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Abstract

Environmental health science aims to link environmental pollution sources to adverse health 

outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. 

Over the past few decades, the public health community recognized that health risk is driven by 

interaction between the human genome and external environment. Now that the human genetic 

code has been sequenced, establishing this “G × E” (gene–environment) interaction requires a 

similar effort to decode the human exposome, which is the accumulation of an individual’s 

environmental exposures and metabolic responses throughout the person’s lifetime. The exposome 

is composed of endogenous and exogenous chemicals, many of which are measurable as 

biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids 

for the pollutant itself or its metabolic products. New methods are being developed to use a subset 

of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future 

adverse health effects. Typically, environmental biomarkers are assessed using noninvasive 

(excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to 

practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact 

that blood represents the central compartment that interacts with every living cell and is the most 

relevant biofluid for certain applications and analyses. The aims of this study were to (1) review 

the current use of blood samples in environmental health research, (2) briefly contrast blood with 

other biological media, and (3) propose additional applications for blood analysis in human 

exposure research.

Overview

Environmental health sciences employ various tools for linking environmental chemicals 

and other stressors to preclinical and ultimately adverse outcomes in humans. These include 

the traditional studies of chemicals from external exposures found in media, including air, 

water, food, dust, consumer products, and other sources from commerce, transportation, 

agriculture, and manufacturing (Araoud et al. 2016; Arayasiri et al. 2010; Duarte, Pena, and 

Lino 2011; Freire, Koifman, and Koifman 2015; Funk et al. 2014; Ghio, Sangani, and 

Roggli 2014; Käfferlein et al. 2005; Little et al. 2012; Liu and Pleil 2002; Marion et al. 

2014; Mo et al. 2009; Pleil, Funk, and Rappaport 2006). In the past several decades, the 

focus has broadened to include analysis of human biological media, primarily blood, breath, 
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and urine, to represent the cumulative dose integration of inhalation, der mal, and ingestion 

exposure pathways (Amann et al. 2014; _Pleil, Stiegel, and Sobus 2011a; Rappaport 2012a; 

2012b; Roos and Jakubowski 2010). These chemicals measured in biological media are 

broadly termed biomarkers (or bioindicators) in the literature and comprise the human 

exposome (Burger and Gochfeld 2001; LaKind et al. 2014; Pleil 2012). Although a 

somewhat fluid distinction, the term bioindicators is used more specifically here as 

representing that subset of all biomarkers that is more closely related to indicating toward an 

adverse outcome. In addition to in vivo biomonitoring, contemporary exposure science has 

embraced suites of in vitro tests for metabolomic activity and toxicity testing based on static 

designs using specific adverse outcome pathways (AOP) and dynamic/kinetic designs using 

cell bioreactors (Angrish, Madden, and Pleil 2015; Baranska et al. 2015; Latterman and 

Buchs 2015; Pleil 2016; 2015; Pleil, Williams, and Sobus 2012; Tarrant 2010; Valcke and 

Haddad 2015).

In the diagnostic medical and clinical sciences, blood analysis has always been the “gold 

standard” with urine and breath measurements as important but secondary media. In public 

health, however, blood sampling is more difficult to implement because study participants, 

in contrast with medical patients, are generally representative of a healthy population and are 

therefore less likely to submit to an invasive procedure involving needles (Holland et al. 

2003). Further, population-based studies require large numbers of subjects; thus, sample 

collection generally does not occur in a clinical setting and is more amenable to noninvasive 

techniques (sampling breath and urine). Nevertheless, similar to medicine, blood is an 

invaluable biofluid for public health assessment because it directly interacts with every 

living cell and is representative of all the chemicals circulating in the body (Barr et al. 2002; 

Levitt 2004).

The aims of this investigation were to (1) contrast the relative value of blood as a diagnostic 

biofluid with respect to breath and urine, (2) examine existing environmental science 

applications of blood analysis, and (3) propose future research and development for 

incorporating blood into routine public health and environmental exposure assessments. The 

purpose of blood (and other biomarker media) analyses is to develop a series of measurable 

chemicals that inform the progression from environmental exposure to internal dose to 

chemical metabolism and then to eventual health outcome (Pleil 2009; Valcke and Haddad 

2015). The ultimate goal is then to use empirical measurements to explore the current state 

of the human exposome and deduce how perturbations from “normal” might interact with 

the genome to affect health state. Although blood biomarkers may also be useful for 

diagnosing short-term health effects for individuals, the general focus of environmental 

health science is to understand and mitigate long-term population-based disease.

Blood versus other biofluids:

As noted earlier, blood sampling is invasive for human subjects. In contrast with breath and 

urine collection, blood sampling tends to be more expensive, requires certified health 

professionals, creates more infectious wastes (e.g., needles, swabs, bandages), increases risk 

of infection, and needs to be performed in a controlled clinical environment (Holland et al. 

2003; Vaught 2006). Further, blood samples need to be processed rapidly (before freezing) if 
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analytical protocols require separation of plasma/serum from red blood cells or isolation of 

genetic material (Holland et al. 2005; Holland et al. 2003; Li, Todor, and Luo 2016). Finally, 

the amount and number of samples allowed for in environmental studies are limited by 

institutional review board (IRB) rules. These logistical factors tend to restrict the number of 

subjects and frequency of sample collection.

Existing blood applications:

Some blood-borne biomarker measurements for exposure/dose assessment are used to 

validate the interpretation of routine biomarker data from less invasive matrices, such as 

breath and urine. This is especially true for semivolatile and nonvolatile organic compounds 

from the environment, such as pesticides, polyaromatic hydrocarbons (PAH), and a variety 

of manufactured chemicals used in consumer products and industry (Hoet et al. 2009; Pleil 

2009). The more prevalent applications of blood measurements for environmental health 

assess downstream biomarkers, including adducts (e.g., protein or DNA) and conjugates that 

are unique to blood, which reflect exposures over longer time periods (Johnson et al. 2010; 

Rappaport et al. 2012).

Future research for incorporating blood into exposure science:

There are four related research paths for expanding blood biomarker applications in the 

environmental health arena. The first is the continuous development of novel biomarkers that 

might bridge the gap between exposure and health outcome, including epigenetic markers 

(e.g., miRNA), ultra-trace-level adducts on specific protein peptides, and endogenous 

response markers (e.g., plasmaand cell-derived mediators, such as cytokines and 

chemokines). The second is developing postprocessing methods for efficiently extracting 

specific blood components from previously frozen samples, especially human serum 

albumin, hemoglobin, and DNA. The third path is developing less intrusive sampling 

methods that are more amenable to population-based studies outside of the clinical 

environment, including micropuncture capillaries, real-time measurements, and sample 

stabilization via dried blood spots. The fourth is incorporating highthroughput techniques, 

such as “omics” technologies that are capable of assaying thousands of proteins or 

metabolites simultaneously to identify differences in expression levels and patterns.

Method Issues for Using Blood

While there are many advantages to using blood for biomarker analysis, several 

methodological issues serve as drawbacks. One issue is the need for a medical team for 

sample collection, which increases the expense of the analysis and makes it difficult, if not 

impossible, to collect blood samples in remote field locations (Vaught 2006). Blood analysis 

also creates biohazardous waste that needs to be properly disposed of. All blood samples 

need to be considered infectious and handled with caution (Holland et al. 2005). Another 

major disadvantage to blood analysis is that subjects are more reticent to provide blood 

samples than breath or urine (Benyshek 2010; Holland et al. 2005). In a study of childhood 

leukemia, only 50% of the subjects provided blood samples while 95% gave buccal-cell 

samples (Holland et al. 2003). Blood sampling is more invasive and may cause brief pain. 

Some individuals, such as children, the elderly, the chronically ill, and pregnant women, are 

not included in blood analyses for ethical reasons, while others think it is simply 
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unnecessary and choose not to participate. Blood might also have lower analyte 

concentrations compared with other matrices. Urine typically has concentrations in the part 

per billion (ppb) range, while blood concentrations tend to be part per trillion (ppt) (Barr et 

al. 2002). For some compounds, such as phthalate esters (PE), urine is the preferred matrix 

because metabolites levels are 10-fold higher in urine than serum (Alves et al. 2014). 

However, as analytical methods continue to improve and become more sensitive, the 

concentration issue is becoming less challenging.

Exposure Science Framework

Exposure science has traditionally focused on characterizing how an individual’s interaction 

with his or her environment leads from stressors (chemical or otherwise) to adverse health 

impacts (Cohen Hubal 2009; Lioy 2010; Lioy and Smith 2013). The manner in which an 

individual interacts with his environment then needs to be analyzed to determine the risk of 

exposure (duration and frequency of contact, activity level, and pathway of exposure) 

(Klepeis et al. 2001). Chemical-specific biomarkers and their mixtures are then used to 

quantify the exposure, demonstrating how much of the stressor entered the body and 

tracking its movement to different biological compartments (Sarigiannis and Hansen 2012). 

