In addition, the variant rs2811712 that is close to the 

CDKN2A gene was associated with poor physical function in two different cohorts93. 

Therefore, senescence seems to be associated with ageing, inflammation, CVD, and 

impaired physical function in older individuals, making cell senescence a strong candidate 

as a mechanism for inflammageing.

Cell senescence can be triggered by many stimuli, including critical telomere shortening, 

persistent DNA damage, oncogene activation or inactivation, epigenetic alterations, 

mitochondrial dysfunction, and exposure to DAMPs that are released by stressed cells, with 

some evidence that the phenotypic manifestations induced by different triggers are 

heterogeneous88,89. At the core of the replication arrest is increasing levels of cyclin-

dependent kinase inhibitors that block the phosphorylation of the retinoblastoma-associated 

protein and initiate cell cycle arrest. In adulthood, activation of retinoblastoma-associated 

protein can occur either through the cellular tumour antigen p53 that activates cyclin-

dependent kinase inhibitor 1 (commonly known as p21), or directly through the activation of 

p16INK4A. Theories suggest that senescence is not an acute switch but instead evolves in 

stages, from a temporary or reversible status to a chronic irreversible condition94.
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Relevant to inflammageing, senescent cells acquire a senescence-associated secretory 

phenotype (SASP) that involves the secretion of a wide range of soluble molecules. The list 

of these molecules is not comprehensive, and the molecules can vary on the basis of cell 

type and triggering factors but usually include interleukins (IL-1α, IL-1β, and IL-6), 

chemokines (IL-8 and growth-regulated-α protein), growth factors (fibroblast growth factor 

2 and hepatocyte growth factor), metalloproteinases (interstitial collagenase (also known as 

MMP1), stromelysin 1 (also known as MMP3), and collagenase 3 (also known as MMP13)), 

and other insoluble proteins and extracellular matrix components95. These secretory 

molecules mainly function in a paracrine fashion and can facilitate the development of 

cellular senescence in neighbouring cells, but some of the soluble mediators are released into 

the circulation and are likely to contribute to inflammageing96.

Studies have shown that senescent cells accumulate exponentially with ageing in different 

organs and tissues, both in model organisms and in humans97–100. In humans, the 

accumulation of senescent markers has been demonstrated in the skin, T lymphocytes, 

atherosclerotic lesions, insulin-producing β cells, kidney, endothelium, visceral fat, joint 

cartilage, cardiac muscle, liver, and many others tissues98,101–107. Some tissues are likely to 

have a greater propensity to developing cellular senescence than others, but research in this 

area is scarce. Of note, senescent T cell accumulation has been demonstrated in patients with 

chronic infections such as Cytomegalovirus (CMV) or human immunodeficiency virus 

(HIV) infection, which might explain why patients with CMV or HIV infection have 

chronically elevated levels of pro-inflammatory markers and reduced vaccine 

efficacy108–110. In mice, the clearance of p16INK4A-positive cells extends lifespan and slows 

the emergence of ageing phenotypes and age-related functional deterioration of organs and 

tissues111,112. The extent to which the burden of senescent-cell accumulation in humans is 

associated with inflammageing and organ damage, and whether a plasma protein signature 

can be developed that correlates with cell senescence burden, are important areas of 

investigation.

Impaired recycling and elimination of degraded cellular material.

Despite the apparent stability of the human body, a massive turnover of molecules, 

microorganelles, cells, and cellular components occurs constantly throughout life. A 

complex and well-regulated molecular machinery constantly surveys cellular components 

and handles the repair or elimination of biological debris as well as broken or misplaced 

fragments. Within cells, worn-out macromolecules and organelles are physiologically 

recycled by proteasome degradation or autophagy. Extracellular debris is recognized by the 

immune system through different receptors, including pattern recognition receptors, and is 

then degraded by engulfment in phagocytic vesicles113. Under pathological conditions, 

molecules are released by stressed cells undergoing necrosis (such as during ischaemia– 

reperfusion or severe infection). These molecules, called DAMPs, include reactive oxygen 

species (ROS) from damaged and unrecycled mitochondria, extra-cellular nucleotides such 

as ATP, oxidized cardiolipin, free nuclear and mitochondrial DNA fragments or histones, 

high-mobility group protein B1, oxidized LDL, amyloid-β, islet amyloid polypeptide, and 

particulates such as monosodium urate and cholesterol crystals, in addition to many 

others114. If notpromptly removed, these molecules accumulate and possibly contribute to 
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inflammageing115,116. Accordingly, inflammageing is proposed to originate from an 

imbalance between the production and disposal of cellular debris, misfolded proteins, and/or 

misplaced self-molecules that develops with age8. For example, accumulation of DAMPs is 

sensed by the NLRP3 inflammasome and causes NLRP3 oligomerization, resulting in 

caspase 1-dependent secretion of the inflammatory cytokines IL-1β and IL-18. In humans, 

IL-18 blood levels increase with ageing, and strong evidence from mouse studies indicates 

that blockade of the NLRP3 inflammasome extends healthspan, attenuating multiple age-

related degenerative changes that have been linked to inflammageing, including insulin 

resistance, thymic involution, T cell senescence, and bone loss as well as physical and 

cognitive function decline114,117,118. Of note, ROS produced by dysfunctional mitochondria 

can also trigger an inflammatory response by activating the NF-κB signalling pathway119.

Intrinsic defects in immune cells and chronic infections.

Studies conducted in isolated immune cells, mostly lymphocytes, suggest that an intrinsic 

defect in immune cells also contributes to inflammageing. For example, gene-expression 

studies show that CD4+ lymphocytes from older individuals have higher intrinsic activation 

of the NF-κB pathways than those from younger individuals120. After stimulation with anti-

CD3, the production of pro-inflammatory cytokines in vitro is lower in cells from older 

individuals than in cells from younger individuals120, a phenomenon that might be related to 

altered metabolic activity121. However, because these studies have been performed only in 

small populations, their relevance to inflammageing is unknown.

