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SUMMARY

Aryl hydrocarbon receptor (AhR) deficiency alters tissue homeostasis. However, how AhR regulates

organ maturation and differentiation remains mostly unknown. Liver differentiation entails a poly-

ploidization process fundamental for cell growth, metabolism, and stress responses. Here, we report

that AhR regulates polyploidization during the preweaning-to-adult mouse livermaturation. Prewean-

ing AhR-null (AhR�/�) livers had smaller hepatocytes, hypercellularity, altered cell cycle regulation,

and enhanced proliferation. Those phenotypes persisted in adult AhR�/� mice and correlated with

compromised polyploidy, predominance of diploid hepatocytes, and enlarged centrosomes. Phospha-

tidylinositol-3-phosphate kinase (PI3K), extracellular signal-regulated kinase (ERK), and Wnt/b-cate-

nin signaling remained upregulated from preweaning to adult AhR-null liver, likely increasing mamma-

lian target of rapamycin (mTOR) activation. Metabolomics revealed the deregulation of mitochondrial

oxidative phosphorylation intermediates succinate and fumarate in AhR�/� liver. Consistently, PI3K,

ERK, and Wnt/b-catenin inhibition partially rescued polyploidy in AhR�/� mice. Thus, AhR may inte-

grate survival, proliferation, and metabolism for liver polyploidization. Since tumor cells tend to be

polyploid, AhR modulation could have therapeutic value in the liver.
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INTRODUCTION

Most eukaryotic cells have a diploid cell cycle in which chromosomes are replicated only once during each

cell division to generate two identical 2n daughter cells. Nevertheless, certain organisms can undergo suc-

cessive rounds of genome duplication in the absence of cytokinesis to acquire a polyploid status that can

involve the whole organism or just specific tissues and organs (Edgar et al., 2014; Fox and Duronio, 2013;

Schoenfelder and Fox, 2015). Amongmammals, including humans, polyploidy is particularly relevant in the

liver hepatocytes, megakaryocytes, and placental giant trophoblast cells, although it also takes place in the

heart and muscle (Gentric et al., 2012; Hannibal et al., 2014). In the liver, the percentage of polyploid he-

patocytes ranges from 80% to 90% in rats, to 30% in humans, and to close to 50% in mice (Celton-Morizur

et al., 2010; Duncan et al., 2010). Polyploidy does not seem to be a uniform phenomenon, and usually aneu-

ploid cells with altered number of chromosomes co-exist with cells havingR2n DNA content (Schoenfelder

and Fox, 2015). Several mechanisms have been proposed to explain physiological polyploidy, including

failure to complete cytokinesis after mitosis of diploid hepatocytes (Guidotti et al., 2003), cell fusion of

placental cells, or endomitosis in megakaryocytes (Ullah et al., 2009; Zielke et al., 2013). Recent reports

have suggested that polyploidization may not be an irreversible process since mouse hepatocytes with

one-half chromosomal content can be obtained from polyploid liver cells by artificial cell fusion (Duncan

et al., 2009; Wang et al., 2003). Such phenomena would then generate mixed cell populations with dissim-

ilar number of chromosomes by a process named ploidy conveyor (Duncan et al., 2010).

Physiological polyploidy takes place in the mouse liver right after the transition from preweaning (approx-

imately 3 weeks after birth) to adulthood (Marques et al., 2008; Pandit et al., 2012, 2013). During this period,

immature hepatoblasts start to differentiate into mature hepatocytes concomitantly with a reduction in

their proliferative ability (Germain et al., 1988; Shiojiri et al., 1991). From a functional perspective, poly-

ploidy induces a terminal differentiated phenotype that increases cell size, amplifies gene expression,

helps tissue organization, and modifies hepatic metabolism (Schoenfelder and Fox, 2015; Zielke et al.,

2013). In fact, transcriptomic studies have revealed that larger polyploid hepatocytes switch their
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Figure 1. AhR-Null Liver has Hypercellularity, Increased Nuclear Size, and Reduced Number of Binucleated Hepatocytes

(A) Livers were collected from preweaning and adult AhR+/+ and AhR�/�mice, fixed, embedded in paraffin, sectioned, and stained with hematoxylin and

eosin (H&E).

(B) Relative liver weight was obtained in preweaning mice relative to the total body weight of each animal.

(C) Liver cellularity was quantified in tissue sections obtained from preweaning and adult AhR mice of each genotype.

(D) Nuclear area of hepatocytes was determined in AhR+/+ and AhR�/� liver sections from preweaning and adult mice after staining with DAPI. ImageJ

software was used.
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Figure 1. Continued

(E) Binucleated cells in preweaning and adult AhR+/+ and AhR�/� livers were quantified by confocal fluorescence microscopy using DAPI-stained sections.

Six mice for each developmental time and genotype and three technical replicates were analyzed.

Data are shown as mean G SD. Scale bar, 50 mm; scale bar in inset, 50 mm. Nuclear area is represented as the integrated density (IntDen) measured by the

ImageJ software in micrographs taken at the same magnification and resolution. SD, standard deviation.
metabolism from mitochondrial oxidative phosphorylation to glycolysis to adapt to metabolic stresses,

although some controversy exists on the relative contribution of ploidy versus cell size in their metabolic

reprogramming (Miettinen et al., 2014). The liver is exposed to the deleterious effects of endo- and xeno-

biotics and, as such, has the remarkable property to regenerate upon injury (Taub, 2004). Polyploid hepa-

tocytes can therefore trigger a response against toxic compounds by entering mitosis and generating pro-

liferative hepatocytes that will reconstitute the damaged parenchyma (Duncan et al., 2012). Importantly,

several human cancers seem to contain polyploid cells that can re-enter cell cycle acquiring Warburg-

like glycolytic metabolism and contributing to tumor growth (Davoli and de Lange, 2011; Ganem et al.,

2007; Zack et al., 2013).

The aryl hydrocarbon/dioxin receptor (AhR) has many different physiological and homeostatic functions

some of which are now beginning to emerge. Mouse models have shown that complete AhR depletion al-

ters the development and function of several organs, including the liver, heart, skin, and immune system

(Esser and Rannug, 2015; Mulero-Navarro and Fernandez-Salguero, 2016; Pohjanvirta, 2012; Puga et al.,

2009; Schmidt and Bradfield, 1996). Despite early studies showing that adult AhR-null mice (AhR�/�)

have smaller livers (Fernandez-Salguero et al., 1995, 1997; Schmidt et al., 1996) with embryo-derived intra-

hepatic portosystemic shunt (Lahvis et al., 2000; Schmidt et al., 1996), there are no studies exploring how

AhR affects liver maturation and differentiation during the critical postnatal to adulthood developmental

window.

In this work, we have investigated whether AhR is needed for the diploid-to-polyploid conversion that takes

place during the transition from an immature to an adult liver. AhR deficiency severely compromised the

generation of polyploid hepatocytes and maintained a more proliferative liver under physiological condi-

tions. Persistent upregulation of signaling pathways controlling survival, proliferation, and metabolism in

adult AhR-null liver likely compromised polyploidization and favored a diploid and undifferentiated pheno-

type. Such attributes could greatly influence the regenerative competence of the AhR�/� liver in the short

term as well as its increased ability to develop hepatocarcinomas upon carcinogen exposure in the long

term (Moreno-Marı́n et al., 2017). Thus, AhR is a relevant component of a complex signaling network con-

trolling physiological liver polyploidy and differentiation. Selective AhR modulators may be useful to regu-

late ploidy-related liver responses such as those required for regeneration after toxic damage or surgical

intervention or for inhibition of tumor progression.

RESULTS

AhR Deficiency Increases Liver Cellularity and Proliferation and Impairs Adult Polyploidy

Early reports showed that AhR-null mice (AhR�/�) have developmental hepatic alterations, including a

reduced organ size (Fernandez-Salguero et al., 1995; Schmidt et al., 1996). In this work, we have used

mice around the time of weaning (25 days of age, hereafter preweaning) and adult mice (9–10 weeks of

age) having or lacking AhR expression. Histological examination of liver sections from preweaning and

adult AhR�/� mice suggested an increase in cellularity with respect to age-matched AhR+/+ mice (Fig-

ure 1A), despite the smaller liver size of AhR-null preweaning mice (Figure 1B). Adult AhR�/� mice also

have a significant reduction in liver size and weight as previously reported (Fernandez-Salguero et al.,

1995; Schmidt et al., 1996). This de visu observation was confirmed by cell counting and, indeed, AhR�/

� livers had significantly higher numbers of hepatocytes than AhR+/+ livers at preweaning and adult

age (Figure 1C). Cellularity in adults was reduced with respect to preweaning livers regardless of mice ge-

notype, possibly because of a normal developmental process that decreased cell proliferation and

increased cell growth (Figure 1C). Accordingly, the average nuclear area of 4’,6-diamidino-2-phenylindole

(DAPI)-stained AhR�/� hepatocytes was significantly smaller in both preweaning and adult livers (Fig-

ure 1D). In addition, the nuclei of preweaning hepatocytes were smaller than those of adult mice, irrespec-

tive of AhR expression (Figure 1D). Liver maturation involves several important cytological changes,

including the appearance of binucleated and mononucleated polyploid hepatocytes (Gerlyng et al.,

1993; Schoenfelder and Fox, 2015; Zielke et al., 2013). Interestingly, confocal fluorescence microscopy of
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DAPI-stained liver sections revealed that whereas binucleated hepatocytes accounted for 25%–30% of liver

cells in adult AhR+/+ mice, they represented only about 10% of liver cells in aged-matched AhR�/�mice

(Figure 1E). Binucleated hepatocytes were less abundant in preweaning mice and, in particular, in those

lacking AhR expression (Figure 1E).