This information is then passed on to toxicologists in order to assess potential health effects 

based on levels of chemicals partitioned throughout the body (Calafat et al. 2005). Exposure 

science relies strongly on experimental data; however, studies are increasingly using 

predictive models in an attempt to characterize potential exposures in a more expeditious 

manner (http://www.epa.gov/tsca-screening-tools; Kavlock et al. 2008). Biomarkers are 

known to link exposure science and toxicology research to explain the entire dose-

tooutcome continuum, including both exposure information (absorption, distribution, 

metabolism, and elimination [ADME]) and indications of biological effects (Pleil et al. 

2007; Teeguarden et al. 2016) (Figure 1).

Biomarker Categorization

Linking exposure to potential adverse health effects requires analyzing multiple biomarkers 

that demonstrate an exposure has occurred and that show a change in the biological system 

that is indicative of an adverse effect (Pleil and Sheldon 2011). Biomarkers have typically 

been categorized broadly by function as biomarkers of exposure, effect, and susceptibility 

(Boffetta 2010; Chen et al. 2005). For the purposes of this review, the exposure/effect/

susceptibility paradigm is used as follows:

• Biomarkers of exposure are chemical-specific (the stressor itself or a chemical 

metabolite). These biomarkers are considered exogenous in origin and used to 

assess the quantity of the chemical within the biological system.

• Biomarkers of effect are not necessarily structurally similar to the stressor; they 

are considered to be of endogenous origin, resulting from interactions with the 

environment and generally linked to an AOP in human systems biology.

• Biomarkers of susceptibility demonstrate an individual propensity for a 

sensitized reaction to a stressor of interest. These biomarkers are typically related 

to genetic, epigenetic, or enzymatically induced traits and describe the likelihood 
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that an environmental interaction might trigger a cascade leading to adverse 

effects.

Certain biomarkers from each of these categories may be more amenable to analysis in one 

biofluid versus another, while other biomarkers may be equally well determined in multiple 

biofluids. In this review, the focus is on the different categories of biomarkers that can be 

analyzed in blood.

Classes of Blood Biomarkers

There are four main types of biomarkers in addition to exogenous chemicals that are 

commonly found in blood: endogenous chemicals, inflammatory, molecular modification, 

and damage bioindicators.

Endogenous biomarkers reflect the earliest effects of external perturbations to the human 

organism. Typically, these compounds represent housekeeping chemicals from hydrocarbon 

and oxygen metabolism, as well as volatile oxygenated species, including alcohols, 

aldehydes, ketones, organic acids and proteins. The probative aspect is not their presence but 

a shift away from what is considered a normal (or unremarkable) pattern (Pleil 2012; Pleil, 

Stiegel, and Risby 2013). For example, increased levels of reactive oxygen species (ROS) 

are indicative of oxidative stress (Amann et al. 2014), which might be assessed by 

monitoring levels of glutathione (GSH) and glutathionine disulfide (GSSG) in blood (Dalle-

Donne et al. 2006). Stress genes are often induced after exposure to an environmental 

stressor and may indicate toxicity. Heat-shock proteins, particularly Hsp70, are often 

expressed as a result of exposure to heavy metals or pesticides, and these exposures were 

found to produce recognizable heat shock protein expression patterns (Gupta et al. 2010). 

Clinical markers, including cholesterol, triglycerides, and liver enzymes in blood samples, 

may also be considered endogenous biomarkers and indicate adverse health risks when 

abnormal levels are observed (Pagana and Pagana 2009; Watkins and German 2002). 

Circulating mitochondrial DNA and microRNA (miRNA) were also identified as biomarkers 

of environmental exposure to pesticides and indicators of early cancer development (Budnik 

et al. 2013; Liu et al. 2012).

Inflammatory bioindicators represent the first level of biologically relevant parameters that 

react to an external stressor, which is often the first step in an AOP. The inflammatory 

response serves as a recruitment mediator for repair function stimulated by external 

stressors, such as air pollution, and generates macrophages to release chemokines and 

proinflammatory cytokines, which might be employed to track the biological response to the 

stressor. In some scenarios, anti-inflammatory messengers are also released, which reflects a 

depression of repair function and may be considered adverse. Cytokines were identified as 

biomarkers of exposure to traffic emissions and smoke, which have been linked to 

cardiovascular diseases (Brugge et al. 2013; Channell et al. 2012; Ghio et al. 2012; Kendzia 

et al. 2012; Stiegel et al. 2015; Zuurbier et al. 2011). The cytokine interleukin-6 (IL-6) 

stimulates chemokine expression as well as C-reactive protein synthesis and secretion from 

liver in response to inflammation. C-reactive protein is a serum biomarker of acute-phase 

response and an indicator of cardiovascular diseases (Devaraj, Xu, and Jialal 2003; Meier-

Ewert et al. 2001; Yudkin et al. 1999). While these may be useful biomarkers that some 
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exposures have occurred recently, cytokines (and other protein markers) are nonspecific, 

tend to have a short serum half-life, and are difficult to detect. In fact, the acute response 

may be delayed by a few (or more) hours and may recover within the same time frame 

(Angrish et al. 2016; Nelin et al. 2012). However, these endogenous markers are useful to 

assess health state and indicate an overall level of stress on the biological system. 

Inflammatory biomarkers also lack tissue specificity and recognizable toxin-specific 

expression patterns and are therefore difficult to interpret when more than one toxicity 

mechanism is possible (Tarrant 2010).

Molecular modification bioindicators are typically defined as large molecule adducts and 

conjugates. These include protein adducts, especially those on hemoglobin (Hb) and human 

serum albumin (HSA) proteins, which together comprise approximately 92% of all blood-

borne proteins (Funk et al. 2008). Protein adducts are considered long-term biomarkers: Hb 

has a half-life of approximately 60 d, while HSA has a half-life of 30 d (Rappaport et al. 

2012). HSA functions as a carrier for proteins and fatty acids (Fanali et al. 2012), while the 

primary function of Hb is to transport oxygen from lungs to tissues (Schechter 2008). 

However, exogenous chemicals and their metabolites might attach to the active sites of these 

proteins, forming adducts that interfere with their normal functions (Boysen and Hecht 

2003). Similarly, exogenous compounds, such as PAHs, form adducts with cellular DNA, 

inducing DNA mutations that affect reproductive functions (Kwack et al. 2014). DNA 

adducts reveal how much of a carcinogen has been adsorbed, metabolized, and bound to 

DNA but not repaired (Gallo et al. 2008; Porru et al. 2014). Other stressors may affect DNA 

through epigenetic attachments, often in the form of methylation (Ouyang et al. 2013).

Damage bioindicators comprise a wide range of organic molecules and cellular fragments 

from adverse biological effects. The most common example of clinical damage markers is 

liver enzymes, which are essentially leakage proteins from injured cells. Two liver enzymes, 

aspartate aminotransferase (AST) and alanine aminotransferase (ALT), are released into 

blood circulation upon hepatocellular damage or cell death. Blood tests are performed to 

assess the potential for liver disease and other viral infections due to high AST or ALT levels 

(Kew 2000; Kim et al. 2008). Circulating blood cells provide a convenient source of DNA to 

assess DNA-specific damage indicators. Cytogenetic damage indicators include 

chromosome aberrations (CA), sister chromatid exchanges (SCE), and micronuclei (MN). 

CA are characterized by chromosome breaks and rearrangements greater than normal 1% 

occurrence. In SCE, entire DNA strands are separated and exchanged between two sister 

chromatids, while MN are entire chromosomes with centromeres left outside of the main 

nuclease due to structural damage or abnormal mitosis (Holland, Zhang, and Smith 2000; 

Watson and Mutti 2004). DNA singlestrand breaks (SSB) are another type of damage 

bioindicator that may be detected using a comet assay. Other indicators of DNA damage 

include physiological cell death, termed apoptosis, and accidental cell death, known as 

necrosis. Apoptosis suppression is a common biomarker of cancer (Ward et al. 2008), while 

necrosis is the result of severe injury and is characterized by cytoplasmic and mitochondrial 

swelling prior to membrane breakage (Kroemer, Dallaporta, and Resche-Rigon 1998). Cell 

count assays might be utilized to assess apoptosis and necrosis and determine the 

consequences of toxicity and damage (Ortiz et al. 2000). DNA damage bioindicators were 
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shown to vary based on environmental exposures, as these often include fragments or whole 

molecular structures of the exogenous chemical (Gallo et al. 2008; Poirier 2004).

Environmental Exposure Continuum

The human exposome describes the counterpart to the human genome that represents 

chemicals, both exogenous and endogenous, that interact with human systems biology (Pleil 

and Sheldon 2011; Wild 2005). This concept was further elucidated to begin to explain the 

gene–environment interaction that appears to drive health outcomes from autoimmune 

diseases, cancer, and chronic conditions, including cardiopulmonary disease, neurological 

disorders, and asthma (Pleil 2012; Rappaport 2011; 2012b; Rappaport and Smith 2010; 

Schetter and Harris 2012; Smith et al. 2011). Circulating blood contains essentially all of the 

chemicals that comprise human systems biology and thus also represents the human 

exposome (Barr et al. 2002; Levitt 2004; Rappaport 2011). Other biological media may also 

reflect portions of the exposome, especially for those compounds eliminated via breath and 

urine or those sequestered in adipose tissue (Amann et al. 2014; Barr and Angerer 2006; 

Lehr, Hartwig, and Sell 2012; Pleil, Stiegel, and Sobus 2011a; Roos and Jakubowski 2010; 

Trayhurn 2005). However, blood is truly the central compartment for human metabolism. 