Subclinical and clinically evident chronic infections can chronically stimulate immune 

function and result in changes in levels of inflammatory markers that are indistinguishable 

from those of the inflammageing signature. Particularly relevant for inflammageing are 

human CMV and HIV infections. Human CMV infection is herpesvirus present in a latent 

state in more than half of the adult population122, where intermittent transcription episodes 

cause antigen reactivation throughout the life course. This situation might explain why the 

human CMV-specific memory T cells can comprise up to 50% of the total memory T cell 

compartment in older individuals123,124 and leads to the hypothesis that persistent human 

CMV infection has a role in immunosenescence and inflammageing. However, evidence to 

support this hypothesis remains controversial109. Some studies have found that human CMV 

infection in older individuals is associated with increased cardiovascular and all-cause 

mortality, negative immune risk profile, inflammageing, and lower antibody responses to 

influenza125–129. However, evidence that the association between CMV infection and CVD 

and mortality is mediated by inflammageing is scant at best109,130. The theoretical CMV-

associated impaired capacity to control heterologous infections in old age and the 

association with high circulating levels of pro-inflammatory cytokines have also been 

challenged109. Ultimately, whether human CMV infections cause accelerated immune 

senescence is controversial.

In the era of highly active antiretroviral therapy (HAART), patients with HIV infection have 

a life expectancy that is, on average, only slightly lower than in the general population. 

However, this therapy does not protect patients from the persistent immune activation, 

chronic inflammation, and excess risk of developing CVD and frailty131–135. Chronic 
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inflammation in HIV is mediated by depletion of memory CD41+ T cells, resulting in 

increased permeability in the gut epithelium and translocation of microbial products into the 

circulation, which causes inflammation136. Patients with HIV are also affected by 

antiretroviral-associated lipodystrophy and visceral obesity that can further contribute to 

inflammation and cause insulin resistance137.

Finally, chronic infections, such as oral infection, asymptomatic chronic infection in the 

urinary and biliary tracts, and hidden intestinal infections, are associated with the release of 

PAMPs into the circulation, which elicits a persistent inflammatory state. Treatment of these 

infections can reduce inflammageing and potentially has many long-term beneficial effects 

beyond immediate local resolution of symptoms.

As explained above, the possible causes of inflammageing are numerous and very 

heterogeneous (Fig. 1). These different mechanisms are likely to be additive and 

interconnected, acting in different combinations and with different relevance in selected 

individuals. Therefore, effectively reducing inflammation without weakening the 

surveillance and defensive functions of the immune system requires individualized 

approaches as well as an accurate diagnosis of the underlying causes of inflammation.

Consequences of inflammageing for CVD

Although strong epidemiological evidence indicates that inflammation is a powerful risk 

factor for CVD, non-cardiovascular comorbidities and conditions that are often associated 

with CVD, as well as with frailty, disability, and mortality in older individuals, and the 

mechanisms that underlie these associations have only just begun to be elucidated. 

Controversy exists on whether high levels of pro-inflammatory compounds in the circulation 

and tissues causally contribute to associated pathological conditions or whether 

inflammation is a reactive marker of underlying pathology. These two mechanisms are not 

mutually exclusive; for example, early damage that occurs during vascular endothelial cell 

inflammation participates in the pathogenesis of atherosclerotic plaques, whereas 

atherosclerosis itself produces antigens that trigger and sustain an inflammatory response, 

and senescent cells are found often in large quantities in atherosclerotic plaques. Therefore, 

multiple mechanisms amplify the role of inflammation in atherogenesis.

In this section of the Review, we summarize available evidence to suggest that chronic 

inflammation is both a risk factor and a pathogenic mechanism in CVD. Moreover, because 

inflammation also contributes to the pathogenesis of other chronic non-CVDs — such as 

anaemia, cancer, type 2 diabetes, dementia, osteoporosis, sarcopenia, chronic kidney disease, 

and depression — CVDs in old age often develop in the context of multimorbidity and 

frailty3,10,138–143 (Fig. 2). Epidemiological studies have produced insufficient evidence to 

demonstrate whether inflammation occurs in response to underlying disease pathologies or 

whether inflammation itself contributes to disease initiation and progression. To address this 

issue, we combine observational evidence with results from randomized, controlled trials 

(RCTs) that tested the efficacy of anti-inflammatory drugs in preventing or controlling CVD 

clinical manifestations (Table 1).
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Atherosclerosis.

Atherosclerosis originates from damaged endothelium that allows the accumulation of 

cholesterol-containing LDL particles in the arterial wall that tend to be oxidized, which 

triggers an inflammatory response that fails to resolve144. Activation of both innate and 

adaptive immunity actively contributes to the initiation and progression of atherogenesis, 

from early endothelial dysfunction to the development of acute thrombotic complications 

triggered by plaque rupture or erosion 9,145–149. Monocytes that migrate into the intima of 

the arterial wall differentiate into macrophages and then transform into foam cells in the 

lipid necrotic core of the atheroma147,149. Cholesterol crystals and other DAMPs present in 

the atherosclerotic lesion activate the inflammasomes within macrophages, leading to the 

release of IL-1β, IL-18, and other pro-inflammatory cytokines150 that are chemotactic for 

other inflammatory cells, including T cells and B cells, which are major drivers 

ofatherosclerosis151. Late atherosclerosis is characterized by massive cell apoptosis and 

accumulation of cells with senescent features, which support a pro-inflammatory status and 

lead to the formation of a necrotic core that ultimately causes fragility and rupture of the 

plaque, formation of a thrombus, and acute vascular occlusion.

Cells in advanced atherosclerotic plaques often show markers of senescence, such as 

p16INK4A and tumour suppressor ARF (commonly known as p14ARF in humans and p19ARF 

in mice), and express a SASP that further fuels inflammation while producing 

metalloproteinases that degrade the extracellular matrix, further destabilizing the 

atherosclerotic plaque152. In turn, the degradation of the extracellular matrix induces the 

proliferation and phenotypic shift of vascular smooth muscle cells that migrate from the 

medial layer and, by synthesizing new extracellular matrix, build a fibrous cap that stabilizes 

atherosclerotic lesions. However, in an inflammatory environment, vascular smooth muscle 

cells undergo extensive DNA damage and excessive telomere shortening, develop markers of 

senescence, and might undergo loss of proliferative capacity or even apoptosis153. In 

addition, the production of metalloproteinases from senescent cells can further weaken the 

fibrous cap. Therefore, major mechanisms of plaque stabilization are impaired, and 

additional antigens might be uncovered that further amplify the inflammatory response154. 