Altogether, these results suggested that lack of AhR could compromise physiological control of hepato-

cyte proliferation and the preweaning-to-adult transition in mouse liver. We then decided to analyze if

the AhR-null phenotype could involve altered polyploidization since an increase in ploidy reduces prolifer-

ation and induces differentiation in the liver (Davoli and de Lange, 2011; Gentric and Desdouets, 2014;

Ullah et al., 2009). Flow cytometry analysis of the DNA content of primary hepatocytes isolated from pre-

weaning mice revealed that most cells were diploid (2c) in both AhR+/+ and AhR�/� livers and that the

amount of tetraploid (4c) and octaploid (8c) cells was minimal (Figures 2A, 2C, and S1). By contrast, adult

AhR+/+ livers became significantly enriched in 4c and 8c hepatocytes, whereas such enrichment was not

found in AhR�/� hepatocytes, which remained mostly diploid (Figures 2B and 2D). A marked asymmetry

in polyploidy was therefore observed between adult AhR+/+ and AhR�/� livers (Figure 2E) that did not

appear to be due to a significant level of endogenous apoptotic cell death (Figure 2F). Therefore, AhR

controls normal liver architecture and cellularity and the nuclear content and ploidy of hepatocytes. Since

polyploidization is related to liver differentiation, we next examined changes in albumin levels in prewean-

ing and adult mice. Indeed, albumin messenger RNA (mRNA) (Figure 2G) and protein (Figure 2H) levels

were significantly downregulated in AhR�/� livers at either developmental stage, suggesting that AhR

expression is needed for physiological liver maturation.

AhR is known to regulate cell cycle progression by interacting with retinoblastoma protein (RB) and block-

ing E2F-dependent transcription of target genes such as Cyclin E (Gao et al., 2016; Mitchell et al., 2006;

Pohjanvirta, 2012; Puga et al., 2002). AhR activation by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) also in-

creases tumor suppressor p27Kip1, which, in turn, inactivates Cyclin E (Kolluri et al., 1999; Siu et al., 2012). We

then decided to analyze cell proliferation in mice liver in vivo. Ki67 staining of preweaning livers revealed

high rates of cell proliferation in both genotypes, the number of proliferating cells beingmuch higher in the

absence of AhR than in control mice (Figure 3A). For adults, multiphoton confocal microscopy was used on

tissue sections stained for the proliferating cell nuclear antigen (PCNA) because of the low rates of cell pro-

liferation usually present in the matured liver. Although cell proliferation was markedly reduced with aging,

AhR�/� livers still had more proliferative cells than AhR+/+ livers (Figure 3A). Such increased proliferative

potential of AhR�/� hepatocytes was associated with a higher number of cells passing through the G0/G1

(2c) and G2/M (4c) phases of the cell cycle, as determined by flow cytometry examination of freshly isolated

primary hepatocytes (Figure 3B). Surprisingly, however, cell cycle regulators Cyclin B1 (G2/M) and Cyclin E

(G1/S) were downregulated in liver from preweaning AhR�/� mice when compared with AhR+/+ mice

(Figures 3C and 3D). An opposite pattern of expression was observed in adult mice because both Cyclin

B1 and Cyclin E were upregulated in AhR-null livers (Figures 3C and 3D). In addition, the expression of

cyclin-dependent kinase inhibitory protein p27Kip1 was markedly reduced in preweaning and adult

AhR�/� livers (Figure 3E). No significant differences in Cyclin D1 (G1/S) were found between AhR+/+

and AhR�/� livers at any developmental stage (not shown). These results suggest that high Cyclin B1

and Cyclin E expression, in parallel to reduced p27Kip1 levels, could maintain proliferation and inhibit

polyploidy in AhR�/� liver, in agreement with the role of Cip/Kip proteins in promoting differentiation

and polyploidy in mammalian cells (Ullah et al., 2009). We next determined if the preweaning-to-adult tran-

sition involved changes in AhR expression. Immunoblotting analysis revealed that AhR protein levels were

significantly lower in adult livers than in AhR+/+ preweaning livers; AhR protein remained undetectable at

any developmental stage in AhR�/� mice (Figure 3F).
Persistent INS-R/PI3K-Dependent Signaling and Sustained ERK1/2 Activation in Non-

polyploid AhR-Null Livers

To investigate the possible signaling networks that could mediate the AhR-null liver phenotype, we first

focused on the insulin receptor (INS-R) and its downstream PI3K (phosphatidylinositol-3-phosphate kinase)

pathway since it is a critical regulator of cell viability, proliferation, and eventually, ploidy (Celton-Morizur

et al., 2010; Yu and Cui, 2016). INS-R protein levels did not significantly differ betweenAhR+/+ andAhR�/�
livers in preweaning or adult mice (Figure 4A). Although liver maturation seemed to involve a reduction in

INS-R expression, it was AhR independent (Figure 4A). Notably, activation of the major INS-R intermediate

protein in the liver phospho-IRS-2 (insulin receptor substrate-2) was significantly higher in AhR�/� than in
iScience 4, 44–63, June 29, 2018 47



Figure 2. AhR Deficiency Impairs Liver Polyploidy in the Absence of Increased Apoptosis

(A–D) Primary hepatocytes were isolated from preweaning (A and C) and adult (B and D) AhR+/+ and AhR�/� mice by

collagenase liver perfusion. Cells were fixed, stained with propidium iodide, and their DNA content analyzed by flow

cytometry in a MACSQuant VYB flow cytometer. Peaks correspond to diploid (2c), tetraploid (4c), and octaploid (8c)

hepatocytes (red arrows).

(E) Cell subpopulations with different ploidy status were quantified and their percentages represented. Percentage of

cells at the S phase (2c-to-4c and 4c-to-8c) transitions are also indicated.

(F) Apoptotic cells in adult AhR�/� livers were quantified and normalized by those of AhR+/+ mice.

(G and H) Albumin mRNA (G) and protein (H) expression was determined in liver tissue from preweaning and adult

AhR+/+ and AhR�/� mice. mRNA gene expression was normalized by Gapdh and represented as 2�DDCt.

Six AhR+/+ and seven AhR�/� mice were analyzed for each developmental time and four technical replicates were

performed. Data are shown as mean G SD. n.s., Not statistically significant; SD, standard deviation. Antibodies and

oligonucleotides used are indicated in Tables S1 and S2, respectively. See also Figure S1.
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Figure 3. AhR-Null Livers Have Increased Proliferation and Changes in Cell Cycle Regulators Cyclin E and p27Kip1

(A) In vivo proliferation was determined in Ki67-stained tissue sections from preweaning AhR+/+ and AhR�/� mouse

liver. Adult livers from AhR+/+ and AhR�/� mice were analyzed by confocal multiphoton microscopy using tissue

sections stained for the proliferating cell nuclear antigen (PCNA). An Olympus FV1000 confocal microscope (Olympus)

equipped with a multiphoton unit was used. Arrowheads mark proliferation positive hepatocytes.

(B) Primary hepatocytes were isolated from adult AhR wild-type and AhR-null mice by collagenase perfusion and

freshly analyzed for cell cycle distribution by flow cytometry after staining with propidium iodide. Fraction of cells in G0/

G1 (2c), S (2 < c > 4), and G2/M (4c) are represented. A Cytomics FC500 equipment was used.
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Figure 3. Continued

(C–E) Total protein was obtained from preweaning and adultAhR+/+ andAhR�/� livers and analyzed by immunoblotting

for Cyclin B1 (C), Cyclin E (D), and p27Kip1 (D) using specific antibodies.

(F) AhR protein expression was also analyzed in preweaning (PW) and adult (AD) liver extracts from AhR+/+ and AhR�/�
by immunoblotting. b-Actin was used to confirm protein integrity and equal loading.