Figure 2 demonstrates how exposure to the health effect continuum is interpreted via 

biological measurements and the relationships among the major biomarkers and 

bioindicators and biological fluids within which these are found. The less invasive media, 

breath and urine, might certainly overlap in some suites of biomarker compounds and 

generally display higher concentrations, but with more sensitive contemporary 

instrumentation, the lower levels in circulating blood are now becoming accessible 

(Pasikanti, Ho, and Chan 2008; _Zhang et al. 2013b).

As shown in the conceptual model proposed in Figure 2, markers representing effects 

pathways (top progression) are expressed in a series of groups depending upon their source 

along the internal exposure to effects progression (middle progression). All bioindicators are 

present in blood; some specific classes may also be measured in other biological media with 

emerging methodologies. For example, endogenous markers of carbohydrate metabolism, 

such as ketones and aldehydes, are detected in exhaled breath (Ligor et al. 2008), markers of 

systemic inflammation, such as cytokines are found in urine (Stiegel et al. 2015), and 

markers of DNA damage, such as DNA SSBs were identified in oral buccal swabs (Basu et 

al. 2005; Holland et al. 2008).

The primary advantage for using blood as the medium, however, is that all of the different 

bioindicator classes are available in one medium and are measured by applying the 

appropriate processing and analytical methodologies. Further, there is another class of 

biomarkers specific to circulating blood that are not on the effects pathway (upper) nor the 

recovery pathway (lower). These are the native compounds of exposure that are found in the 

“body burden” box and are measured prior to biological activation or removal (Pleil 2009). 

In the following sections, the typical blood collection and processing procedures are 

described, an assessment of the currently utilized blood biomarkers of exposure, effect, and 

susceptibility is provided, and also some of method issues for using blood as a biological 

medium are discussed.
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Blood Biomarkers: Environmental Applications

Blood Composition, Collection, Transportation, and Storage

Blood is composed of many different cell types, including lymphocytes, granulocytes, and 

red blood cells (RBC) as well as serum and plasma (Holland et al. 2005). Blood 

lymphocytes are typically utilized to analyze CA and SCE (Holland et al. 2003). 

Neutrophils, a type of granulocyte, may be isolated for DNA analysis, while RBC are a good 

source for studying Hb adducts (Vaught 2006). Whole blood may be advantageous for 

evaluating certain biomarkers. For example, heavy metals, such as manganese (Mn), lead 

(Pb), and cadmium (Cd) are typically measured in whole blood due to their low levels in 

serum and plasma as well as a lack of epidemiological data from exposure assessments of 

these biomarkers in serum or plasma (Kim et al. 2015; Sommar et al. 2014). Different blood 

cell types and liquids require distinct sample preparation and storage conditions, which may 

need to be optimized prior to collecting samples for the study (Holland et al. 2003). 

Recently, a multicolor flow cytometry assay was developed that is capable of distinguishing 

major leukocyte subsets in human blood, bronchoalveolar lavage, and lung tissue, and this 

technique may be used to visualize the proportions of different blood cell types without 

requiring prior separation. This flow cytometry technique may be utilized in exposure 

science to compare the proportions of cell types present in samples from exposed and 

unexposed individuals, as demonstrated for smokers versus nonsmokers (Yu et al. 2016).

Blood sample collection for environmental applications is identical to methods used for 

clinical evaluation. Typically, a phlebotomist or other trained personnel is needed to draw 

blood samples, especially when samples are being collected from children (Holland et al. 

2003; Vaught 2006). Blood is drawn from the antecubital vein (Levitt 2004) in volumes of 

20 ml or less (Polkowska et al. 2004). It is vital that blood is collected in a sterile 

environment to avoid contamination and fungal or bacterial infections. In addition, the 

procedures utilized for blood sampling need to be standardized for all participants to ensure 

that differences in sample collection do not influence the results of the study (Holland et al. 

2003). Samples for case and control subjects need to be drawn at the same time and in the 

same manner for consistency (Holland et al. 2003; Holland et al. 2005). Sterile evacuated 

plastic tubes are typically used for sample collection. Collection tubes need to be free of 

trace metals, which interfere with analyses of metal exposure (Vaught 2006). Anticoagulants 

and preservatives for sample tubes need to be selected based upon the target of interest, such 

as RNA or DNA, as different targets require certain stabilizers (Holland et al. 2003). 

However, great care needs to be taken when choosing anticoagulants and other processing 

additives, because some of these are known to affect the levels of particular biomarkers in 

serum and plasma samples. Biomarker levels reported in different investigations may not be 

directly comparable if proper sample collection and preparation procedures were not 

adhered to (Gillio-Meina et al. 2013).

After blood collection, samples need to be immediately centrifuged to create a Ficoll 

gradient, which separates blood into plasma, white blood cells (WBC), and RBC (Holland et 

al. 2005; Li, Todor, and Luo 2016). Blood samples need to be processed shortly after 

collection, and all samples need to be cryopreserved within 24 h of sample collection 
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(Shabihkhani et al. 2014). Different cell types and components require unique storage 

conditions. For example, cells need to be separated from serum immediately after sample 

collection for proper analysis of cytokines. If the desired target is unknown, blood samples 

may be kept at 4°C for several days to protect cells against enzymatic degradation while 

maintaining cell viability. Depending upon the target of interest, protease inhibitors may be 

added to the sample to slow degradation. However, these inhibitors are toxic to live cells and 

should not be used if cell viability is necessary. If novel targets are being analyzed, it may be 

necessary to conduct a preliminary experiment to determine optimal storage conditions and 

times before gathering samples from subjects (Holland et al. 2003).

If possible, blood samples need to be collected at the location where samples will be 

analyzed to avoid sample handling issues that may affect sample integrity. However, this is 

typically not feasible, because samples are frequently collected in the field, and sample 

transportation is thus unavoidable. Shipped samples need to conform to proper guidelines 

and restrictions for biological media (Holland et al. 2003). Depending upon the blood 

component and what the sample will be used for, blood samples may be shipped at room 

temperature, on ice, or frozen (Belloni, Meschini, and Palitti 2008). For example, serum and 

plasma samples need to be stored at −80°C for analysis of soluble molecules, but plasma 

may be stored at room temperature for immunoglobulin analyses, as these are more stable 

under these conditions (Gillio-Meina et al. 2013; Holland et al. 2003). Lymphocytes need to 

be stored in liquid nitrogen vapor at −150°C if viability is required (Vaught 2006). When 

considering storage conditions, it is important to remember that apoptosis generally 

increases with time and temperature (Belloni, Meschini, and Palitti 2008). Therefore, 

transportation conditions need to be specifically selected based upon cell type or liquid and 

the component of interest to ensure that the sample will be properly preserved for analysis. 

During transportation, measures need to be taken to ensure that samples do not undergo any 

freeze–thaw cycles, which might damage cells and decrease sample integrity (Gillio-Meina 

et al. 2013; Holland et al. 2005; Holland et al. 2003; Shabihkhani et al. 2014).

Storage conditions for blood samples depend upon cell type and preservation method. 

Samples need to be maintained at either 4, −20, or −80°C, depending upon the medium and 

compound of interest (Holland et al. 2005; Vaught 2006). Blood samples may be stored in 

either plastic tubes or glass tubes with polytetrafluoroethylene (PTFE) or aluminum cap 

liners (Polkowska et al. 2004). However, the exact tube utilized depends upon the medium of 

interest, such as whole blood, plasma, serum, or RBC, all of which have specially designed 

tubes for optimal stabilization and preservation (Shabihkhani et al. 2014). Cells may be 

cryopreserved in small volumes for long-term storage. For cryopreservation, dimethyl 

sulfoxide (DMSO) is added to cells as a cryoprotectant, and samples are stored in liquid 

nitrogen vapor to prevent cell death (Holland et al. 2005; Vaught 2006). Ellis and Venturini 

(2013) also showed that blood samples may be frozen in larger volumes and that frozen 

aliquots removed from the stock solution without thawing the samples and without a 

significant loss in sample integrity, thereby decreasing the number of sample tubes needed to 

store multiple aliquots. While high levels of reproducibility were observed for cholesterol, 

triglycerides, glucose, and immunoglobulin G, the effectiveness of this technique for other 

analytes in blood may vary (Ellis and Venturini 2013). Blood samples are commonly stored 

in biorepositories, such as the European Cancer Study biorepository, which contains more 
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than 380,000 blood samples. Nanobarcoding technology was employed to uniquely label 

samples in small surface areas without using removable labels that may fade or fall off with 

time (2005; Holland et al. 2003). Efficient sample storage and electronic databases are 

necessary to maintain sample integrity and ensure that samples are easily retrieved for future 

analyses.