Preclinical studies have shown that activated subtypes of T and B lymphocytes in plaques 

contribute to plaque instability, leading to an increase in the risk of cardiovascular 

disease155. miRNAs have emerged as important regulators of cellular adhesion, 

proliferation, lipid homeostasis, and inflammatory cytokine synthesis, potentially affecting 

the balance between atherosclerotic plaque progression and regression, although their 

mechanism of action and relationship with inflammageing is not fully clarified156.

Although the detailed mechanisms that affect the genesis and progression of atherosclerosis 

are far from being fully understood, evidence is accumulating that inflammation is a major 

contributor, acting through multiple mechanisms, including a vicious cycle that accelerates 

clinical progression. Consistent with this view, longitudinal studies demonstrate that high 

blood levels of pro-inflammatory markers, including high-sensitivity CRP assay and IL-6, 

predict the risk of cardiovascular disease in both middle-aged and older adults, independent 

of other CVD risk factors157–160. Moreover, statin therapy with rosuvastatin reduces the 

incidence of major cardiovascular events in healthy individuals who are free from 
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hyperlipidaemia but who have elevated high-sensitivity CRP levels147,161. Although studies 

in endothelial cells suggest that CRP directly contributes to CVD by increasing oxidative 

stress162, other mechanistic studies and Mendelian randomization analyses in large 

populations suggest that CRP is a predictive biomarker that is not causally related to 

atherothrombosis163,164. By contrast, IL-6 and IL-1 contribute to atherosclerosis and should 

be considered to be therapeutic targets158,163. Mendelian randomization studies have shown 

that polymorphisms that affect IL-6 signalling are associated with lower life-time risk of 

cardiovascular disease23,24. In the MEASURE trial165, the IL-6 receptor blocker tocilizumab 

increased the concentration of HDL particles in patients with rheumatoid arthritis compared 

with placebo, despite an increase multicentre ENTRACTE trial166 compared the 

cardiovascular safety profile of tocilizumab to that of the TNF inhibitor etanercept in >3,000 

patients with moderate-to-severe rheumatoid arthritis, but the final results are not yet 

published.

In addition, because IL-1β production is a secondary effect of NLRP3 inflammasome 

activation, which is induced by cholesterol crystals and other DAMPs, the IL-1β signalling 

pathway has been suggested to be a promising target for atherothrombosis protection. New 

compounds that interfere with IL-1 and IL-6 signalling are under investigation163,167. The 

CANTOS trial168 has revealed that anti-inflammatory therapy with canakinumab, a human 

monoclonal anti-IL-1β antibody, significantly reduced recurrent cardiovascular events in 

>10,000 stable patients who had residual inflammation after myocardial infarction, 

independent of lowered lipid levels169. The ongoing CIRT trial170 is testing the hypothesis 

that low-dose methotrexate, a drug that suppresses IL-1β production by mononuclear cells in 

addition to other functions171, reduces major vascular events in patients with previous 

myocardial infarction and either type 2 diabetes or metabolic syndrome. In a small pilot 

study (the LoDoCo trial)172, anti-inflammatory treatment with colchicine seemed to be 

effective for secondary prevention of CVD. Larger RCTs, such as the ongoing LoDoCo2 

trial and COLCOT trials173, are needed to confirm these findings.

Type 2 diabetes.

The focus of this Review is on inflammageing conceptualized as a shared risk factor and 

pathophysiological mechanism between CVD and frailty. However, it is important to note 

that inflammation is associated with the risk and clinical evolution of non-CVD related 

disease and accelerated decline of physical function. This concept is clearly exemplified by 

the close connection between inflammation, CVD, and type 2 diabetes. Type 2 diabetes is a 

strong risk factor for CVD, and both CVD mortality and the effect of diabetes on the risk of 

CVD increase sharply with older age and frailty status174–176. Strong evidence indicates that 

insulin resistance and lipotoxicity cause the production of inflammatory mediators that cause 

neutrophil infiltration, macrophage proliferation, and smooth muscle and endothelial cell 

activation, which accelerate atherogenesis177. Excessive oxidative stress causes endothelial 

dysfunction that enables permeation, trapping, and physicochemical modification of 

circulating lipoprotein particles in the subendothelial space178. Telomeres are, on average, 

shorter and the number of cells positive for senescence biomarkers is higher in arteries from 

patients with diabetes than in individuals without diabetes, and this finding might be one of 

the mechanisms for the increased inflammation and accelerated atherosclerosis in 
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diabetes179,180. Overproduction of angiotensin II amplifies chronic inflammation and can 

cause mitochondrial dysfunction181. At the same time, inflammation is a risk factor for the 

development of diabetes and its complications, and these associations are not accounted for 

by body composition parameters138.

Treating inflammation in non-CVDs.

Of note, a causal role of inflammation in CVD pathogenesis is also suggested by clinical 

trials that used an anti-inflammatory intervention as treatment for overt, noncardiovascular 

inflammatory diseases. For example, treatment with TNF inhibitors in rheumatoid arthritis, 

an overt inflammatory disease, is associated with a decreased risk of cardiovascular 

events182–187. Treatment with TNF inhibitors in psoriasis is also associated with decreased 

incidence of major adverse cardiac events186,188,189. However, anti-inflammatory treatment 

does not always yield beneficial effects. For example, in patients with congestive heart 

failure, the levels of pro-inflammatory cytokines, especially TNF, IL-6, and IL-1, are 

markedly elevated, and the TNF level is a negative prognostic factor190–192. However, 

clinical trials with the TNF inhibitor etanercept yielded no beneficial reductions in mortality 

or hospitalization due to congestive heart failure193, whereas high doses of infliximab, a 

TNF antagonist, did not improve and even worsened moderate-to-severe congestive heart 

failure194.

Multimorbidity and frailty.