Two representative mice for each experimental condition are shown. Seven mice for each developmental time and

genotype and three technical replicates were analyzed. Data are shown as mean G SD. n.s., Not statistically significant;

SD, standard deviation. Scale bar, 50 mm. Antibodies used are indicated in Table S1.
AhR+/+mice at both preweaning and adult age (Figure 4B), suggesting that despite similar receptor levels

INS-R signaling might be increased in the absence of AhR. We next decided to address whether INS-R/

IRS-2 overactivation was functionally relevant in modulating PI3K signaling in AhR�/�liver. The expression

levels of the PI3K regulatory subunit, which interacts with phospho-IRS-2, p85a, were significantly increased

in preweaning and adult AhR�/� livers when compared with AhR+/+ livers (Figure 4C).

Serine-threonine protein kinase-B/AKT (hereinafter AKT) is the required PI3K signaling intermediate in

most cell types (Yu and Cui, 2016). Total protein levels of AKT were not affected by AhR expression at

any of the developmental times analyzed. However, active phospho-AKT (p-AKTSer473) was significantly up-

regulated by AhR deficiency in both preweaning and adult livers, and total levels in adults exceed those in

preweaning mice (Figure 4D). Consistently, p-AKT target protein glycogen synthase kinase-3b (GSK3b) was

more efficiently phosphorylated (p-GSK3bSer9) in preweaning and adult AhR�/� livers than in their AhR+/+

counterparts with a pattern closely resembling that of p-AKT (Figure 4E). PI3K activity and AKT phosphor-

ylation are negatively regulated by the phosphatase and tensin homolog (PTEN) (Bunney and Katan, 2010).

Accordingly, PTEN was significantly downregulated in preweaning and adult AhR�/� livers with a pattern

inverse to that found for p-AKT (Figure 4F). Altogether, these results suggest that the increased prolifera-

tive potential of AhR�/� livers may be associated with a sustained overactivation of the INS-R/PI3K

pathway. PI3K also signals to the Ras pathway, ultimately regulating the activation of mitogen-activated

protein kinases (MAPKs) involved in cell proliferation, including the extracellular signal-regulated

kinases 1/2 (ERK1/2) (Busca et al., 2016; Sturgill, 2008). We observed that the total levels of ERK1

(ERK1/p44) did not significantly change between AhR+/+ and AhR�/� livers in preweaning or adult

mice. However, normalized phosphorylated ERK1/p44 levels (pERK/ERK ratio) increased in the absence

of AhR under both developmental conditions (Figures 5A and 5B). The ERK2/p42 isoform did not show

significant differences in normalized phosphorylation levels between AhR wild-type and AhR-null prewean-

ing mice, although it was upregulated in adult AhR�/� livers (Figures 5A and 5C). Thus, sustained

PI3K-dependent ERK1/2 signaling may also contribute to altered preweaning-to-adult transition in AhR-

deficient liver.

PI3K also signals to inhibit the p53 tumor suppressor to block apoptosis in proliferating cells (Sabbatini and

McCormick, 1999; Yamaguchi et al., 2001). Notably, recent studies have also shown that p53 has relevant

functions in preventing polyploidy in mature cells (Aylon and Oren, 2011; Kurinna et al., 2013). We then

sought to analyze whether liver maturation involved changes in p53 expression in an AhR-dependent

manner. Immunoblotting experiments showed that p53 levels were markedly reduced in preweaning

AhR�/� livers with respect to AhR+/+ livers (Figure 5D). One of the most relevant targets of active p53

is the p21Cip1 protein (p21Cip1), also involved in repressing cell proliferation (Jung et al., 2010; Karimian

et al., 2016). Accordingly, its expression closely followed that of p53 in preweaning AhR�/� and AhR+/+

livers, being significantly downregulated in AhR-null mice (Figure 5E). Surprisingly, however, p53 expres-

sion was higher in adult AhR�/� livers than in age-matched AhR+/+ livers (Figure 5D), despite the persis-

tent p21Cip1 repression present in AhR-lacking hepatocytes (Figure 5E). Thus, low p53 levels may allow

higher proliferation rates during preweaning in AhR�/� mice, whereas its increasing expression in adults

could block polyploidy in the absence of a significant inhibitory effect on proliferation.

Lack of Polyploidy in Adult AhR�/� Liver Involves Altered Wnt/b-Cat Signaling

The PI3K pathway is also linked to Wnt/b-Cat signaling since the AKT downstream target GSK3b is a

component of the Wnt/b-Cat degradation complex (Nusse and Clevers, 2017). Immunofluorescence anal-

ysis by confocal microscopy of liver sections from preweaning mice revealed increased levels and a more

abundant nuclear localization of b-Cat in the centrilobular areas of the hepatic parenchyma inAhR�/� than

in AhR+/+mice (Figure 6A), in agreement with the zonation of b-Cat in the liver (Benhamouche et al., 2006;

Burke et al., 2009). Immunoblotting of nuclear extracts also showed increased levels of b-Cat in AhR-null
50 iScience 4, 44–63, June 29, 2018



Figure 4. Insulin Receptor Signaling Is Altered in AhR-null Livers and the INS-R/PI3K Pathway May Contribute to

the Increased Proliferative Potential of AhR�/� Livers

(A) Protein expression of the insulin receptor (INS-R) was analyzed by immunoblotting in liver extracts from preweaning

(PW) and adult (AD) AhR+/+ and AhR�/� mice.

(B) Activation of the INS-R signaling intermediate IRS-2 was quantified by an enzyme-linked immunosorbent assay (ELISA)

kit that detects the phosphorylated form of the protein. A positive control was performed using mice treated with insulin.
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Figure 4. Continued

(C) Protein levels of IRS-2 downstream intermediate p85-PI3K were determined by immunoblotting using the

experimental conditions indicated above.

(D and E) Immunoblotting using specific antibodies was used to analyze activation levels of molecular intermediates of

the INS-R/PI3K pathway: AKT (total AKT and p-AKTSer473) (D) and GSK3b (total GSK3b and p-GSK3bSer9) (E).

(F) Protein levels of the PI3K-negative regulator PTEN were also analyzed by immunoblotting. b-Actin was used to confirm

protein integrity and equal loading.

Two representative mice for each experimental condition are shown. Ten mice for each developmental time and

genotype and three to four technical replicates were analyzed. Data are shown as mean G SD. n.s., Not statistically

significant; SD, standard deviation. Antibodies used are indicated in Table S1.
preweaning mice (Figure 6A). The difference in b-Cat expression between AhR+/+ and AhR�/� livers was

milder in adult mice, and its overall levels were reduced with respect to preweaning mice of either pheno-

type (Figure 6A). Nevertheless, b-Cat was active in adult AhR�/� liver since the mRNA expression of its

target genes Axin, Cyclin D1, c-Myc, and Lef1 was increased with respect to AhR+/+ adult liver (Figure 6B).

Interestingly, co-immunoprecipitation experiments showed that, in fact, AhR may be a component of a

protein complex that also includes b-Cat in both preweaning and adult livers (Figure 6C); no significant

co-immunoprecipitation between AhR and b-Cat was detected in preweaning or adult AhR�/� livers (Fig-

ure 6C). In addition, b-Cat seemed to also interact in a common protein complex with activated phospho-

AKT in preweaning and adult livers and with increased efficiency in AhR�/�mice (Figure 6D). Thus, in vivo,

upregulated AKT and b-Cat signaling may cooperate to maintain hepatocyte proliferation and to reduce

their ploidy in the absence of AhR expression.