Traditional Environmental Exposure Assessment

Environmental applications of blood analysis have historically focused on measuring 

exogenous compounds in blood circulation to detect environmental exposures and estimate 

relative body burden. Levels of compounds, such as heavy metals, that an individual has 

been exposed to may be assessed in healthy populations to detect biomarkers associated with 

low-level exposure, in addition to providing a baseline to which affected individuals may be 

compared (Pollack et al. 2015). Placental and maternal blood was examined to evaluate fetal 

risk to Cd exposure from dietary and tobacco sources (Piasek et al. 2014). Blood Pb levels 

were also measured to determine the extent of Pb exposure, and these levels may be tracked 

in populations to identify potential contributing factors, such as smoking status, alcohol 

intake, red meat consumption, geographical location, and tap-water contents (Bellinger et al. 

1987; Counter, Buchanan, and Ortega 2015; Lopes et al. 2015; Ngueta et al. 2016). Trace 

levels of PAH from environmental exposure to diesel exhaust and markers of exposure to 

toluene, ethylbenzene, and m-xylene were also determined in blood samples from volunteers 

in controlled chamber studies (Marchand et al. 2015; Pleil et al. 2011b; Pleil et al. 2010). In 

addition, volatile organic compounds (VOC) released from blood were analyzed to detect 

changes in cellular respiration, and this technique may be utilized to detect alcohol content 

in blood to assess the amount of alcohol consumption (Amann et al. 2014; de Lacy Costello 

et al. 2014; Pleil 2016; Pleil et al. 2014).

In many cases, biomarkers of exposure are present in multiple biofluids. In such cases, 

investigators have predominantly turned to less invasive biofluids such as urine or breath. 

However, there are a number of situations where blood remains the best source of 

biomarkers of exposure. For example, biomarkers with long elimination halflives exhibit 

higher concentrations in blood than urine. Ochratoxin A, a nephrotoxic mycotoxin found in 

contaminated vegetables, has a serum half-life of 35 d in humans. In addition, ochratoxin A 

has poor elimination kinetics, and therefore the concentration of ochratoxin A in urine is 

much lower than found in blood (Duarte, Pena, and Lino 2011). Mercury (Hg) and Pb also 

have long halflives of 30 and 70 d in blood, respectively (Brodkin et al. 2007), and Cd levels 

in blood reveal exposure over preceding months (Kim et al. 2015). Perfluorooctanesulfonate 

(PFOS), perfluorohexanesulfonate (PFHS), and perfluorooctanoate (PFOA) have serum 

elimination half-lives of approximately 5, 8, and 3.5 yrs, respectively (Olsen et al. 2007). 

Therefore, urine levels of biomarkers with long elimination half-lives will be lower than the 

actual concentration in the body, which might lead to an erroneous conclusion that an 

exposure has not occurred. For biomarkers with long elimination half-lives, blood is the 

ideal biofluid in which to measure the concentration.

Blood biomarkers may more accurately reflect chemical levels that an individual was 

exposed to than urinary metabolites (Arayasiri et al. 2010; Käfferlein et al. 2005). 
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Hemoglobin adducts of aromatic compounds have average lifetimes of approximately 120 d, 

whereas the respective native compound concentrations in blood display halflives ranging 

from minutes to a few hours, depending upon the exposure history (Käfferlein et al. 2005). 

Thus, Hb adducts reveal the mean exposure to a chemical that occurred over the past several 

months. N-Methylcarbamoylated haemoglobin (NMHb) levels, a blood biomarker of N, N-

dimethylformamide (DMF) exposure, were evaluated in workers from a polyacrylic fiber 

plant. NMHb was capable of distinguishing between three different levels of DMF exposure 

with statistical significance. While urinary metabolites N-methylformamide (NMF) and N-

acetyl-S(N-methylcarbamoyl)cysteine (AMCC) may identify DMF exposure, these 

biomarkers were not able to distinguish between high, medium, and low exposure, but this 

was possible with the blood biomarker (Käfferlein et al. 2005). In addition, some 

compounds, such as 2-butoxyacetic acid, display inconsistent levels of conjugation in urine 

excretions, which skews the results when measuring the level of the free compound to 

determine the extent of exposure to 2-butoxyethanol from inks, varnishes, and cleaning 

fluids (Jones and Cocker 2003).

Blood may also be the best biofluid to use for analysis when urinary biomarker metabolites 

are nonspecific. For biomarker analysis, measuring metabolites of the parent compound is 

not always sufficient for exposure assessment. A parent compound may generate several 

nonspecific metabolites that are excreted in urine, but analyzing these metabolites may not 

reveal which compound the individual was actually exposed to. Some pesticides and other 

contaminants have common urinary metabolites that do not reveal the identity of the parent 

compound (Barr et al. 2002; Needham et al. 2005; Smolders et al. 2009). The identification 

of 3,5,6-trichloropyridinol in urine samples might be due to exposure to either chlorpyrifos 

or chlorpyrifos-methyl pesticides (Barr et al. 2002; Needham et al. 2005). Chlorpyrifos 

metabolites are also found as natural degradation products in the environment and may not 

always be indicative of direct exposure to the parent pesticide (Smolders et al. 2009). 

Further, some biomarkers do not have any apparent known metabolites, and therefore the 

parent compound needs to be quantified instead; in such cases blood is frequently the best 

sample for measuring the most relevant biomarker (Barr et al. 2002). Other biomarkers and 

metabolites, such as organic Hg, are predominantly excreted in feces instead of urine, 

making blood the ideal biofluid for analysis (Brodkin et al. 2007; Needham et al. 2005). 

Thus, knowing the likely exposure route and identity of the biomarker might help the 

investigator or clinician select the most appropriate biofluid to use for exposure assessment.

Environmental Biomarkers of Effect

Traditional exposure assessment has been broadened philosophically to include forward 

mapping toward health outcome. In this case, indicators of the presence and levels of 

specific chemicals that an individual was exposed to are statistically linked to subclinical 

and preclinical effects. The measured compounds, whether exogenous or endogenous, are 

not necessarily toxic themselves but might trigger perturbations that lead to increased 

adverse health risk. These compounds are known as biomarkers of effect or bioindicators. 

As stated previously, biomarkers of effect are of endogenous origin and are altered by 

interactions with the environmental stressor, which then becomes involved in an AOP.
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Biomarkers of effect include protein indicators, DNA indicators, and adducts of both 

proteins and DNA. Protein indicators of effect include alterations in protein expression 

levels and patterns. Normal protein expression may be altered by exposures to stressors that 

interfere with endogenous protein levels (Merrick 2008). Exposures to air pollutants and 

other harmful substances might lead to an inflammatory response affecting cytokine levels. 

Diesel exhaust, nitrogen dioxide (NO2), and ozone (O3) exposure were shown to acutely 

elevate levels of WBC and interleukin-8 (IL-8) in plasma samples from human volunteers 

(Channell et al. 2012; Steenhof et al. 2014). In a study of the effects of O3, fibrinolysis 

markers, such as plasminogen activator inhibitor-1 were measured in human blood samples 

and found to decrease after O3 exposure at moderate temperature, while the markers rose 

after exposure at elevated temperature, indicating that the effect of O3 on the fibrinolytic 

pathway is temperature dependent (Kahle et al. 2015). Ozone was also found to elevate 

levels of stress hormones and lipid metabolites in serum samples from subjects exposed 

during intermittent exercise (Miller et al. 2016). Exposure may induce protein 

overexpression. For example, the glycoprotein mesothelin and soluble mesothelin-related 

peptides become overexpressed in malignant mesothelioma as a result of asbestos inhalation 

(Marini et al. 2011). Some proteins may maintain normal expression levels but experience a 

change in activity due to exposure. The activity level of the protein β-glucuronidase was 

increased as a result of low-level organophosphorus insecticide exposure (Ueyama et al. 

2010). Protein modifications are another common effect of exposure to stressors. Common 

modifications include protein oxidation and lipid peroxidation, which are signs of oxidative 

damage (Rossner et al. 2009).

DNA indicators of effect include changes in gene expression, mitochondrial DNA, DNA 

modifications, DNA damage, and miRNA (Boffetta 2010). Gene expression patterns were 

found to alter based upon exposure to environmental contaminants, such as ultrafine carbon 

particles (UFP), arsenic (As), and benzene (Huang et al. 2010; McHale et al. 2009; Mo et al. 

2009). Increased or decreased gene expression in the presence of an environmental stressor 

may indicate that an AOP was triggered or that DNA damage repair responses and defense 

mechanisms against exposures were activated (Mo et al. 2009). Mitochondrial DNA was 

labeled as a useful biomarker of damage and exposure. Unlike genomic DNA, mitochondrial 

DNA does not have histone protection or repair mechanisms and may therefore reflect more 

severe damage (Hou et al. 2010). Exposure to airborne particulate matter (PM) and halo-

alkanebased pesticides was linked to damaged mitochondrial DNA (Budnik et al. 2013; Hou 

et al. 2010). Environmental contaminants, such as As, nickel (Ni), and ultrafine PM, were 

reported to produce increased DNA SSB in exposed individuals (Avogbe et al. 2005; Basu et 

al. 2005; Glei et al. 2005; M’Bemba-Meka, Lemieux, and Chakrabarti 2005; Popp et al. 