The important role of inflammation in CVD, in particular in atherosclerosis, together with 

the observation that the pro-inflammatory state typical of ageing is a strong risk factor for 

many age-related chronic diseases, explains why CVD in older individuals often precedes, 

follows, or develops in the context of multimorbidity and frailty. Patients with CVD tend to 

have greater multimorbidity than individuals who are free from CVD195. Diseases most 

often associated with multimorbidity are diabetes, chronic kidney disease, anaemia, chronic 

pulmonary disease, depression, and dementia, which all involve inflammageing as an 

important risk factor3,138,139,142,143,196. The presence of comorbid diseases is well 

established to affect both the response to treatment and the prognosis for hard clinical 

outcomes, such as cardiovascular and all-cause mortality, as well as hospitalization and 

health-care utilization197. However, limited data are available on whether CVD 

comorbidities affect non-traditional outcomes that are still very important for geriatric 

patients, such as symptom burden, functional capacity, and self-rated health197. Whether 

these important, non-traditional out-comes respond to anti-inflammatory treatment is also 

unknown because this information is not commonly collected in most RCTs.

The resulting syndromes present clinical challenges whose complexity is often ignored in 

clinical practice guidelines for single diseases, which are based on randomized clinical trials 

in which patients with multimorbidity are under-represented, including most of the trials 

cited above that targeted inflammation195. The degree of clinical complexity is even higher 

when the comorbid medical condition is frailty. Age-associated frailty is a medical 

syndrome characterized by morphological and physiological changes across multiple 

systems and organs, resulting in a progressive loss of internal homeostasis, reduced 

physiological reserves, loss of function, reduced resilience, and increased vulnerability to 
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internal and external stresses198,199. We address the general pathophysiology of frailty later 

in this Review. Here, we limit the discussion to the effect of frailty that emerges in patients 

with CVD. The prevalence of frailty in older individuals with CVD rises progressively from 

subclinical CVD, to heart failure, to overt acute syndromes, to cardiac surgery when, 

depending on the procedure, the rate of frailty can be >60%200. Strong evidence from 

multiple, large, observational studies indicates that the presence of CVD is a risk factor for 

frailty and that patients with frailty are more likely to develop CVD than those who are not 

frail201–203. This observation is not surprising because inflammation, insulin resistance, and 

coagulation problems have been identified as cardinal factors in the pathophysiology of 

frailty204–207. Therefore, CVD and frailty can be viewed as diseases arising from similar 

causal mechanisms, mutually accelerating their clinical course by vicious cycles that 

amplify inflammation, insulin resistance, and other still-unknown mechanisms, thereby 

synergistically contributing to adverse health outcomes. In accordance with this theory, 

independent of age and other risk factors, frailty in patients with CVD is associated with a 

twofold increase in the risk of death208.

We have previously proposed that a pro-inflammatory state might be caused by most of the 

described putative biological mechanisms of ageing, such as telomere shortening, cell 

senescence, mitochondrial dysfunction, altered nutrient sensing, and epigenetic alterations1. 

Therefore, the coexistence of CVD, diabetes, and frailty might be just one example of a 

general phenomenon that involves multiple diseases, as exemplified by the following 

observations. Low-grade chronic inflammation is a primary contributor to the onset and 

progression of chronic kidney disease11,142,209,210. Inflammation is a causal factor for 

cancer initiation, promotion, malignancy, and metastatic dissemination211,212. Depression is 

characterized by increased levels of pro-inflammatory cytokines and acute phase proteins in 

both peripheral blood and cerebrospinal fluid213,214. Inflammatory diseases and high levels 

of pro-inflammatory biomarkers in the blood increase the risk of depression143,215–217. 

Inflammation has a central role in age-related neuro-degeneration and in neurodegenerative 

diseases, such as Alzheimer disease218. These studies support the hypothesis that 

neuroinflammatory changes are important pathological components of Alzheimer disease 

and other neurodegenerative diseases, highlighting the potential clinical importance of 

cytokines in neurogenesis. Interestingly, most genetic variants associated with late-onset 

Alzheimer disease are within immunity-related genes219.

Inflammation and age-related frailty

The collective evidence suggests that chronic inflammation is a risk factor across multiple 

diseases, some of which are traditionally viewed as pathophysiologically unrelated, such as 

CVD157,159,160,220, diabetes138,180,221, chronic kidney disease11,142,209, cancer211,212,222, 

depression13,143,217, and dementia12,139,223. In addition, higher levels of inflammatory 

markers in blood are associated with a greater loss of muscle mass and strength, accelerated 

loss of mobility, lower-extremity performance and physical activity, and depression in older 

individuals224–228, all of which are essential elements for defining frailty on the basis of the 

criteria most often used in the literature229. From this perspective, inflammageing could act 

as a focal point for ageing mechanisms that are associated with increased susceptibility to 

stressors and impaired functional reserves. Consistent with this observation, both higher 
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baseline levels and increasing accumulation rates of IL-6 predict accelerated longitudinal 

accumulation of multiple chronic diseases in older individuals14. In addition, inflammation 

contributes to accelerated ageing in individuals with multimorbidity230, and partially 

mediates the association between multimorbidity and functional limitations and 

disability231. Not surprisingly, most patients with frailty have chronic inflammation, 

especially those who are affected by sarcopenia, which is defined as a reduction in muscle 

strength and mass that is abnormally severe for an individual’s age207,232,233.