To further investigate if AhR modulates Wnt/b-Cat signaling in adult liver, primary hepatocytes were iso-

lated from AhR+/+ and AhR�/� mice by collagenase perfusion and cultured in cell medium containing

hepatocyte growth factor (HGF) and epidermal growth factor (EGF). Experiments were done in the pres-

ence of conditioned medium enriched in the Wnt/b-Cat ligand Wnt3a or after treatment with the AhR

non-toxic agonist 6-formylindolo[3,2-b]carbazole (FICZ). mRNA expression of the b-Cat target gene

Axin2 was moderately induced by Wnt3a but not by FICZ in AhR wild-type hepatocytes; by contrast,

Wnt3a treatment markedly increased Axin2 mRNA in AhR-null primary hepatocytes (Figure 6E). AhR

target gene Cyp1a1 was largely induced by FICZ and significantly by Wnt3a in AhR+/+ primary hepato-

cytes; no significant Cyp1a1 expression was detected in AhR�/� primary hepatocytes (Figure 6E). Thus,

the transcriptional activity of AhR can be induced by Wnt/b-Cat signaling in AhR-expressing primary he-

patocytes, but not vice versa, and interestingly, AhR-lacking primary hepatocytes were highly responsive

to activation of the Wnt/b-Cat pathway. To give additional support to these data, primary hepatocytes

from AhR+/+ and AhR�/� livers were transfected with a TOP-Flash reporter construct that allows

quantification of b-Cat-dependent transcription. TOP-Flash luciferase activity was higher in adult

AhR�/� primary hepatocytes under basal culture conditions (Figure 6F), and more notably after treat-

ment with Wnt3a-enriched medium (Figure 6F). Transfection of the TOP-Flash reporter construct in pre-

weaning primary hepatocytes also revealed an increase in b-Cat transcriptional activity in AhR�/� cells

(Figure 6G).
Conserved mTOR Activation during the Preweaning-to-Adult Transition in the Liver

Different signaling pathways controlling cell proliferation, metabolism, and differentiation converge to the

mammalian target of rapamycin (mTOR). Particularly relevant are those mediated by PI3K, ERK, and Wnt/

b-Cat, which activate the mTORC1 complex through the guanosine triphosphate (GTP)-binding protein

RHEB (Laplante and Sabatini, 2009, 2012; Saxton and Sabatini, 2017). We therefore decided to determine

whether the sustained activation of those pathways in the preweaning-to-adult transition in AhR�/� liver

resulted in increased mTORC1 activation. Protein analysis showed that mTOR expression remained at a

higher level in both preweaning and adult AhR�/� livers when compared with their counterpart AhR+/+

livers (Figure 7A). One major target of the mTORC1 complex is the ribosomal S6 kinase-1 (S6K1), which

is activated by phosphorylation (Laplante and Sabatini, 2009, 2012; Saxton and Sabatini, 2017). In addition

to its functions in protein synthesis, S6K1 has been recently implicated in the control of polyploidy (Ma

et al., 2009). The levels of phosphorylated S6K1 were increased in preweaning and adult AhR�/� livers

when compared with AhR+/+ liver (Figure 7B), in agreement with the observed pattern of mTOR expres-

sion. Hence, the persistent activation of INS-R/PI3K/ERK and Wnt/b-Cat signaling pathways that takes

place during liver maturation in AhR�/� mice might assemble at the mTORC1 complex, maintaining

proliferation and inhibiting differentiation-related polyploidy.
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Figure 5. Liver Maturation Involves Changes in ERK1/2, p53, and p21Cip1

(A–E) Preweaning (PW) and adult (AD) AhR+/+ and AhR�/� livers were processed to obtain total protein extracts that

were analyzed by immunoblotting for total and phosphorylated ERK1/p44 and ERK2/p42 (ERK1/2, p-ERK1/2Thr202/Tyr204)

(A–C), p53 (D), and p21Cip1 (E). b-Actin was used to confirm protein integrity and equal loading. Two representative mice

for each experimental condition are shown. Ten mice for each developmental time and genotype and three technical

replicates were analyzed. Data are shown as mean G SD. n.s., Not statistically significant; SD, standard deviation.

Antibodies used are indicated in Table S1.
AhR Deficiency Alters Metabolic Parameters Associated with Polyploidy and mTOR Activity

The PI3K-mTOR pathway has relevant functions in metabolism and energy control (Saxton and Sabatini,

2017; Yu and Cui, 2016). Recent work suggests that mTOR inhibition reduces glycolytic metabolism in poly-

ploid cells (Liu et al., 2013) and that amino acids such as L-Leu may regulate mTORC1 activity in certain

forms of anemia (Boultwood et al., 2013; Payne et al., 2012). We then performed metabolome analysis

for amino acid content in serum from preweaning and adult AhR+/+ and AhR�/� mice. Interestingly,

L-Leu was significantly enriched in AhR�/� preweaning serum when compared with AhR+/+ mice,

although no significant changes were observed in adult mice (Figure 7C). L-Gln, which cooperates in trans-

porting L-Leu into the cell, had also significantly higher levels in preweaning AhR�/� mice serum and a

tendency of accumulation in adult AhR-null mice (Figure 7D). It is thus possible that L-Leu/L-Gln may

contribute to mTORC1 activation in preweaning liver. We next did metabolomics for intermediates of

the mitochondrial oxidative phosphorylation to determine whether reduced polyploidy in AhR�/� liver

favors oxidative versus glycolytic metabolism. The results showed significant increases in serum levels of

aerobic metabolism intermediates succinate, fumarate, and malate during the preweaning-to-adult tran-

sition in AhR�/� mice when compared with AhR+/+ mice (Figure 7E), in agreement with the prominent

roles of succinate (and to a lesser extent fumarate) in providing cellular energy and blocking senescence

in replicative cells (Chen et al., 2015), and with the preferred glycolytic metabolism found in high-ploidy

cells (Liu et al., 2013). Moreover, azelaic acid monoesters, which are negatively regulated by the hepatic

carboxylesterase-3 (CES3) in an AhR-dependent manner and which could contribute to the liver steatosis

present in very young AhR�/�mice (Matsubara et al., 2012), were also markedly upregulated in prewean-

ing AhR�/� liver, concomitantly to an inhibition of CES3 expression (Figures 7F and 7G).

Lack of Polyploidy in Adult AhR-Null Liver May Be Related to Centrosome Amplification

In the liver, developmental polyploidy may arise after several rounds of genome duplication in the absence

of cytokinesis (Pandit et al., 2013), with the appearance of supernumerary centrosomes (Conduit et al.,
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Figure 6. b-Cat Expression and Signaling Are Upregulated in AhR-Deficient Liver and AhR Modulates Wnt/b-Cat-

Dependent Transcription in Mouse Primary Hepatocytes

(A) Liver tissue was obtained from preweaning and adult AhR+/+ and AhR�/� mice, fixed, embedded in paraffin,

sectioned, and analyzed by immunofluorescence for b-Cat expression using a specific primary antibody and an Alexa

633-labeled secondary antibody. Sections were visualized using an Olympus FV1000 confocal microscope (Olympus).

DAPI was used to label cell nuclei. Nuclear extracts (A, left panel) and total liver protein (A, right panel) were also analyzed

for b-Cat protein levels by immunoblotting using a specific antibody.
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Figure 6. Continued

(B) Total RNA was purified from adult AhR+/+ and AhR�/� liver, reverse transcribed, and mRNA gene expression for the

b-Cat target genes Axin2, Cyclin D1, and c-Myc and Lef1 were quantified by real-time quantitative polymerase chain

reaction (qPCR) using the oligonucleotides indicated in Table S1.

(C and D) Total liver protein from preweaning (PW) and adult (AD)AhR+/+ and AhR�/�mice was immunoprecipitated for

AhR (C) or pAKT (D) and the presence of b-Cat in the complexes detected by immunoblotting using a specific antibody.

Adult primary hepatocytes were isolated from AhR+/+ and AhR�/� mice by collagenase perfusion and cultured in

complete medium containing HGF and EGF.

(E) Adult AhR+/+ primary hepatocytes were treated with medium from control L1 cells (control), medium from L1-Wnt3a-

producing cells (1:4 dilution), or 10 mMFICZ.AhR�/�primary hepatocytes were treated with medium from control L1 cells

(control) or medium from L1-Wnt3a-producing cells (1:4 dilution). Total RNA was purified and analyzed for Axin2 or

Cyp1a1 mRNA expression by reverse-transcriptase (RT)-qPCR.

(F) Adult primary hepatocytes from AhR+/+ and AhR�/� liver were transfected with the TOP/FOP luciferase system to

determine b-Cat-dependent transcription under basal cell conditions or after treatment with L1-Wnt3a conditioned

medium (1:4 dilution).

(G) The TOP/FOP luciferase assay was also performed in preweaning primary hepatocytes obtained from mice of either

genotype. mRNA gene expression was normalized by Gapdh and represented as 2�DDCt. b-Actin and histone H3 (H3)

were used to confirm protein integrity and equal loading. Eight mice for each developmental time and genotype and at

least three technical replicates were analyzed.