1997). Levels of DNA SSB may be used to distinguish affected versus unaffected 

populations (Basu et al. 2005). Telomere lengths have also been reported as biomarkers of 

DNA damage. While exposures to traffic pollution, PAHs, fine particulate matter (PM2.5), 

pesticides, and Pb have been associated with telomere shortening in chronically exposed 

individuals (Hoxha et al. 2009; Wong et al. 2014; Zhang et al. 2013a), individuals exposed 

to low doses of persistent organic pollutants (POP) or As exhibited telomere lengthening 

(Shin et al. 2010; Zhang et al. 2013a). Although telomeres tend to shorten with age and 

exposure, telomere lengthening in healthy individuals may be a biomarker of earlystage 
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carcinogenesis (Shin et al. 2010). Increased MN and binucleated micronucleated cells 

(BNMN) in blood lymphocytes are biomarkers of exposure to genotoxic agents. The 

frequency of MN increases as a result of chromosome breakage or loss, indicating that DNA 

damage occurred. Elevations in MN and BNMN frequencies were attributed to air pollution, 

pesticides, and As (Martínez et al. 2004; Pedersen et al. 2006; Ramos-Chavez et al. 2015).

DNA modification through methylation is another biomarker of environmental exposure. 

Some common aberrant methylation patterns include global hypomethylation and gene-

specific hypermethylation/hypomethylation (Bollati et al. 2007). DNA methylation mediates 

gene expression through protein–protein and protein–DNA interactions. Deviation from 

normal methylation patterns may be indicative of oxidative damage (Franco et al. 2008). 

While one study observed increased DNA methylation as a result of low-dose benzene 

exposure (Kim et al. 2010), reduced methylation was noted in a study of traffic particle 

exposure (Baccarelli et al. 2009). DNA methylation levels change based upon the type of 

environmental exposure and exposure time (Baccarelli et al. 2009). Whether an exposure 

results in elevated or decreased methylation may be used in the future to determine the 

nature of the exposure that occurred. miRNA, small noncoding RNA that regulate gene 

expression, were identified as biomarkers of exposure and cancer due to altered expression 

levels in plasma and blood samples in affected individuals (Bollati et al. 2010; Liu et al. 

2012; Zhang et al. 2010). Upregulation of miR-222 has been associated with metal-

contaminated air particle exposure (Bollati et al. 2010), and miR-122 was identified as a 

specific blood-based biomarker of liver disease (Zhang et al. 2010).

Blood levels of environmental compounds often reflect the dose to which an individual was 

exposed. For example, high levels of compounds are often found in blood samples of 

individuals exposed to higher concentrations of toxins than for those exposed to lower doses 

(Käfferlein et al. 2005; Lope et al. 2010; Lunder et al. 2010; Turyk et al. 2010). While some 

compounds with long half-lives in blood may be directly measured, other compounds have 

short halflives in blood, and thus the exogenous compound cannot be directly analyzed to 

verify exposure. For example, cyanide (CN) is rapidly metabolized and has a half-life of less 

than 1 h in whole blood. Thus, the level of CN cannot be accurately measured by evaluating 

the native compound (Fasco et al. 2007). For cases such as CN, evaluating DNA or protein 

adducts isa useful way to assess the effects of environmental compounds. DNA and protein 

adducts have longer half-lives, typically 3–4 mo, depending upon the protein lifetime. 

Adducts are also stable and reflect longer term exposures than urinary or breath biomarkers 

(weeks or months vs. hours or days) (Johnson et al. 2010). Protein and DNA adducts also 

rise with relevant exposure dose and may be utilized to assess total amount of exposure 

(Beach and Gupta 1992; Bechtold et al. 1992; Binková et al. 2000; Käfferlein et al. 2005; 

Magagnotti et al. 2000; Topinka et al. 2007). Benzene exposure was assessed by monitoring 

levels of Hb and albumin adducts with benzene oxide, as well as albumin adducts with S-

phenylcysteine (SPC), a benzene metabolite (Bechtold et al. 1992; Lindstrom et al. 1998). 

Protein adducts are typically favored over DNA adducts for exposure assessment because 

they are not repaired; the concentration of DNA adducts at any given time depends on the 

repair rate and may not linearly rise as the dose is increased (Watson and Mutti 2004). In a 

previous study of policemen exposure to traffic emissions, the levels of c-PAH increased by 

threeto fourfold, but the amount of benzo[a] pyrene DNA adducts only rose by 
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approximately 20%, indicating that DNA repair mechanisms were eliminating some of the 

adducts (Topinka et al. 2007). These biomarkers of effect indicate that an environmental 

stressor induced alterations in the chemical makeup of the individual. While the presence of 

DNA modifications and DNA and protein adducts can be verified, the long-term effects of 

these biomarkers may or may not lead to an AOP. Whether an AOP is triggered may depend 

upon the susceptibility of the individual. Some individuals may possess more efficient DNA 

repair mechanisms than others, allowing them to avoid some of the deleterious outcomes of 

DNA adducts. Other exposed individuals may display reduced DNA repair after chronic 

exposure (Arayasiri et al. 2010). The concentration of the compound, length of exposure, 

and consistency of exposure (once versus daily) all affect the severity of consequences from 

exposure and whether an AOP might be triggered.

Assessment of Susceptibility

The eventual path to an adverse outcome is thought to involve both environmental 

component (exposome) and genetic component (genome). Thus, there is some form of 

intrinsic individual susceptibility to different environmental stressors (Boffetta 2010). For 

instance, not all smokers contract lung cancer; not all sunbathers suffer from melanoma; not 

everyone on high-fat diets has the result of heart attack development. In general, 

susceptibility is difficult to assess directly but might sometimes be determined by examining 

trends in exposure of larger populations. In the case of asbestos, inhalation was correlated 

with malignant pleural mesothelioma (MPM), but some individuals with high asbestos 

exposure did not develop the disease, while others with lower exposures were more 

susceptible. Recently, three Fe metabolism genes were identified with protective properties 

against MPM development, explaining some of the differences in individual susceptibility 

(Corvella et al. 2016). In some cases, a specific genetic sequence or polymorphism was used 

to assign relative risk in conjunction with a specific exposure, or a host factor (e.g., age, 

weight, or health state) was associated with increased risk in the presence of environmental 

chemicals (Boffetta 2010). In general, however, it is difficult to predict individual 

susceptibility. Blood measurements of various endogenous biomarkers might be employed to 

estimate relative susceptibility via comparisons to onboard dose. Signaling chemicals, such 

as cytokines and various expressed proteins, may be directly interpreted to establish relative 

risk, and other chemicals present in blood might serve different levels of protective 

functions.

Biomarkers of susceptibility include antibody levels and genetic polymorphisms. Levels of 

Cdinduced metallothionein (MT) mRNA were used as a biomarker of renal dysfunction 

susceptibility in peripheral blood lymphocytes. Several studies showed that high plasma MT 

antibody (MT-Ab) levels correlated with a higher risk of renal tubular damage, while low 

MT-Ab levels indicate decreased susceptibility. MT is a small protein that binds Cd, leading 

to detoxification. Renal damage occurs as a result of excess Cd that is not bound to MT 

within the cell (Chen et al. 2005; 2006). Genetic polymorphisms, which are defined as 

sequence variants that affect approximately 1% or more of the population, also influence 

individual susceptibility to compounds found in the environment (Kelada et al. 2003). In an 

analysis of blood gene expression levels and clinical biomarkers using a decision-tree 

approach to discover correlations among asthma endotypes, polymorphisms in the gene 
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HNF-4a that are known to affect diabetes were also implicated in enhanced asthma 

susceptibility (George et al. 2015). Further, single-nucleotide polymorphisms in catechol O-

methyltransferase (COMT) were found to initiate increased susceptibility to neurobehavioral 

issues due to Hg exposure among children (Woods et al. 2014). Polymorphisms that affect 

DNA repair genes may also enhance susceptibility by lowering the individual’s ability to 

correct mutations to the genome. Polymorphisms were detected in the x-ray repair cross-

complementing (XRCC1) gene, which functions in base excision repair, and these 

polymorphisms were found to induce deficiencies in DNA repair mechanisms (Feng et al. 

2014; Topinka et al. 2007; Tuimala et al. 2002). XRCC1 mutants exhibit accumulation of 

SSB in DNA (Thacker and Zdzienicka 2003), and XRCC1 variant 399Gln leads to increased 

DNA adducts and SCE levels (Da Silva et al. 2013). Polymorphisms also produce proteins 

with decreased activity compared with wild-type protein. Methionine synthase reductase 

variant 66GG protein exhibits fourfold reduced activity and cannot perform its normal 

function to catalyze conversion of methionine synthase into its active form. This variant was 

also shown to lower genomic stability, thus increasing susceptibility of the individual to 

environmental exposures (Zijno et al. 2003).

Finally, vitamin and mineral deficiencies are also bioindicators of susceptibility to 

environmental stressors. Many vitamins and minerals are critical for cell survival, and a lack 

of these micronutrients leads to significant damage. Iron deficiency was linked to increased 

susceptibility to Mnand Cd-mediated toxicity after exposure (Kim et al. 2015), while folic 

acid and vitamin B12 deficiencies produced SSB and double-strand breaks in DNA, as well 

as oxidative lesions. Folic acid deficiency resulted in uracil incorporation into DNA instead 

of thymine, thereby enhancing the risk of chromosome breaks (Ames 2001; Fenech 2001). 