A variety of hypotheses have been proposed to explain the link between inflammation and 

sarcopenia and frailty; interestingly, some of these mechanisms are shared with the 

pathogenesis of CVD. Inflammation is associated with reduced synthesis and activity of 

insulin-like growth factor I (IGF1), a growth factor that is essential for muscle regeneration 

and maintenance of muscle integrity and that is protective against plaque instability in 

atherosclerosis158,234. In vitro studies have shown that IL-1α, IL-6, and TNF inhibit IGF1-

mediated anabolism and that IL-6 reduces the production of IGF1 and IGF-binding protein 3 

(reF.235). In observational studies, high levels of IL-6 and low levels of IGF1 synergistically 

correlate with lower muscle strength and power, effectively predicting progressive disability 

and death236,237. Inflammation impairs endothelial reactivity and muscle perfusion, 

interfering with the uptake of long branched-chain amino acids that are essential for muscle 

energetics and protein anabolism238–240. Dysfunctional mitochondria that are not recycled 

owing to defective mitophagy produce ROS that stimulate the production of pro-

inflammatory cytokines and catabolism via increased NF-κB-dependent protein 

ubiquitylation and proteasome degradation241. Senescent cells that produce inflammatory 

mediators might also have a role in the pathogenesis of sarcopenia. One study quantified 

senescent p16INK4A-expressing cells in thigh intramuscular adipose tissue from older 

women, revealing that senescent cell burden was associated with grip strength, walking 

speed, and self-perceived mobility242. Moreover, inflammation impairs satellite cell 

regenerative function243–245. Of note, the emergence of senescence traits in vascular smooth 

muscle cells has been implicated in the initiation and progression of CVD, specifically 

atherosclerosis246, again suggesting that atherosclerosis and the resulting CVD is a 

syndrome of accelerated ageing.

Both aerobic and resistance exercise — as well as dietary supplementation of amino acids or 

protein, vitamin D, and polyunsaturated fatty acids — have been associated with protection 

against age-associated sarcopenia, possibly because of their antiinflammatory and 

antioxidative properties141. In observational studies, adherence to the Mediterranean diet 

was the only behavioural factor consistently associated with a lower risk of frailty, which 

might be a result of the anti-inflammatory properties inherent to the diet247,248. Underlying 

the relationship between CVD and frailty, the Mediterranean diet is also one of the few 

behavioural interventions that, in both observational studies and clinical trials, was 

associated with lower cardiovascular morbidity and mortality249,250. Aspirin, a potent anti-

inflammatory molecule, is effective in the treatment of acute myocardial infarction and in 

secondary prevention of CVD, and some evidence indicates that aspirin might be effective in 

primary prevention of myocardial infarction, at least in high-risk groups251,252. Interestingly, 

chronic use of NSAIDs is associated with a lower risk of sarcopenia in community-dwelling 

individuals aged ≥80 years253.
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Metformin, an antidiabetic drug that counteracts inflammation and insulin resistance, has 

been suggested to prevent frailty and attenuate its progression. In a large, observational 

study conducted in US veterans with type 2 diabetes and stratified according to baseline risk, 

treatment with metformin reduced the risk of multiple age-related diseases, including CVDs, 

cancer, depression, and frailty-related diseases254. An RCT conducted in Indonesia revealed 

that metformin improves gait speed, but not handgrip strength, in nondiabetic, pre-frail, 

older individuals255. A trial is currently ongoing at the University of Texas Health Science 

Center at San Antonio, TX, USA, aimed at examining whether metformin prevents frailty 

development in older individuals with impaired glucose tolerance256.

The evidence reported above suggests that CVD, multimorbidity, frailty, and perhaps other 

chronic diseases have inflammageing as a common root cause. Unfortunately, although 

strong evidence shows that targeting inflammation can reduce the risk of CVD, no definitive 

evidence exists that reducing inflammation can prevent or modify the progression of 

multimorbidity with frailty or sarcopenia. In part, this situation is because of the lack of 

adequately sized RCTs to test this hypothesis and because RCTs that have tested the 

effectiveness of anti-inflammatory treatments for cardiovascular prevention did not collect 

data on multimorbidity, frailty, or disability. These issues should be considered a priority in 

setting the future research agenda. The ENRGISE trial257 is an ongoing, multicentre, 

double-blind, placebo-controlled, randomized pilot study, enrolling older men and women 

(aged ≥70 years) who have high levels of IL-6 and impaired physical function, to test 

whether losartan, omega-3 fish oil, or a combination of the two reduce plasma IL-6 levels 

compared with placebo. Interestingly, results from the CRATUS trial258,259 demonstrated 

that administration of allogeneic human mesenchymal stem cells improves measures of 

lower-extremity performance and reduces inflammatory biomarkers in age-related frailty. By 

contrast, despite their anti-inflammatory effects, statin use in the Women’s Health Initiative 

survey had no significant effect on the risk of frailty260.

Inflammageing is a pillar of geroscience

Many interventions that increase longevity in animal models cause a reduction in 

inflammatory markers. For example, calorie restriction is the most powerful life-extension 

intervention in most animal models and is associated with reduced inflammatory 

biomarkers261,262. Mechanisms by which calorie restriction reduces chronic inflammation 

include diminished ROS production and consequent downregulation of NF-κB-induced 

transcription of pro-inflammatory genes in multiple tissues263. Of note, dietary restriction 

significantly reduces the risk of CVD in humans, and in animal models, dietary restriction is 

associated with numerous beneficial changes in arterial walls264.

Rapamycin, a specific inhibitor of mechanistic target of rapamycin (mTOR) signalling with 

many effects, including anti-inflammatory activity265, has an important role in longevity 

regulation266 in both animals and humans267, and improves survival and healthspan in 

animal models268–272. Aspirin improves lifespan in mice273, whereas metformin, which is 

known to have direct anti-inflammatory effects beyond its canonical glucose-lowering 

activity274, improves lifespan and healthspan in animal models275. A meta-analysis revealed 

that metformin reduces all-cause mortality and diseases associated with ageing independent 
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of diabetic control in humans276. The TAME trial277 is designed to examine the effect of 

metformin on delaying the onset of age-related conditions and diseases and its potential use 

in expanding human health span. Finally, the clearance of senescent cells by either genetic 

engineering or the administration of senolytic drugs has been associated with reduced 

circulating levels of pro-inflammatory markers, increased lifespan, and delayed frailty-

related phenotypes in mice111,112. Clinical trials are needed to test the efficacy of these 

potential treatments in humans278. These examples suggest that interventions that target 

some of the fundamental mechanisms of ageing affect the general susceptibility to CVD, as 

well as other age-related diseases, and prevent frailty and disability in older individuals.