Data are shown as mean G SD. n.s., Not statistically significant; SD, standard deviation. Scale bar, 50 mm. Antibodies and

oligonucleotides used are indicated in Tables S1 and S2, respectively.
2015). Interestingly, continued expression of endogenous AhR was shown to promote centrosome ampli-

fication (e.g., increased number of centrosomes) in breast cancer cells (Korzeniewski et al., 2010). We

considered the possibility that low-ploidy AhR�/� livers may have altered centrosome organization. Peri-

centrin (PCN), a prototypical component of the pericentriolar material (PCM) surrounding the centriole,

was overexpressed in preweaning and adult AhR�/� livers with respect to AhR+/+ liver, as determined

by immunoblotting (Figure 8A). Confocal immunofluorescence in liver sections stained for PCN showed

that, in the absence of AhR, adult hepatocytes appeared to have larger and strongly stained centrosomes

thanAhR+/+ adult livers (Figure 8B). Image analyses were performed to quantify the area and volume of the

centrosomes in AhR+/+ and AhR�/� livers. In agreement, centrosomes of AhR�/� livers had larger areas

(Figure 8C) and volumes (Figure 8D) than centrosomes in AhR+/+ livers.
Pharmacological Inhibition of PI3K, ERK, and Wnt/b-Cat Signaling Partially Rescues

Polyploidy in AhR�/� Liver

We next decided to investigate if inhibition of PI3K, ERK, and Wnt/b-Cat signaling could rescue polyploidy

in AhR�/� liver (Figure 9). Primary hepatocytes were isolated from AhR+/+ and AhR�/�mice by collage-

nase perfusion and cultured in the presence of pharmacological inhibitors LY294002 (PI3K), PD98059 (ERK),

and salinomycin (Wnt/b-Cat). Inhibition of these signaling pathways increased the number of hepatocytes

with 4c DNA content in both genotypes and interestingly, stimulated the appearance of AhR�/� hepato-

cytes with >4c DNA content, including octaploid cells (Figures 9A and 9B).

Treatment of AhR�/�mice with these inhibitors in vivo for 7 days reduced signaling through PI3K as deter-

mined by AKT phosphorylation at Ser473 (Figure 9C) and downregulated the expression of mTOR with

respect to untreated AhR-null mice (Figure 9D). Overall, these in vitro and in vivo experiments support

the involvement of PI3K, ERK, and Wnt/b-Cat signaling in liver polyploidization through a mechanism

requiring AhR expression.
DISCUSSION

Taking into account that AhR expression promotes differentiation in different cell types (Esser and Rannug,

2015; Mulero-Navarro and Fernandez-Salguero, 2016), and since polyploidization is in fact a differentiation

process, we decided to investigate the role of AhR in the transition from a preweaning diploid liver to an

adult polyploid liver and the signaling pathways that might be involved. Themain conclusion from this work

is that AhR maintains the activation of signaling pathways controlling proliferation, differentiation, and

metabolism within physiological levels for proper liver polyploidization and maturation. The fact that

several related pathways are modulated by AhR to control physiological liver polyploidy suggests that

this receptor may be acting as a downstream hub in the signaling network. Future studies are guaranteed
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Figure 7. mTOR Expression, Ribosomal S6K1 Activation, and Metabolomic Changes during the Preweaning-to-

Adult Transition in AhR�/� Liver

(A) Total protein obtained from preweaning (PW) and adult (AD) AhR+/+ and AhR�/� liver were analyzed for the

expression of mTOR by immunoblotting using a specific antibody.
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Figure 7. Continued

(B–D) (B) Protein extracts from the same mice were used to determine by immunoblotting the level of activation of

mTORC1 target protein phospho-S6K1 (p-S6K1Tyr389). Serum samples were obtained from preweaning (PW) and adult

(AD) AhR+/+ and AhR�/� mice, processed, and their metabolites analyzed by chromatographic separation and mass

spectrometry. The levels of mTORC1-activating amino acids L-Leu (C) and L-Gln (D) weremeasured and quantified in both

AhR genotypes and developmental stages.

(E) Metabolomics were also used to identify and quantify the accumulation of intermediates of the mitochondrial

oxidative metabolism succinate, fumarate, and malate in the samples indicated above.

(F) Levels of azelaic acid were determined by chromatography and mass spectrometry in serum samples from preweaning

AhR+/+ and AhR�/� mice.

(G) Protein levels of the hepatic carboxylesterase-3 (CES3) were determined in preweaning AhR+/+ and AhR�/�mice by

immunoblotting using a specific antibody. b-Actin was used to confirm protein integrity and equal loading.

Two representative mice for each experimental condition are shown. Eight mice (A–D) or six mice (E–F) for each

developmental time and genotype and three technical replicates were analyzed. Data are shown as mean G SD.

Antibodies used are indicated in Table S1. SD, standard deviation.
to determine the relative contribution of each of these pathways to the phenotype and the precise points

for AhR interaction.

AhR deficiency increased the cellularity and reduced the average cell size in the preweaning proliferating

liver and surprisingly, such hyperproliferative phenotype, rather than being blocked as in AhR wild-type

mice, persisted in adult AhR�/� livers as demonstrated by Ki67 and PCNA immunodetection. These

observations suggest that AhR is needed to maintain cell growth and proliferation within adequate phys-

iological ranges in early stages of postnatal liver development. Even more, since the preweaning-to-adult

transition involves a process of differentiation by which hepatocytes modify their cell cycle to inhibit divi-

sion (Celton-Morizur et al., 2010; Sigal et al., 1999; Zielke et al., 2013), it appears likely that AhR is also

required to switch from a proliferative to a differentiated adult liver. This hypothesis is supported by the

fact that the liver differentiation marker albumin reached much higher expression levels in polyploid

AhR+/+ livers than in mostly diploid AhR�/� livers. In addition, it is also known that AhR is able to prevent

mitotic progression, induce differentiation, and inhibit pluripotency in different cell types (Contador-Troca

et al., 2013; Esser and Rannug, 2015; Ko et al., 2016; Morales-Hernandez et al., 2016; Mulero-Navarro and

Fernandez-Salguero, 2016).

Increased cell size, reduced proliferation, and terminal differentiation are common properties of polyploid

cells including hepatocytes (Conlon and Raff, 1999; Raff, 1996). We therefore questioned whether AhR

could be relevant for polyploidization of the adult liver. Indeed, AhR depletionmaintained a predominantly

diploid adult liver with a high content of mononuclear hepatocytes, suggestive of impaired polyploidy. To

date, a sole single report has suggested that AhR may be needed for the differentiation and polyploidiza-

tion of mouse megakaryocytes (Lindsey and Papoutsakis, 2011). The existence of this common function of

AhR in different unrelated cell types emphasizes that ploidy maintenance may be an evolutionary

conserved role for this receptor along phylogeny. The implication of AhR in inducing differentiation and

polyploidy was further supported by the fact that, in the absence of AhR, compromised polyploidy in adult

mice was accompanied by upregulation of cell cycle proteins promoting transition through G1/S and

G2/M, Cyclin B1 and Cyclin E, and repression of cell cycle inhibitors p27Kip1 and p21Cip1. Thus, adult

mice liver polyploidy could involve physiological control of the cell cycle by a process requiring AhR expres-

sion. Consistently, since AhR can bind to inactive hypophosphorylated retinoblastoma protein (pRB) and to

displace p300 from E2F promoters, AhR deficiency may result in enhanced proliferation in adult hepato-

cytes. Interestingly, lack of E2F8 transcription factor impairs polyploidization in mouse liver through over-

expression of E2F-dependent target genes (Pandit et al., 2012), thus producing a phenotype similar to that

present in AhR-null mice. Since the E2F8-deficient phenotype was associated with the upregulation of pro-

cytokinesis genes, it might be relevant to address to what extent cytokinesis affects ploidy in AhR�/�
mouse liver. It is intriguing that preweaning AhR+/+ mice maintained higher levels of Cyclin B1 and

Cyclin E despite their reduced proliferative potential with respect to AhR�/�mice. One possible explana-

tion for these results is that wild-type livers overexpress positive regulators of the cell cycle to overcome

their increased content in negative regulators p27Kip1 and p21Cip1.

Although the reduced polyploidy present in adult AhR-null liver could result from defective endoreplica-

tion (Zielke et al., 2013), it is also possible that the so-called ploidy reversal (Duncan et al., 2010) could

generate cells of variable ploidy from a fraction of mature AhR�/� polyploid hepatocytes, ultimately
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Figure 8. Lower Ploidy in AhR�/� Liver Could Be Associated with Altered Centrosome Composition

(A) Total protein was obtained from preweaning and adult AhR+/+ and AhR�/� liver and analyzed for pericentrin (PCN)

expression by immunoblotting using a specific antibody.

(B) Livers from adult AhR+/+ and AhR�/� mice were fixed, embedded in paraffin, sectioned, and analyzed for PCN

expression by immunofluorescence using a specific primary antibody and an Alexa 633-labeled secondary antibody.

Sections were visualized using an Olympus FV1000 confocal microscope (Olympus). DAPI was used to label cell nuclei.

Details of centrosomes at higher magnification are shown within yellow boxes on the right panels.

(C and D) Centrosomal area (C) and PCN protein amount (D) were quantified using the ImageJ software, and the data

show the different ranges in which centrosomes can be clustered for each mice genotype. b-Actin was used to confirm

protein integrity and equal loading.