Unfortunately, approximately 10% of the U.S. population have a folate deficiency and 

approximately 4% suffer from a lack of vitamin B12 (Ames 2001). Vitamin and mineral 

deficiencies may be due to genetic defects or a lack of dietary consumption, both of which 

enhance susceptibility. Knowledge of these types of biomarkers might prove useful to 

prevent AOP in individuals who are prone to genetic damage or dietary deficiencies.

Blood Biomarkers: New Developments

Advances in Sampling Techniques: Dried Blood Spots (DBS)

Dried blood spot (DBS) sampling has become more accessible and applicable for blood 

sample analysis in both clinical and environmental settings. DBS sampling was initially 

developed in 1963 by Dr. Robert Guthrie to detect phenylketonuria in newborns by pricking 

their heels and collecting a blood spot on paper. Newborn DBS sampling is still performed, 

and several other metabolic disorders are also currently tested for (Guthrie and Susi 1963; 

McDade, Williams, and Snodgrass 2007). DBS sampling is less expensive than collecting 

large volumes of liquid blood samples, and it is less painful and less invasive for the subject. 

Therefore, more individuals are likely to provide DBS samples (Benyshek 2010; Ostler, 

Porter, and Buxton 2014). Individuals who have chosen not to provide DBS samples for 

investigations stated different reasons, including medical conditions, use of blood thinners, 

fear, or thinking it unnecessary for the study (Williams and McDade 2009). DBS samples 

can also be analyzed after several months or years for quantification of certain analytes. 
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DNA has been extracted and amplified from DBS samples stored for 19 mo, and even after 

this length of storage at room temperature, comparable DNA levels were achieved (Kline et 

al. 2002).

DBS Sampling and Storage

Dried blood spot sample collection does not require a trained phlebotomist, as anyone can be 

easily trained to acquire the samples. In one study, more than 2000 DBS samples were 

collected by trained field interviewers without a medical professional (Williams and 

McDade 2009). Spring-loaded finger-stick lancets were developed that cut to uniform depths 

of 2 mm to enhance blood flow and reduce pain and bruising (Benyshek 2010; Edelbroek, 

Van Der Heijden, and Stolk 2009). The first blood drop is wiped away and is not applied to 

the filter paper. Subsequent drops are placed on the filter paper by touching the drop to the 

paper without the finger contacting the paper, to avoid smearing (McDade, Williams, and 

Snodgrass 2007; Ostler, Porter, and Buxton 2014). Filter paper with preprinted circles of 

approximately half an inch in diameter is utilized to control the sizes of drops collected. The 

circles can hold approximately 50–80 µl blood, and blood circles of 3.2–6 mm in diameter 

are required for most DBS assays (Benyshek 2010; Edelbroek, Van Der Heijden, and Stolk 

2009; McDade, Williams, and Snodgrass 2007; Williams and McDade 2009). The quality 

and type of paper needs to be considered prior to sampling (Edelbroek, Van Der Heijden, 

and Stolk 2009; Mei et al. 2001). RBC transport easily within hardwood fiber sheets, 

providing higher clarity assays compared with softwood fiber papers, which have more 

complex pore structures (Li et al. 2014). For assessments of metal exposure, blood collection 

cards need to be treated prior to sample collection to remove background levels of heavy 

metals in the filter paper, which were found to significantly skew results (Funk et al. 2015).

The collected samples are allowed to dry for at least 15 min and for as long as 4 hr 

(McDade, Williams, and Snodgrass 2007; Ostler, Porter, and Buxton 2014). Once the 

samples are collected, these do not need to be centrifuged immediately and stored at cold 

temperature like traditional blood samples. DBS samples are typically stable for at least two 

weeks at room temperature and easy to store because they take up less space than liquid 

blood samples (Benyshek 2010; McDade, Williams, and Snodgrass 2007). In fact, some 

light-sensitive compounds demonstrated better stability stored as DBS samples than as 

liquid plasma or whole blood samples (Bowen et al. 2010). For best results, DBS samples 

need to be assayed or frozen within 2 wks after collection (Ostler, Porter, and Buxton 2014). 

Storing DBS samples in airtight leakproof plastic bags may generate heat and moisture 

accumulation due to a lack of air exchange, which leads to sample degradation (Edelbroek, 

Van Der Heijden, and Stolk 2009). Degradation of DBS samples might be reduced by 

adding vapor-phase desiccants to the plastic bags in which the DBS samples are stored or by 

adding humidity indicators. These storage bags can then be placed in waterproof bags for 

shipping and storage (Benyshek 2010; Edelbroek, Van Der Heijden, and Stolk 2009). While 

liquid blood samples need to be shipped on dry ice, DBS cards can remain at room 

temperature, lowering shipping costs (Amsterdam and Waldrop 2010). A lab freezer can 

store approximately 8,000–10,000 DBS samples, which is greater than the number of liquid 

samples that can be stored (Benyshek 2010; McDade, Williams, and Snodgrass 2007). 

Neonatal DBS samples can be stored at −20°C for several weeks or yrs, but sample loss was 

Wallace et al. Page 16

J Toxicol Environ Health B Crit Rev. Author manuscript; available in PMC 2018 September 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



noted after 5 yrs (Edelbroek, Van Der Heijden, and Stolk 2009). Biobanking of liquid blood 

samples is also expensive, but DBS samples do not require cryopreservation and do not need 

to be stored with the same stringency, thus severely decreasing storage cost (Barbareschi, 

Cotrupi, and Guarrera 2008; Riegman et al. 2008).

DBS Challenges

While DBS samples have many advantages, there are several method issues that need to be 

addressed. The protocol for DBS sampling is not as well controlled as liquid blood 

sampling, which may cause some samples not to meet quality control standards (Edelbroek, 

Van Der Heijden, and Stolk 2009). Some sampling issues include blood spots that are too 

dilute, contaminated, smeared, spotted multiple times, or have too little volume (Ostler, 

Porter, and Buxton 2014). Samples that suffer from these issues cannot be used for analysis, 

as heterogeneity in sample spots may lead to erroneous results and conclusions. Differences 

in the type of filter paper utilized and in the paper batch may also affect the amount of blood 

that is absorbed (Chaudhuri et al. 2009). Thus, DBS sample analysis data may not be 

directly comparable to liquid blood samples using either serum or plasma due to differences 

in sample collection and blood composition (Benyshek 2010; McDade 2014). Since DBS 

samples only contain approximately 50 µl blood, assays that require more volume may not 

be compatible (McDade, Williams, and Snodgrass 2007). Therefore, individual methods for 

compound analysis may need to be developed for DBS analysis. The newly developed 

assays may not be immediately compatible with automated clinical assays using serum or 

plasma, which would delay the applicability of DBS for clinical analysis (Benyshek 2010; 

McDade, Williams, and Snodgrass 2007). However, some investigators have already been 

working to solve this problem. An immunoassay for C-reactive protein that is compatible 

with serum, plasma, and DBS was developed, and C-reactive protein measurements were 

highly correlated in the three media (Brindle et al. 2010). Multiplex analyses for DBS were 

also prepared to increase the number of proteins that can be assessed using a single DBS. A 

25-plex multianalyte method with xMAP technology was developed to analyze 

inflammatory markers and growth factors (Skogstrand et al. 2005). Further, how the findings 

of DBS and liquid blood results relate also needs to be thoroughly assessed. Correction 

factors may be applied to the data to overcome some of these issues, but these factors may 

depend upon the method being used and population being studied (Benyshek 2010).

Current and Future DBS Applications

Several commercial assays were developed for DBS analysis, including inflammatory 

markers, growth factors, C-reactive protein, blood lipids, metabolism, immune response, and 

biomarkers (Benyshek 2010; McDade, Burhop, and Dohnal 2004; Skogstrand et al. 2005). 

DBS assays were also developed for a proinflammatory cytokine, IL-6, immunoglobulin E, 

leptin, total cholesterol, high-density lipoprotein cholesterol, and anti-Müllerian hormone 

with accuracies and precision similar to those of established serum-based assays (McDade et 

al. 2012; Miller and McDade 2012; Miller, Sharrock, and McDade 2006; Samuelsson et al. 

2015; Tanner and McDade 2007). For analysis, a portion of the DBS is punched out and 

placed in an elution buffer to reconstitute the sample into hemolyzed liquid whole blood. For 

new assays, elution times, mixing times, temperature, and buffer constituents needed to 

obtain optimal concentrations and results need to be determined (Skogstrand et al. 2005). 
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Recently, mass spectrometry (MS) analysis of DBS samples with off-line and on-line 

extractions has become more popular with improved instrumentation for surface analysis 

MS (Wagner et al. 2014). The first multiplexed assay using DBS was also recently reported. 