Over the past 3 decades, a wealth of evidence has been gathered that suggests that chronic 

inflammation is one of these mechanisms. Although this Review on the connection between 

inflammageing, CVD, and frailty is far from comprehensive, the role of chronic 

inflammation in health and functional deterioration with ageing is clearly emerging. Of 

course, conceptual problems remain. Throughout this Review, we have focused on 

inflammation as posing a threat to human health over the course of ageing. However, 

inflammation has been evolutionarily selected as a fundamental defensive mechanism that 

protects organisms from microbial invasion, ensures the integrity of a self-recognized 

inventory of proteins and other macromolecules, prevents cancer by recognizing and 

removing cells that present tumour antigens, and has an important role in tissue repair. The 

benefits of inflammation overcome the risks associated with autoimmune disease and 

inflammageing. As such, inflammation has a positive influence on health when activated 

transiently — that is, when inflammation deploys quickly and fully armed in response to an 

adequate stimulation, successfully eliminates the challenge, and recedes quickly to a 

baseline resting state. When inflammation becomes chronic, however, problems arise and 

deleterious effects emerge, as first described by Rudolph Virchow (1821–1902)279. Chronic 

inflammatory diseases, such as certain chronic infections, cancer, congestive heart failure, 

chronic obstructive pulmonary disease, and HIV, cause syndromes that share many 

characteristics with accelerated ageing and frailty, including sarcopenia, weight loss, and 

loss of energy coupled with fatigability. Therefore, chronically elevated levels of circulating 

pro-inflammatory markers observed with ageing are unsurprisingly also associated with 

similar signs and symptoms to those of chronic disease, although the age-related symptoms 

develop progressively and over a longer time frame.

The mechanisms for these actions are not fully understood, but a comprehensive analysis of 

the literature reveals that inflammation is often associated with a catabolic state (Fig. 3). As 

described previously in this Review, inflammation is associated with anabolic resistance in 

muscle, which is caused partly by inhibition of the perfusion adjustment to anabolic stimuli 

and partly by inhibition of IGF1 production and signalling236–240. Chronic inflammation 

causes anaemia via direct inhibition of iron absorption and recycling as well as interference 

with erythropoietin production and signalling3,280. Evidence indicates that inflammation 

causes insulin resistance. In particular, TNF receptor superfamily member 1A and Toll-like 

receptor 4 block insulin signalling through Janus kinase activation, which causes serine 

phosphorylation of insulin receptor substrate 1 and 2, contributing to insulin 

resistance281–283. Conversely, evidence also indicates that insulin resistance promotes the 

accumulation of M1 macrophages and fosters inflammation in adipose tissue through the 
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production of CCL2 (reF.284). Pro-inflammatory cytokines — including IL-1β, IL-6, IL-11, 

IL-15, IL-17, and TNF — stimulate bone resorption and almost certainly contribute to 

osteoporosis285. For example, bone resorption is increased in patients with inflammatory 

diseases, such as rheumatoid arthritis286. Studies in cultured cells show that IL-1β, IL-6, and 

TNF induce mitochondrial dysfunction with reduced ATP synthesis-driven respiration, 

reduction of the NAD+:NADH ratio, and reduced mRNA levels of PPARGC1A (encoding 

peroxisome proliferator-activated receptor-γ co-activator 1α; PGC1α), suggesting that 

mitochondrial biogenesis is impaired287. Studies conducted both in vitro and in animal 

models suggest that inflammation in general, and IL-1β and IFNα in particular, inhibit 

neurogenesis and reduce the magnitude of neurogenesis that is normally induced by 

exercise288,289. These data delineate an overall mechanism by which inflammageing affects 

multiple physiological systems and phenotypes. During an infection that unleashes an 

inflammatory response, the physiological and metabolic state of the organism is focused on 

defence, and all other anabolic activities are paused, including nondefensive functions of the 

immune system, such as surveillance of damage and continuous repair in tissue, which 

mostly rely on growth factors. If this condition is temporary, turnover and repair of 

macromolecules, organelles, and cells can be delayed, avoiding irreversible damage. 

However, in older individuals, inflammation remains chronically activated, either because of 

continued stress from the inflammation source or because of a primary immune 

dysregulation. In the absence of macromolecular and organellar recycling, the accumulation 

of damage can reach a critical threshold, thereby causing severe functional consequences 

that become difficult or impossible to reverse, conferring the clinical syndrome of frailty.

Conclusions

On the basis of the data and the hypotheses presented in this Review, modulating 

inflammageing is a promising strategy not only to prevent CVD but also to slow the decline 

of health that occurs with ageing. Modulating inflammation is likely to be most effective at 

the early stage of health decline, at a time when the compensatory capacity of the organism 

is not completely exhausted and might still counteract physiological and functional declines. 

New pharmacological treatments that selectively affect some of the signalling pathways that 

regulate inflammation are needed to balance the relationship between risks and benefits. 

Early treatments will require early diagnosis and availability of a signature biomarker profile 

that allows for a differential diagnosis between true inflammageing and chronic 

inflammation sustained by the persistence of an infectious or toxic cause. Ultimately, RCTs 

are needed to test the hypothesis that modulating inflammation prevents the development of 

CVD as well as multimorbidity, disability, and frailty.
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Key points

• High levels of pro-inflammatory markers in the blood and other tissues are 

often detected in older individuals and predict the risk of cardiovascular 

diseases, frailty, multimorbidity, and decline of physical and cognitive 

function.

• In individuals with obesity, visceral fat produces pro-inflammatory and 

chemotactic compounds and is infiltrated by macrophages, lymphocytes, and 

senescent cells with a senescence-associated secretory phenotype that 

contributes to inflammageing.

• Mechanisms potentially underlying inflammageing include genomic 

instability, cell senescence, mitochondria dysfunction, microbiota 

composition changes, NLRP3 inflammasome activation, primary 

dysregulation of immune cells, and chronic infections.

• Clinical trials suggest that modulating inflammation prevents cardiovascular 

diseases, but studies to explore the effects on other chronic diseases, frailty, 

and disability are scarce and controversial.

• Inflammageing can complicate the clinical features of cardiovascular disease 

in older individuals by causing an energetic imbalance towards catabolism 

and interfering with homeostatic signalling, leading to frailty.
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Fig. 1 |. Potential causes of inflammageing.
Several genetic variants associated with high levels of inflammatory markers or increased 

response to inflammatory stimuli have been identified; the most relevant factors are 

indicated in parentheses. In central obesity, visceral fat tissue is infiltrated by T cells, 

macrophages, and monocytes. T cells secrete IFNγ, which stimulates the production of 

several chemokines by adipocytes, including C-C motif chemokine 2 (CCL2), CCL5, C-X-C 

motif chemokine 9 (CXCL9), and CXCL10, which further amplify tissue T cell infiltration. 