Two representative mice for each condition are shown. Six mice for each developmental time and genotype and four

technical replicates were analyzed. Data are shown as mean G SD. Scale bar, 15 mm. Antibodies used are indicated in

Table S1. SD, standard deviation.
restoring proliferative potential. Among the several molecular mechanisms driving polyploidy, failure to

complete cytokinesis after mitosis appears relevant in mammalian liver (Zielke et al., 2013). We have found

that the levels of PCN, a component of the PCM with relevant roles in spindle organization (Zimmerman

et al., 2004), was restricted in centrosomes of AhR-expressing hepatocytes, suggesting that control of cen-

trosomal activity by AhRmay contribute to reduced proliferation and increased polyploidy. Since increased

centrosome size appears related to a higher proliferative potential, adult diploid AhR�/� hepatocytes

could enlarge their centrosomes to maintain proliferation in the absence of polyploidy. In addition, as
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Figure 9. Pharmacological Inhibition of PI3K, ERK, and Wnt/b-Cat Signaling Partially Rescues Polyploidy in

AhR�/� Liver

(A and B) Primary hepatocytes from AhR+/+ (A) and AhR�/� (B) mice were cultured for 48 hr in the presence of inhibitors

for PI3K (LY294002), ERK (PD98059), andWnt/b-Cat (salinomycin) at a low or high concentration (seeMethods). Their DNA

content was analyzed by flow cytometry and represented as 2c, 4c, and >4c containing cells.

(C)AhR�/�mice were treated in vivowith those inhibitors (seeMethods), and the activation of PI3K signaling determined

by the levels of p-AKTSer473 with respect to total AKT expression.

(D) mTOR expression was also determined in vivo under the same experimental conditions indicated above.

Two representative mice for each condition are shown. Six mice of each genotype were perfused to isolate primary

hepatocytes for in vitro experiments and five mice were treated with inhibitors in vivo. Three technical replicates were

analyzed. Data are shown as mean G SD. Scale bar, 15 mm. Antibodies and oligonucleotides used are indicated in

Tables S1 and S2, respectively. SD, standard deviation.
PCN regulates mitotic responses in DNA damaged cells (Antonczak et al., 2016), AhR-null hepatocytes

could widen their centrosomes to complete cell division under enforced non-polyploid conditions,

whereas polyploid AhR wild-type hepatocytes would keep an increased number of smaller centrosomes.

Interestingly, lack of the E2F8 transcription factor in mouse liver promotes overexpression of E2F-depen-

dent target genes and enhanced cytokinesis with impaired polyploidization (Pandit et al., 2012). Since such

phenotype was related to the upregulation of pro-cytokinesis genes, it could be relevant to address

whether pro-cytokinesis genes are also deregulated in AhR�/� mouse liver. In addition, altered E2F tran-

scriptional activity could also be involved in the mechanism since AhR inhibits cell proliferation by repres-

sing E2F-dependent transcription through p300 displacement.

Insulin hormone signals through the INS-R to PI3K and Ras-ERK pathways to control cell survival, prolifer-

ation, and metabolism (Yu and Cui, 2016). A previous study has shown that AKT activation induced poly-

ploidy in Wistar rat liver (Celton-Morizur et al., 2009, 2010). Our characterization of the INS-R/PI3K/AKT/

GSK3b and ERK axes indicated that it was persistently downregulated from preweaning-to-adult

AhR+/+ liver when compared with AhR-deficient liver, suggesting that reduced signaling through those

pathways may compromise proliferation and promote polyploid differentiation. In addition, diminished

INS-R/PI3K/AKT/GSK3b and ERK signaling in polyploid AhR wild-type liver can be partly explained by

the reduced insulin sensitivity of AhR+/+ with respect to AhR�/� mice (Wang et al., 2011). Remarkably,

tumor suppressor p53, which is negatively regulated by PI3K signaling (Sabbatini and McCormick, 1999;

Yamaguchi et al., 2001), was downregulated in preweaning AhR�/� liver but overexpressed in adults.

Nonetheless, p53 target gene p21Cip1 was consistently suppressed in AhR-null livers at either develop-

mental stage. These apparently contradictory results can be explained in the context of p53-regulating

ploidy (Aylon and Oren, 2011; Kurinna et al., 2013) or in the proposed p53-dependent versus p53-indepen-

dent regulation of p21Cip1 (Karimian et al., 2016; Macleod et al., 1995). Since previous work has indicated
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that p53 overexpression blocks polyploidy (Aylon and Oren, 2011; Kurinna et al., 2013), it can be suggested

that high p53 expression impairs the diploid-to-polyploid transition in adult AhR-null liver, whereas a

reduction in p53 levels could positively influence polyploidy in adult AhR+/+ liver. In addition, p21Cip1

could be downregulated independently on p53 in AhR-null liver, as previously reported in p53�/�mouse

(Macleod et al., 1995).

AhR cross talks with Wnt/b-Cat signaling as AhR activation represses Wnt/b-Cat-related tissue regenera-

tion in zebrafish (Mathew et al., 2009), differentiation of liver progenitor cells (Prochazkova et al., 2011),

and early differentiation of mouse embryonic stem cells (Wang et al., 2016). On the other hand, Wnt/

b-Cat signaling can increase the expression of AhR target genes in primary human hepatocytes (Gerbal-

Chaloin et al., 2014). Wnt/b-Cat signaling was significantly reduced in adult primary AhR+/+ hepatocytes,

suggesting in agreement with earlier data that inhibition of this pathway may contribute to polyploidiza-

tion. An intriguing possibility is that AhR may be a component of the b-Cat repressive complex since

both proteins co-immunoprecipitate under basal conditions in adult AhR+/+ liver. It is thus plausible

that the presence of AhR in the b-Cat complex negatively affects Wnt/b-Cat-dependent functions,

including inhibition of cell proliferation. Since active p-AKT co-immunoprecipitated with b-Cat and such

effect was more noticeable and sustained in AhR�/� than in AhR+/+ liver, it is possible that cooperation

between PI3K and Wnt/b-Cat supports liver proliferation and impairs polyploidy in the absence of AhR.

Indeed, INS-R/PI3K can induce Wnt/b-Cat responses by inhibiting GSK3b (Yu and Cui, 2016), which was

repressed in adult AhR�/� liver.

PI3K/AKT, ERK, and Wnt/b-Cat pathways converge to regulate mTORC1, which is a major complex in con-

trolling proliferation, survival, and metabolism (Laplante and Sabatini, 2009, 2012; Yu and Cui, 2016).

Consistently, reduced activation of these pathways in preweaning and adult AhR+/+ livers coincided

with lower mTOR expression and diminished activation of its canonical target S6K1. Altogether, we pro-

pose that AhR-expressing hepatocytes inhibit signaling from PI3K/AKT, ERK, and Wnt/b-Cat to mTORC1

to block proliferation, induce differentiation, and trigger polyploidy during the preweaning-to-adult tran-

sition. In fact, expression of a kinase-dead form of S6K1 in megakaryocytes increases polyploidy, whereas

its rapamycin-resistant active form decreased polyploidy (Ma et al., 2009). mTORC1 also has relevant roles

in cellular metabolism, and its activity can be increased by intracellular amino acids (Carroll et al., 2017).

AhR expression reduced L-Leu and L-Gln levels in preweaning and L-Gln levels in adult liver. Since L-Leu

and L-Gln are co-transported into the cell to activate mTORC1 (Boultwood et al., 2013; Laplante and Saba-

tini, 2009; Payne et al., 2012), it is possible that reduced L-Leu and L-Gln levels adversely affect mTORC1 in

AhR+/+ polyploid liver. Furthermore, high L-Gln levels in adult AhR�/� liver may depend on Wnt/b-Cat

since this pathway regulates L-Gln metabolism in the liver (Cadoret et al., 2002).

Polyploidization has been shown to favor glycolytic metabolism over mitochondrial oxidative phosphory-

lation in acute myeloid leukemia (Liu et al., 2013). Polyploid, low-proliferating AhR+/+ liver had reduced

levels of succinate, considered the most energetic molecule of the mitochondrial aerobic metabolism

(Chen et al., 2015). This result suggests that polyploid adult AhR wild-type liver may have a preferred glyco-

lytic energy demand and a more differentiated status than the diploid proliferative adult AhR-null liver that

would favor a more energetic mitochondrial metabolism. Finally, preweaning AhR+/+ livers had reduced

levels of azelaic acid, likely due to overexpression of the AhR-regulated CES3 gene. Since high levels of

azelaic acid have been associated with steatohepatitis (Matsubara et al., 2012), these data could help

explain the steatosis described in postnatal AhR�/� mice (Schmidt et al., 1996).