In this assay, 60 endogenous proteins were targeted using tryptic peptides and isotopelabeled 

analogs with multiple reaction monitoring (MRM). This method was found to be highly 

reproducible, and measured concentrations for 80% of the proteins were consistent after 10 

d of storage at either −20, 4, or 37°C (Chambers et al. 2013). While these advances in DBS 

analysis hold promise for extension of current liquid assays to DBS applications, 

development of additional validated DBS enzyme immunoassays for use in field research 

will take time (McDade 2014; McDade, Williams, and Snodgrass 2007).

DBS samples may be employed to monitor exposure to environmental compounds over 

time. A study was conducted to measure the presence of perfluorinated compounds (PFC) in 

newborn DBS samples collected during 1997–2005. The presence of PFC in commercial 

products, such as surfactants, insecticides, and carpet, decreased in 2000 due to suspected 

liver toxicity. The presence of PFC in newborn DBS sampled during 2005–2007 was 

significantly decreased compared with earlier exposures, indicating that the population 

exposure to PFC had been reduced as a result of decreased commercial production. This 

analysis showed for the first time how DBS analysis might be used to measure temporal 

environmental exposure on the population level, as DBS samples are collected from more 

than 98% of newborns in the United States (Spliethoff et al. 2008). Exposure of infants to 

dichlorodiphenyldichloroethylene (p,p’-DDE), a breakdown product of the organochlorine 

pesticide dichlorodiphenyl-trichloroethane (DDT), was also assessed using DBS analysis 

(Burse et al. 1997). Highthroughput methods for Pb, PFC, and perchlorate analyses were 

also developed using MS (Hsieh et al. 2009; Kato et al. 2009; Otero-Santos et al. 2009; 

Schreinemachers et al. 2015). DBS samples were also utilized to measure exposure of 

pregnant women, newborns, and children to heavy metals, including Pb, Cd, As, and Hg 

(Chaudhuri et al. 2009; Funk et al. 2013; 2015; Michniewicz et al. 2015). Organochlorine 

pesticide and polychlorinated biphenyl (PCB) exposures have also been tracked in DBS 

samples from newborns to determine environmental exposures transferred from pregnant 

women to fetuses (Ma et al. 2014). Similarly, PCBs, chlorinated pesticides, and brominated 

flame retardants were investigated in a population study using DBS measurements to 

estimate exposure to environmental toxicants (Batterman and Chernyak 2014). Hemoglobin 

adducts of benzene oxide, a carcinogen, were also found in DBS samples at quantities 

similar to those seen in whole blood analyses (Funk et al. 2008; Rappaport, Funk, and 

Chaing 2008).

DBS analyses show potential for use in clinical trials. Clinical trials require multiple blood 

draws from patients over the course of several months to years. These repeated samplings 

may be tiresome for individuals and extremely costly. As DBS analysis becomes more 

common, expansion of the technology into clinical trials looks promising (Amsterdam and 

Waldrop. 2010). Another significant advantage of DBS sampling is the ability to obtain 

samples from populations in remote areas with lower levels of technology. Since a trained 

professional is not needed for sample collection, samples may be taken in areas where 

access to a hospital, clinic, or other sterile environment is limited (Benyshek 2010). Patients 

trained in proper sample collection procedures and quality control standards might also take 
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their own samples at home and ship them to a lab or clinic for analysis to monitor their 

biomarker levels without needing to travel and be admitted to a hospital, saving them both 

time and money and increasing sampling efficiency (Edelbroek, Van Der Heijden, and Stolk 

2009). These sampling advantages hold promise for further expanding DBS technology in 

the arena of environmental exposure assessment to reach remote populations, allowing for 

inclusion of isolated and chronically ill individuals who may otherwise have been 

overlooked. DBS sampling provides an avenue by which to signficantly increase population 

sizes of studies without further raising the cost of the study, since individuals can easily 

collect their own samples.

New Developments: Incorporation of “Omics”Technology

The range of blood analysis applications has significantly increased with the growth of 

“omics” technology in the past several years. The phenotype of an individual is the sum of 

the genome, transcriptome, proteome, and metabolome, and each “ome” branch is 

interconnected with the others, explaining the different traits of individuals (Titz et al. 2014; 

Trifonova, Lokhov, and Archakov 2013). An advantage of “omics” technologies is the 

ability to perform large-scale, high-throughput discovery screens without searching for a 

particular target compound. The ultimate goal of “omics” research is to identify every gene, 

protein, and chemical present within a sample (Vineis et al. 2009; Yin and Xu 2014). While 

the genome has been thoroughly studied, much remains to be discovered regarding the other 

three branches (Smith and Rappaport 2009). A current research objective is to parse out 

biomarkers of exposure from biomarkers of disease in “omics” experiments (Rappaport 

2012a). The influences of an individual’s environment strongly affect the chemicals that are 

present in that person’s body. The effects of outside stressors, such as diet, pollution, 

pathogens, gut microflora, and drugs, can be measured in the blood metabolome using these 

techniques (Rappaport 2012a; Schnackenberg and Beger 2008). Data from “omics” 

experiments may also be applied to analyze toxicity pathways. Pathways of toxicity are 

cellular processes that link toxicant interactions with adverse outcomes (Bouhifd et al. 

2013). These high-throughput “omics” techniques can be used to detect patterns (signatures) 

that are indicative of particular toxicities (Hartung 2009).

Of the four main “omics” branches, metabolomics and proteomics are perhaps the most 

developed and relevant for blood analysis. Although the human genome has been well 

studied, only 15–50% of disease was linked to genetic factors in genome-wide association 

studies (Vineis et al. 2009). Transcriptomics, which evaluates changes in mRNA expression 

levels, typically yields short term information instead of long-term. mRNA is heterogeneous 

and unstable, making it difficult to analyze for biomarkers of exposure (Vineis et al. 2009). 

Proteomics provides information regarding function, but the size of the plasma proteome is 

large (Anderson and Anderson 2002; Watkins and German 2002). The plasma proteome was 

estimated to contain approximately 50,000 proteins in different glycosylated forms, 500,000 

tissue leakage proteins in a variety of splice variants with varying posttranslational 

modifications, and around 10,000,000 unique sequences of immunoglobulins (Anderson and 

Anderson 2002). While advances in characterizing the plasma proteome were accomplished, 

plasma consists of 55% albumin, which dominates protein detection, making it difficult to 

identify less abundant proteins in blood samples without first removing highly abundant 
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proteins (Anderson and Anderson 2002). However, automated techniques that deplete the 

sample of highly abundant proteins prior to LCMS/MS analysis elevated throughput and 

coverage, helping ameliorate this issue (Dayon et al. 2014; Such-Sanmartín, Ventura-Espejo, 

and Jensen 2014). The metabolome is smaller than the genome or the proteome, with 

approximately 3,600 distinct confirmed serum/plasma metabolites (Trifonova, Lokhov, and 

Archakov 2013), but still contains vital information regarding exposure, creating an 

advantageous biomarker for discovery (Watkins and German 2002).

Blood is the predominant carrier of small molecules, such as hormones and nutrients within 

the body, making it an ideal biofluid for proteomic and metabolomic analyses (Trifonova, 

Lokhov, and Archakov 2013). Metabolic profiling is often conducted using either plasma or 

serum. Serum is utilized to transfer small molecules between cells and tissues, and thus 

contains a wealth of information about chemicals circulating within the body (Rappaport 

2012a). Researchers have debated whether plasma or serum is the optimal biofluid for 

proteomic and metabolomic analyses. However, evidence indicates that the two biofluids are 

comparable in the number of detected compounds and display similar subject variability 

(Wedge et al. 2011; Yu et al. 2011). The reproducibility of results using the two biofluids 

may be analyte dependent, as some studies demonstrated serum to be more replicable than 

plasma for metabolite analysis (Breier et al. 2014), while another investigation obtained 

greater reproducibility with plasma (Yu et al. 2011). However, both studies demonstrated 

that metabolite concentrations are higher in serum than plasma (Breier et al. 2014; Yu et al. 

2011). While this may make serum more advantageous for some applications, serum 

preparation requires more postprocessing steps than plasma and is more difficult to 

standardize. In addition, some important metabolites were only identified in plasma and not 

serum (Wedge et al. 2011). Therefore, selecting serum or plasma for analysis depends upon 

the compounds of interest, goals of the study, and preference of the researcher.

Current Challenges of “Omics” Strategies

While advances have been made in improving the applicability of “omics” sciences, several 

key challenges remain to be addressed. Due to a lack of standardized procedures, “omics” 

results using MS may be difficult to reproduce between labs (Vineis et al. 2009). However, 

recently, a large-scale analysis of 1000 human plasma samples was conducted using an 

isobaric mass tagging quantification procedure, which provided consistent results for 

proteins with stable expression levels across samples (Cominetti et al. 2016). Different 

sample handling procedures, including temperatures, timing, and humidity levels, were 

shown to produce variation in proteomics and metabolomics experiments, and steps need to 

be taken to reduce inconsistencies in sample preparation (West-Nørager et al. 2007; Yin et 

al. 2013). Samples are sensitive to storage conditions, and incorrect storage temperatures 

might lead to increased enzymatic cleavage of plasma samples (Pinto et al. 2014; Yin and 

Xu 2014). Improved nuclear magnetic resonance (NMR) methods with optimized sample 

preparation procedures for metabolomics analyses were recently developed, improving 

quantitation and coverage of different protein classes, such as amino acids, organic acids, 

and carbohydrates (Gowda, Gowda, and Raftery 2015). Further, there is a wide range of 

“normal” levels of peptides, proteins, and metabolites among healthy individuals, making it 

difficult to establish a baseline for nonaffected, healthy individuals (Bischoff and Luider 
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2004; Enroth et al. 2015; Vineis et al. 2009; Watkins and German 2002). However, as more 

metabolomics data is being published, this limitation is decreasing due to the abundance of 

information regarding normal and abnormal ranges of metabolites (Li, Todor, and Luo 

2016).