The number of B cells and macrophages in visceral adipose tissue from obese individuals is 

also increased and is correlated with BMI55. A specific subset of B cells expressing the 

tumour necrosis factor (TNF) superfamily ligand superfamily member 9 and producing TNF, 

IFNγ, and granzyme B accumulates in the abdominal cavity of older individuals56. 

Cytokines released by B cells contribute to the phenotypic change of adipocytes in the 

visceral cavity, causing them to release adipokines, other pro-inflammatory factors, and cell 

debris52. Activated monocytes that give rise to M1 and M2 macrophages produce even more 

inflammatory compounds57. Damaged mitochondria that cannot be repaired by repeated 

cycles of fission and fusion and are not recycled owing to defective autophagy release 

damage-associated molecular patterns (DAMPs) that trigger the NLRP3 inflammasome and 

lead to caspase 1-dependent production of IL-1β and IL-18. Oxidative stress is one of the 

possible triggers of cell senescence, which can be induced by several other stressors, 

including epigenetic alterations. Senescent cells, through the senescence-associated 

secretory phenotype (SASP), secrete large quantities of cytokines, chemokines, and other 

molecules, locally triggering more cell senescence (paracrine senescence) and contributing 

to inflammageing. Studies have emphasized the role of age-related changes in the 

microbiome and increases in the gut mucosa permeability that lead to bacterial product 

release into the blood and stimulate an inflammatory response, in part through the NLRP3 

inflammasome. In addition, part of inflammageing is probably caused by chronic infections 
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(for example, human immunodeficiency virus (HIV) or human Cytomegalovirus (CMV) 

infection) and intrinsic defective mechanisms in immune cells that might involve metabolic 

stress as well as age-related changes in microRNA transcription. Of note, other important 

triggers of cell senescence, such as genomic instability, the activation of oncogenes, and the 

inhibition of tumour-suppressor genes, are not shown in the figure but might be part of the 

same mechanism.
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Fig. 2 |. Inflammageing is a risk factor for multiple chronic diseases.
Inflammageing, defined as an age-related increase in the levels of pro-inflammatory markers 

in blood and tissues, is a strong risk factor for multiple diseases that are highly prevalent and 

frequent causes of disability in elderly individuals but are pathophysiologically uncorrelated. 

Mild chronic inflammation is generally considered to be a biomarker of accelerated 

biological ageing or one of the mechanisms by which the ageing process is associated with 

increased global susceptibility to all diseases. Cardiovascular diseases, chronic kidney 

disease, cancer, depression, dementia, osteoporosis, sarcopenia, and anaemia are shown in 

the figure as examples because extensive evidence indicates that inflammation contributes to 

the development of these diseases in old age, but the list is far from 

exhaustive3,138,139,142,143,196. Concordant with this view, elevated blood levels of pro-

inflammatory markers (such as IL-6) are a powerful risk factor for multimorbidity (the 

number of coexisting diseases) and predict future rates of change in multimorbidity. 

Unsurprisingly, inflammageing is also a strong risk factor for typical geriatric conditions, 

such as physical and cognitive disability, frailty, and premature death. Although this effect is 

primarily mediated by multimorbidity, evidence also indicates that inflammation interferes 

with the maintenance and repair that constantly occur in all tissues, leading to accumulation 

of damage that contributes to frailty.
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Fig. 3 |. Inflammageing induces a catabolic state.
Inflammation causes pathological states linked with frailty, cardiovascular disease, and 

ageing. Sarcopenia: the induction of anabolic resistance in muscle inhibits the perfusion 

adjustment to anabolic stimuli as well as insulin-like growth factor (IGF1) production and 

signalling235–240. Anaemia: chronic elevation of IL-6 levels causes anaemia through the 

production of hepcidin, reduction of the transmembrane iron transporter ferroportin, and 

inhibition of iron absorption and recycling as well as interference with erythropoietin (EPO) 

production and signalling3,280. Insulin resistance: tumour necrosis factor receptor 

superfamily member 1A (TNF-R1) and Toll-like receptor 4 (TLR4) block insulin signalling 

through Janus kinase (JAK) activation, which causes serine phosphorylation of insulin 

receptor substrate 1 (IRS1) and IRS2, contributing to insulin resistance283. Osteoporosis: 

TNF, IL-1β, IL-6, and TNF ligand superfamily member 11 (RANKL) contribute to 

osteoporosis by stimulating osteoclast growth and activity and inhibiting the production of 

osteocalcin290,291. Mitochondria biogenesis: studies in vitro show that TNF, IL-1β, and IL-6 

induce mitochondrial dysfunction with reduced ATP synthesis-driven respiration, a reduced 

NAD+:NADH ratio, and reduced mRNA levels of PPARGC1A (encoding peroxisome 

proliferator-activated receptor-γ co-activator 1α; PGC1α), suggesting impairment in 

mitochondrial biogenesis287. Neurogenesis: pro-inflammatory cytokines interfere with the 

biological activity of neuronal growth factors, such as brain-derived neurotrophic factor, 

thereby affecting neurogenesis and plasticity292. Accordingly, the addition of IFNα to 

human hippocampal progenitor cells reduces neurogenesis289. These are just few examples 

of how chronic inflammation promotes a catabolic state, suggesting a possible unifying 

hypothesis. During an acute bout of inflammation, induced for example by an infection, the 

surveillance of damage and continuous repair functions in multiple tissues are chronically 

inhibited, leading to accumulated damage in organelles and macromolecules. Over time, this 

damage accumulation across different tissues and organs could become so severe that it 

cannot be compensated for and causes irreversible frailty.
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Table 1 |