We propose that AhR is needed to establish a physiological control of signaling pathways regulating cell

proliferation, differentiation, metabolism, and polyploidy in mouse liver. This hypothesis is supported by

the fact that inhibition of PI3K, ERK, and Wnt/b-Cat signaling rescues, at least partially, polyploidy in

AhR�/� hepatocytes. Since polyploidization is a recurrent trait of human cancer (Zack et al., 2013), under-

standing how AhR expression influences ploidy may provide novel therapeutic opportunities using non-

toxic AhR modulators. Because the pathways identified here are regulated within the same developmental

window, it seems reasonable that AhR acts downstream of mTOR, PKB, ERK, and b-Cat possibly by acting

as a common intermediate. This may lead to identify novel nuclear and non-nuclear functions of AhR, as

previously found for the regulation of caveolin-1, b1-integrin, and c-Src (Enan and Matsumura, 1996;

Rey-Barroso et al., 2013, 2014). Elucidating whether ploidy reversal contributes to the reduced polyploidy

of adult AhR�/� liver represents another relevant question that deserves further investigation.
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METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, one figure, and two tables and can be found

with this article online at https://doi.org/10.1016/j.isci.2018.05.006.
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LEGEND FOR SUPPLEMENTARY FIG. S1 
 
Figure S1, related to Fig. 2. Ploidy analysis of preweaning mice. AhR+/+ and AhR-/- 

preweaning mice between 12 and 33 days of age were analyzed for liver ploidy by flow 

cytometry. Primary hepatocytes were isolated at the indicated ages, processed for 

propidium iodide staining and their DNA content analyzed. Mice were at 12 days (A,D), 

18 days (B,E), 21 days (C,F), 25 days (G,J), 30 days (H,K) and 33 days (I,L). Peaks on 

the X-axis define DNA content and ploidy status. 

 



Table S1, related to Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9 
 

Antibodies used in this study 
 
 

PROTEIN NAME REFERENCE BRAND 

AhR MA1-514 Thermo Scientific 

INS-R Ab131238 Abcam 

p85-PI3K 06-497 Millipore-Upstate 

PTEN ab32199 Abcam 

pAKT (Ser473) 5048 Cell Signaling 

AKT 9272 Cell Signaling 

p-GSK3b (Ser9) 5558P Cell Signaling 

GSK3b 12456P Cell Signaling 

pERK1/2 (Thr 202/Tyr204) 9101 Cell Signaling 

ERK1/2 9102 Cell Signaling 

p53 2524 Cell Signaling 

p21Waf1/Cip1 2947 Cell Signaling 

p27Kip1 3686 Cell Signaling 

Cyclin E sc-377100 Santa Cruz Biotechnology 

mTOR ab2732 Abcam 

pP70 S6K1 (Tyr389) 9205 Cell Signaling 

PCNA 307901 BioLegend 

CES3 sc82554 Santa Cruz Biotechnology 

Pericentrin ab4448 Abcam 

b-Actin A2066 Sigma Aldrich 

Histone H3 ab1791 Abcam 

Cyclin B1 4138 Cell Signaling 

Cyclin D1 2978 Cell Signaling 

Albumin 4929 Cell Signaling 
 



Table S2, related to Fig. 2, Fig. 6 and Fig. 9 
 

Oligonucleotide primers used in this study 
 
 

GENE NAME DIRECTION PRIMER SEQUENCE (5´-3´) 
   
AhR forward AGCCGGTGCAGAAAACAGT 
 reverse AGGCGGTCTAACTCTGTGT 
   
Cyp1a1 forward ACAGACAGCCTCATTGAGCA 
 reverse GGCTCCACGAGATAGCAGTT 
   
Axin 2 forward ACTGGGTCGCTTCTCTTGAA 
 reverse CTCCCCACCTTGAATGAAGA 
   
b-Cat forward CCCTGAGACCCTACATGAGG 
 reverse TGTCAGCTCAGGAATTGGAC 
   
c-Myc forward CCTGACGACGAGACCTTCA 
 reverse TGGTAGGAGGCCAGCTTCT 
   
Cyclin-D forward CACAACTTCTCGGCAGTCAA 
 reverse AGTGCGTGCAGAAGGAGATT 
   
Dkk1 forward GCAGGTGTGGAGCCTAGAAG 
 reverse GCCTCCGATCATCAGACTGT 
   
Lef1 forward GGGTGTTCTCTGGCCTTGT 
 reverse GCGACTTAGCCGACATCAA 
   
Gapdh forward TGAAGCAGGCATCTGAGGG 
 reverse CGAAGGTGGAAGAGTGGGAG 
   
Albumin forward TGCATCTAGTGACAAGGTTTGG 
 reverse GACTGGGGCCACTACTTCAA 
   
mTOR forward CTCAAGCGATCCAGTTGTCA 
 reverse CAAAGAAGGGCTGAACTTGC 
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TRANSPARENT METHODS 

Mice and treatments 

Transgenic AhR+/+ and AhR-/- mice were generated by gene targeting as previously 

described (Fernandez-Salguero et al., 1995). Preweaning male mice were used at around 

25 days of age whereas adult mice were analyzed at 9-10 weeks of age. Previous studies 

have shown that weaning takes place in mice around 21 days and that polyploidization 

occurs between 3 and 4 weeks of age (Marques et al., 2008; Pandit et al., 2013; Pandit et 

al., 2012). Mice were sacrificed at the indicated times and liver tissue was removed and 

freshly processed for analysis or fixed for immunofluorescence. For metabolomic 

determinations, serum was obtained from clotted blood. Mice were also perfused through 

the portal vein of the liver to isolate primary hepatocytes as indicated below. All animal 

studies have been performed in accordance with the National and European legislation 

(Spanish Royal Decree RD53/2013 and EU Directive 86/609/CEE as modified by 

2003/65/CE, respectively) and in accordance with the Institute of Laboratory Animal 

Resources (ILAR) for the protection of animals used for research. Experimental protocols 

were approved by the Bioethics Committee for Animal Experimentation of the University 

of Extremadura (Registry 109/2014), Junta de Extremadura (EXP-20160506-1) and 

National Cancer Institute Animal Care and Use Committee. Mice had free access to water 

and rodent chow.  

Antibodies and reagents 

The antibodies used in this study are indicated in Table S1. The AhR non-toxic ligand 6-

formylindolo[3,2-b]carbazole (FICZ) was obtained from Thermo Scientific and it was 

used at 10 µM concentration. PI3K inhibitor LY294002, ERK inhibitor PD98059 and 

Wnt/b-cat inhibitor salynomicin were obtained from MedChem and were dissolved in 

sterile DMSO. 
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Reverse transcription and real-time PCR 

Total RNA was purified from livers of preweaning and adult mice. Tissues were extracted 

in a Trizol reagent (Ambion)/chloroform solution, centrifuged and the supernatant 

precipitated with isopropanol. After centrifugation at 15000 g for 30 min at 4ºC, pellets 

were dissolved in DEPC-treated water and the crude RNA solution further purified using 

the High Pure RNA Isolation Kit (Roche). Reverse transcription was performed using 

random priming and iScript Reverse Transcription Super Mix (Bio-Rad). Real-time PCR 

(qPCR) was performed using SYBR® Select Master Mix (Life Technologies) in a Step 

One Thermal Cycler (Applied Biosystems) essentially as indicated (Morales-Hernandez 

et al., 2016; Rico-Leo et al., 2016). Gapdh was used to normalize target gene expression 

(ΔCt) and 2-ΔΔCt to quantify changes in mRNA levels with respect to basal conditions. 

The oligonucleotide primer sequences used are indicated in Table S2.  

SDS-PAGE electrophoresis and Western blotting 

SDS-PAGE and Western blotting were performed using total protein liver extracts as 

described (Rico-Leo et al., 2016). In brief, AhR+/+ and AhR-/- liver tissues were 

homogenized in lysis buffer, centrifuged and protein concentration determined in the 

supernatants using the Coomassie Plus protein assay reagent (Pierce) and bovine serum 

albumin as standard. Aliquots of 20-30 µg total protein were electrophoresed in 8% SDS-

PAGE gels which were transferred to nitrocellulose membranes by electroblotting. 

Following blocking in TBS-T solution containing 5% non-fat milk, membranes were 

sequentially incubated with the primary and the secondary antibodies, washed in TBS-T 

and revealed using the Super-signal luminol substrate (Pierce). Blots were scanned and 

protein expression quantified in a ChemiDoc XRS+ equipment (Bio-Rad).  
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Primary hepatocytes isolation by liver perfusion  

To obtain primary hepatocyte cultures from mice, a two-step collagenase perfusion 

protocol was used essentially as described (Tanaka et al., 2015). Some technical 

modifications were introduced for AhR-/- mice in order to optimize perfusion efficiency 

due to their altered intrahepatic vasculature (Corchero et al., 2004; Lahvis et al., 2000). 