Despite the large number of experiments performed, few new proteins have been introduced 

as biomarkers (Liotta, Ferrari, and Petricoin 2003), and only approximately 10–20 blood 

metabolites are currently assayed in clinical diagnostics (Trifonova, Lokhov, and Archakov 

2013). However, some exposures are unlikely to be described by only a single protein or 

metabolite change; instead, these exposures may induce changes in several proteins or 

metabolites, resulting in characteristic patterns (Liotta, Ferrari, and Petricoin 2003). 

Currently, “omics” techniques still suffer from coverage issues, making it challenging to 

identify relevant expression patterns (Anderson and Anderson 2002). A method for 

analyzing the low-molecular-weight plasma proteome using top-down MS was developed, 

making it possible to quantify proteins that may not be detected in a typical mass spectrum 

(Cheon et al. 2016). Assaying all of the proteins or metabolites in a sample and correctly 

identifying them is extremely challenging, especially considering the (1) number to be 

characterized, (2) influence of mass defect on identification, (3) incompleteness of spectral 

libraries and databases, and (4) instrumental limitations (Pleil and Isaacs 2015; Trifonova, 

Lokhov, and Archakov 2013; Veenstra 2007; Yin and Xu 2014). Improved separation 

techniques and faster instruments might alleviate the coverage issue, but not without 

significantly increasing the expense of the assay (Pasikanti, Ho, and Chan 2008). Despite the 

current expense, “omics” research might help reduce health care costs in the long run 

(Anderson and Anderson 2002; Smith and Rappaport 2009; Vineis et al. 2009). The slow 

transfer of biomarker data from the research lab into clinical utility might seem daunting, but 

implementation should improve as assays become more developed and faster instruments are 

utilized. The main challenge facing “omics” techniques today is the lack of validation 

strategies for novel biomarkers. It is difficult to know if altered expression levels are a direct 

indicator of exposure or a downstream result due to activation of an AOP. Affinity-based 

tests might be used for biomarker validation when available, and single-reaction monitoring 

may be employed to assess a single protein in a protein mixture (Veenstra 2007). As high-

throughput discovery techniques continue to evolve, their use for clinical and environmental 

applications is certain to increase.

Range of “Omics” Applicability and Future Directions

“Omics” strategies have been used in clinical settings for several years. Metabolite 

differences between controls and patients with known diseases were utilized to identify 

signatures of disease. Investigations of metabolomic biomarkers of diabetes, macular 

degeneration, asthma, Parkinson’s disease, and tuberculosis have all been conducted in 

clinical research (Li, Todor, and Luo 2016). NMR analyses using blood sera were found to 

predict a type of coronary artery disease with greater than 90% specificity (Mayr 2008). 

Metabolomics was also utilized to identify differences in patients with small-cell lung 

cancer, and metabolites that are associated with worse survival times were identified in 

plasma but not serum samples (Wedge et al. 2011). Further, plasma metabolites released 

after exercise-induced myocardial injury were also detected by metabolomics, and an 
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elevation in compounds in the citric acid cycle were noted in myocardial ischemia, a 

condition in which blood flow to the heart is reduced, causing the heart to receive 

insufficient oxygen levels (Mayr 2008). An analysis of plasma metabolites in control 

subjects and patients with autosomal dominant polycystic kidney disease was conducted to 

determine whether mealtimes and sampling time of day exerted an effect on metabolite 

levels. Interestingly, higher metabolome variability was observed after morning rather than 

evening mealtimes (Kim et al. 2014). This study demonstrates the importance of 

standardizing sampling procedures during experiments to ensure that consistent and relevant 

data are obtained across different studies for comparison.

Recently, “omics” techniques have been utilized for environmental exposure applications. 

Proteomic profiles of subjects naturally exposed to different levels of As in drinking water 

were collected, and surface-enhanced laser desorption/ionization-timeof-flight-mass 

spectrometry (SELDI-TOF-MS) was utilized to detect differences in 20 proteins in serum 

proteome profiles between low-, medium-, and high-exposure groups (Zhao et al. 2010). 

Similarly, SELDI-TOF-MS was employed in a different study to determine the impact of 

benzene exposure in shoe-factory workers. The human serum proteome was examined, and 

platelet factor 4 and connective tissue activating peptide III were consistently downregulated 

in benzene-exposed workers (Vermeulen et al. 2005). Metabolomics was also used to 

investigate serum biomarkers of workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) (Hosnijeh et al. 2013). Blood is also a reliable medium for metabolomics studies in 

nutritional research, as blood metabolites include fat, lactate, and glucose (Savorani et al. 

2013), and blood samples were employed to characterize lipid metabolic profiles after high-

fat meals and to identify biomarkers of sucrose intake (Beckmann et al. 2016; Bijlsma et al. 

2006). These types of studies demonstrate how “omics” experiments might be utilized to 

detect proteins and metabolites that are sensitive to low levels of exposure, revealing early 

biological effects of AOP. A strategy to incorporate metabolomics data measured in three 

different biofluids, plasma, urine, and saliva, was also implemented to obtain a more 

comprehensive picture of the complex interactions that occur within the human body as a 

whole (Do et al. 2015). This valuable information might be utilized to gain a better 

understanding of environmental exposure science.

Although not discussed in detail here, new bioinformatics tools are becoming increasingly 

important to assess complex data streams from metabolomics studies. Currently, large 

databases, computational tools, and cloud computing are addressing data interpretation 

challenges from an ever-increasing volume of biomarker and bioindicator information 

(Bonvallot et al. 2014; Chen et al. 2013; Judson 2010)

Summary

Blood is clearly an invaluable biofluid for analysis of environmental exposure, despite 

requiring a more invasive collection procedure than for excreted biofluids, such as breath or 

urine. Under the assumption of sufficient analytical sensitivity, it should be possible to 

characterize the majority of human exposures (regardless of source or exposure pathway) in 

blood as it comes in contact with all living cells. Exogenous compounds, endogenous 

compounds, and inflammatory, molecular modification, and damage biomarkers and 
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bioindicators can all be analyzed in blood samples to assess exposure, effect, and 

susceptibility. In cases where compounds that have long elimination halflives, nonspecific 

urinary metabolites, or protein adducts need to be investigated, blood is the best biofluid for 

analysis.

One of the more promising new research areas for blood analysis is implementation of DBS 

as a surrogate for whole blood samples. Here, there is essentially no volumetric limit for 

sampling (as encountered for 10 ml whole blood samples) as each sample contains only ~50 

μl. DBS sampling can be self-administered, and once dried, the sample is stable and may be 

shipped and stored at room temperature for a couple weeks. Although the DBS approach 

loses volatile constituents, including water and dissolved gases, there are advantages in that 

the remaining materials such as proteins and inorganics become highly concentrated. DBS 

assays have been performed to detect pesticides, develop multiplex protein assays, and 

identify protein adducts.

Metabolomics and proteomics analyses are also increasing in frequency and application to 

environmental assessment of blood samples. Improvements in MS have led to faster, more 

sensitive instruments capable of detecting small molecules and proteins in blood, serum, and 

plasma. High-throughput experiments are being performed to identify patterns in expression 

levels that are indicative of different exposures and disease states. While “omics” techniques 

still suffer from the overabundance of HSA, coverage issues, and need for standardization 

and validation, their usage in clinical and environmental fields is on the rise as technology 

continues to improve.

In conclusion, blood sampling in the environmental health field remains a viable and 

important methodology. Newer analytical technologies that require smaller volumes are 

closing the gap in logistical concerns in regards to acceptance, invasiveness, and need for 

trained personnel. Due to these advancements, blood sampling is expected to remain a 

standard measurement of environmental exposure assessment in the future.
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Figure 1. 
The role of environmental and biomarker measurements in explaining the exposure source to 

health outcome continuum. Environmental measurements from water, air, smoke, dust and 

food are linked to biomarker measurements from blood, breath, and urine and are interpreted 

using different types of observational and mathematical tools, such as heat maps, bar graphs, 

and charts.
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Figure 2. 
The center sequence from environmental exposure through health effects is represented by 

the biological progression of biomarkers and responses of increasing complexity that are 

assessed in human biological samples. The upper entries represent bioindicators of effect (or 

at least preclinical effects) generally found in circulating blood. The lower entries represent 

biomarkers of recovery and repair functions; those labeled passive and active elimination are 

typically found in breath and urine or sequestered in adipose tissues. DNA repair and cell 

turnover are not generally directly observable as biomarkers but are inferred from a 

reduction in damage biomarkers.
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