Clinical trials of anti-inflammatory drugs in chronic inflammatory diseases

Trial name Participants Design n Drug Dosage Type of
treatment

Outcome Result Refs

CANTOS Patients with
previous MI and
hsCRP ≥2mg/l

Randomized 10,061 Canakinumab 150 mg every
3 months

Secondary
prevention

Cardiovascular
events

Beneficial 169,293

CIRT Patients with
previous MI and
either T2DM
or metabolic
syndrome

Randomized 7,000 Methotrexate 15–20 mg
weekly

Secondary
prevention

Cardiovascular
events

Ongoing 170

LoDoCo Patients with
clinically stable
CAD

Randomized 532 Colchicine 0.5 mg daily Primary and
Secondary
prevention

Cardiovascular
events

Beneficial 172

LoDoCo2 Patients with
clinically stable
CAD

Randomized 3,000 Colchicine 0.5 mg daily Primary and
Secondary
prevention

Cardiovascular
events

Ongoing 294

COLCOT Patients with a
Documented
acute MI in the
past 30 days

Randomized 4,500 Colchicine 0.5 mg daily Secondary
prevention

Cardiovascular
events

Ongoing 173

ENTRACTE Patients with
moderate-
to-severe
rheumatoid
arthritis

Randomized 3,080 Tocilizumab 8mg/kg every
4 weeks

Prevention Cardiovascular
events

Ongoing 166

PEDRIAN Patients with
T2DM and stage
3–4 CKD

Randomized 169 Pentoxifylline 1,200 mg daily Prevention CKD
progression

Beneficial 295

NA Patients aged
≥25 years with
T1DM or 

T2DM
a

Randomized 416 Monoclonal
anti-TGFβ1
antibody

2, 10, or 50 mg
Monthly
(subcutaneous)

Prevention CKD
progression

Not
beneficial

296

NA Patients with a
recent TIA or
minor ischaemic
stroke and no
contraindication
to aspirin

Meta-
analysis
of two
randomized

trials
b

5,139+
2,449

Aspirin 300, 500, or
1,200 mg daily

Primary
prevention

Colorectal
cancer

Beneficial 297

NA Patients with a
recent TIA or
minor ischaemic
stroke and no
contraindication
to aspirin

Meta-
analysis
of four
randomized

trials
c

14,033 Aspirin 30, 75, 283,
300, 500, or
1,200 mg daily

Primary
prevention

Colorectal
cancer

Beneficial 298

CANTOS Patients with
previous MI and
hsCRP ≥2mg/l

Randomized 10,061 Canakinumab 150 or 300 mg
every 3 months

Primary
prevention

Lung cancer Beneficial 168

NA Patients with
osteoarthritis

Meta-
Analysis
of five
randomized

trials
d

1,497 Ibuprofen,
naproxen, or
celecoxib

800 mg three
times daily,
500 mg twice
daily, or 200 
mg
daily

Treatment Depressive
symptoms

Beneficial 299

ADAPT Individuals
aged ≥70 years,
cognitively
healthy , and 
with
a family history 
of

Randomized 2,528 Celecoxib or
naproxen

200 mg twice
daily or 220 
mg
twice daily

Treatment Depressive
symptoms

Not
beneficial

300
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Trial name Participants Design n Drug Dosage Type of
treatment

Outcome Result Refs

AD-like 
dementia

NA Outpatients with
major depression

Randomized 60 Infliximab 5mg/kg (three
infusions)

Treatment Depressive
symptoms

Beneficial in
patients with
high baseline
inflammatory
blood
biomarkers

301

NA Patients with
moderate-to-
severe psoriasis

Randomized 96 Adalimumab 40 mg every
other week

Treatment Depressive
symptoms

Beneficial 302

NA Patients with
moderate-
to-severe
psoriasis

Randomized 618 Etanercept 50 mg twice
weekly

Treatment Depressive
symptoms

Beneficial 303

NA Patients with
probable AD

Randomized 40 Nimesulide 100 mg twice
daily

Treatment AD Not
beneficial

304

NSAID study Patients with
mild-to-moderate
AD

Randomized 351 Rofecoxib
or naproxen
sodium

25 mg once
daily or 220 
mg
twice daily

Treatment AD Not
beneficial

305

NA Patients with 
mild
or moderate AD
aged ≥50 years

Randomized 692 Rofecoxib 25 mg daily Treatment AD Not
beneficial

306

NA Patients with
mild-to-moderate
AD

Randomized 41 Diclofenac 50 mg daily Treatment AD Not
beneficial

307

ADAPT Individuals
aged ≥70 years,
cognitively
healthy , and 
with
a family history
of AD

Randomized 2,117 Celecoxib or
naproxen

200 mg twice
daily or 220 
mg
twice daily

Primary
prevention

AD Not
beneficial

308

TOMORROW Cognitively
healthy
participants
at high risk of
developing MCI

Randomized 3,500 Pioglitazone 0.8 mg daily Prevention Onset of MI
or MCI owing
to AD

Ongoing 309,310

Metformin
for
Preventing
Frailty in
High-risk
Older Adults

Older adults with
impaired glucose
tolerance

Randomized 120 Metformin 1,000 mg twice
daily

Prevention Frailty Ongoing 256

TAME Individuals aged
65–79 years

Randomized 3,000 Metformin 850 mg twice
daily

Prevention Cardiovascular
events, cancer,
dementia, and
mortality

Ongoing 277

AD, Alzheimer disease; CAD coronary artery disease; CKD, chronic kidney disease; hsCRP, C-reactive protein measured by high-sensitivity assay; 
MCI, mild cognitive impairment; MI, myocardial infarction; NA, not applicable; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; 
TGFβ1, transforming growth factor-β1; TIA, transient ischaemic attack.

a
Patients also had a serum creatinine level of 1.3–3.3 mg/dl for women or 1.5–3.5 mg/dl for men (or estimated glomerular filtration rate of 20–60 

ml/min/1.73 m2) and a 24-h urine protein: creatinine ratio ≥800 mg/g.

b
British Doctors Aspirin Trial and UK-TIA Aspirin Trial.

c
Thrombosis Prevention Trial, British Doctors Aspirin Trial, Swedish Aspirin Low Dose Trial, and UK-TIA Aspirin Trial.
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d
Five phase IV development trials conducted by Pfizer.
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