Mice were anesthetized, the internal organs set aside and the portal vein cannulated. The 

liver was initially rinsed with 40 ml of Hank’s buffered salt solution (HBSS) containing 

1 mM EDTA but without calcium and magnesium (Gibco) to remove blood. To drain the 

liver, the inferior vena cava was cut at the beginning of the process. Perfusion was done 

by passing 50 ml of a HBSS solution containing 0.6 mg/ml collagenases I and II (Gibco) 

and CaCl2 through the cannulated portal vein. The liver was then removed, placed in a 

sterile tissue culture dish and the gallbladder carefully excised. Liver cells were gently 

detached, filtered through a 70 µm mesh cell strainer (Falcon) and centrifuged at 400 g 

for 3 minutes at 4°C. Primary hepatocytes were purified through a Percoll gradient (GE 

Healthcare), washed with PBS, stained with trypan blue to determine the number of dead 

cells and seeded in collagen-treated tissue culture plates at the appropriate cell density in 

DMEM-F12 medium (Lonza) supplemented with 10% FBS, 2 mM glutamine, 100 U/ml 

penicillin and 100 µg/ml streptomycin. For some experiments, hepatocyte growth factor 

(HGF) and epidermal growth factor (EGF) were added to the medium. 

In vitro and in vivo treatment with pharmacological inhibitors 

Primary hepatocyte cultures isolated from AhR-/- mice were seeded at a confluence of 

1x106 cells/well in 6-well plates and allowed to attach overnight. Cultures were then 

treated for 48 h with PI3K inhibitor LY294002 (25 and 50 µM), ERK inhibitor PD98059 

(5 and 10 µM) and Wnt/b-cat inhibitor salynomicin (2,5 and 5 µM). Control cultures 

received the same concentration of the solvent DMSO. For in vivo inhibition of signaling 
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pathways, AhR-/- mice were treated for 7 days with a mix of 30 mg/kg LY294002 + 10 

mg/kg PD98059 by i.p. injection plus 8 mg/kg salynomicin in drinking water. Control 

mice were injected with the same volume of DMSO. At the end of treatment, mice were 

sacrificed and their liver ploidy status analyzed by flow cytometry. 

Ploidy analysis  

Primary hepatocytes from AhR+/+ and AhR-/- mice were fixed with 70% ethanol for 30 

min at -20ºC and incubated with 10 µg/ml RNAse for 30 min at 37ºC. DNA content per 

cell was determined in a MACSQuant VYB (Miltenyi Biotech) after staining the cells 

with 50 µg/ml propidium iodide for 15 min at room temperature in the dark. Only signals 

from single cells were considered and at least 10.000 events were analyzed per sample. 

To quantify the number of binucleated cells, liver sections from preweaning and adult 

mice of each genotype were stained with DAPI and the number of hepatocytes containing 

two-nuclei counted using confocal fluorescence microscopy. Data are shown as the 

fraction of binucleated hepatocytes with respect to the total number of hepatocytes per 

field. 

Wnt/β-Cat luciferase reporter assay  

AhR+/+ and AhR-/- primary hepatocytes were seeded at a density of 4x105 cells/well on 

Collagen-I pre-treated 12-well plates (Becton-Dickinson). After overnight incubation, 

cells were co-transfected with 1 µg TOPflash (TCF-binding sites-containing vector) or 

FOPflash (TCF-mutant binding sites-containing vector) expression plasmids (Millipore) 

and 0.4 µg pRL-TK (Renilla TK-luciferase vector, Promega) using Lipofectamine 3000 

(Life Technologies). Luciferase activities were measured in a Varioskan Flash 96 

Microplate Luminometer (Thermo Scientific) and, for each experimental condition, 

firefly luciferase (e.g. from TOPflash- or FOPflash-transfected primary hepatocytes) was 

normalized by Renilla luciferase. β-Cat-driven transcription was calculated as the 
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TOP/FOP ratio following normalization. In some experiments, primary hepatocytes were 

treated with Wnt3a-enriched medium (1:4 dilution) obtained from L1-Wnt3a cells grown 

in DMEM  medium supplemented with 10% FBS, 2 mM glutamine, 100 U/ml penicillin 

and 100 µg/ml streptomycin. Parallel cultures received medium from control L1 cells. 

IRS-2 activation assay 

Activation of the Insulin receptor signaling intermediate IRS-2 was determined by using 

the PathScan Phospho-IRS-2 ELISA Kit (Thermo Scientific). Briefly, sections of 50 mg 

liver tissue were homogenized with a MagNA Lyser equipment (Roche) in cell lysis 

buffer. Homogenates were then sonicated during 3 min on ice and protein concentration 

determined as indicated above. Aliquots of 100 µg and 250 µg total liver protein were 

added to the 96-well ELISA plate and the levels of pIRS-2 determined following the 

protocol provided by the manufacturer. Mice injected i.p. with 1 unit insulin were used 

as positive controls.  

Immunoprecipitation 

AhR+/+ and AhR-/- liver tissues were homogenized with a MagNA Lyser equipment 

(Roche) in lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1% NaCl, 1% NP40, 10% 

glycerol, 2 mM EDTA, 1% PMSF and Halt protease inhibitor cocktail (Thermo 

Scientific)). Homogenates were centrifuged at 10000 g for 5 min at 4°C and protein 

concentration was quantified using the BCA protein assay kit (Beyotime Biotech). 

Aliquots of 2 mg liver protein were immunoprecipitated using Dynabeads Protein G (Life 

Technologies) and antibodies against AhR and pAKT essentially as described (Rey-

Barroso et al., 2014; Rico-Leo et al., 2013). 

Hematoxylin/eosin staining of liver sections 

Livers from AhR+/+ and AhR-/- mice were fixed overnight at room temperature in 

buffered formalin and included in paraffin. Sections of 3 µm were deparaffinated in xylol 
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and re-hydrated to phosphate buffered saline (PBS). Sections were incubated for 3 min 

with hematoxylin, washed with tap water and stained with eosin for 1 min. Sections were 

de-hydrated, mounted and observed in a NIKON TE2000U microscope using 4x (0.10 

numeric aperture) and 10x (0.25 numeric aperture) objectives. 

Immunofluorescence and confocal microscopy 

Liver sections prepared as indicated above were incubated for 1 h at room temperature in 

PBS containing 0.25% Triton X-100 (PBS-T), 0.2% gelatin and 3% BSA to block 

unspecific epitopes. Sections were incubated overnight at 4ºC with anti-b-Cat primary 

antibody diluted in PBS-T containing 0.2% gelatin. After washing in the same solution, 

tissues were incubated for 1 h at room temperature with an Alexa-633-labeled secondary 

antibody. After further washing, sections were dehydrated, mounted on Mowiol and 

visualized using an Olympus FV1000 confocal microscope (Olympus). For some 

experiments, 10 µm liver sections were processed as indicated above and incubated with 

anti-PCNA primary antibody and Alexa-488 secondary antibody. Sections were analyzed 

with the same confocal microscope equipped with a multiphoton laser. Objectives used 

were: 10x (0.40 numeric aperture) and 20x (0.70 numeric aperture). Fluorescence 

analysis was done using the FV10 software (Olympus). DAPI was used to stain cell 

nuclei.  

Metabolomic analyses by GC-MS 

Blood was collected from AhR+/+ and AhR-/- group mice and serum prepared using 

Serum Separator Tubes (Becton-Dickinson) as indicated by the manufacturer. GC-MS 

analysis was performed with an Agilent 6890N gas chromatograph coupled to an Agilent 

5973 mass-selective detector (MSD) as previously described (Patel et al., 2017) for the 

tricarboxylic cycle intermediates, amino acid (L-Leucine, L-Glutamine) and dicarboxylic 

acid (Azelaic acid) analysis. Additionally, m/z (Qualifier ions 1 -Q1, Qualifier ions 2 -



 7 

Q2) for L-leuicine 200 (274,302), and Azelaic acid 317 (359,201) at retention time 13.3 

min and 18.8 min in sequence were selected for single ion monitoring by GC-MS. Data 

Processing were conducted with agilent mass hunter work station software. 

Metabolomics profiling with UPLC-ESI-QTOFMS 

UPLC-ESI-QTOFMS analysis was performed as previously reported (Matsubara et al., 

2012). Samples were introduced into the mass spectrometer Q-TOF Premier (Waters 

Corporation) operating in either negative or positive electrospray ionization modes. Data 

processing and multivariate data analysis were conducted as previously reported 

(Matsubara et al., 2012). A PCA, PLS-DA and contribution analyses were performed 

using SIMCA-P+12 (Umetrics). 

Statistical analyses 

Quantitative data are shown as mean ± SD. Comparisons between experimental 

conditions was done using GraphPad Prism 6.0 software (GraphPad). The student´s t 

test was used to analyze differences between two experimental groups and ANOVA for 

the analyses of three or more groups. The Mann-Whitney non-parametric statistical 

method was used to compare rank variations between independent groups.  
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