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ABSTRACT: Rhythmic auditory cueing has been widely used in gait rehabilitation over the past decade. The 

entrainment effect has been suggested to introduce neurophysiological changes, alleviate auditory-motor coupling 

and reduce cognitive-motor interferences. However, a consensus as to its influence over aging gait is still 

warranted. A systematic review and meta-analysis was carried out to analyze the effects of rhythmic auditory 

cueing on spatiotemporal gait parameters among healthy young and elderly participants. This systematic 

identification of published literature was performed according to PRISMA guidelines, from inception until May 

2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. 

Studies were critically appraised using PEDro scale. Of 2789 records, 34 studies, involving 854 (499 young/ 355 

elderly) participants met our inclusion criteria. The meta-analysis revealed enhancements in spatiotemporal 

parameters of gait i.e. gait velocity (Hedge’s g: 0.85), stride length (0.61), and cadence (1.1), amongst both age 

groups. This review, for the first time, evaluates the effects of auditory entrainment on aging gait and discusses 

its implications under higher and lower information processing constraints. Clinical implications are discussed 

with respect to applications of auditory entrainment in rehabilitation settings. 
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Higher prevalence to fall with aging is a matter of concern 

for medical practitioners [1-3]. According to WHO, every 

year approximately 37 million people are seriously 

injured, and further 424,000 people perish from falls 

globally [4]. Degenerative changes in cardiovascular [5], 

sensorimotor (somatosensory, vestibular), and 

neuromuscular (cortical, extra-pyramidal, cerebellum) 

domains are suggested to be the main reasons often 

leading to falls [6-8]. Moreover, medications, depression, 

and anxiety are additional precipitators [9-11]. Falls 

impact quality of life [12, 13], and inflict heavy costs at 

both individual, economic levels [14, 15].  

Studies suggest that highest incidences for falls 

occur during locomotion [16-18]. In fact, aging has been 

associated with modifications in spatiotemporal [19], 

electromyographic [20], and kinematic [21], gait 

parameters, which in-turn are important predictors for fall. 

For instance, clinical characteristics for reductions in gait 

velocity, stride length, cadence, single limb support 

phase, and enhancements in stride time, double limb 

support phase, gait variability [22, 23], have been well 

documented (see also Jahn, et al. [6]). The kinematic 

analysis also suggests a reduction in angular impulse, 

torque at ankle, knee, and hip joint with aging gait [24]. 

Together, these factors aggravate static and dynamic 

instability and increase predisposition to fall. Likewise, 

degenerative changes observed in psychological domain 

in elderly might also contribute in modifying stability [25, 
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26], and cognitive processing [27, 28]. Reelick, et al. [23], 

for instance, suggested a reduction in self-confidence with 

aging, and history of falls often leading to a peculiar “fear 

of falling” [29, 30]. Furthermore, this “fear” has been 

reported to additionally modify the stability during static, 

and dynamic postures [9, 31, 32]. Giladi, et al. [32], 

referred such modified gait pattern as a “cautious or 

fearful gait” [23]. Although these modifications are aimed 

to enhance stability during locomotion, they, in turn, 

develop a stiff, slow and unsteady gait pattern [33]. 

Moreover, this “fear of falling” or “cautious gait” might 

promote “internal” attentional focus [34], explicit motor 

control [25], and can eventually alleviate cognitive-motor 

interferences [35]  (see also Young and Mark Williams 

[33]). Masters and Maxwell [27] suggested that such an 

attempt to consciously monitor or control an autonomic 

movement, such as posture, or gait might adversely affect 

its performance. Also, such higher information processing 

constraints have demonstrated detrimental effects on 

proprioceptive perceptions [36-38], which are integral for 

autonomic stability [36]. In addition, literature suggests 

that younger population groups, on the contrary, have a 

more resilient and stable psycho-physiological stature 

[35, 39]. However, falls are not uncommon [10]. Possibly, 

environmental [10], and lifestyle factors might play a 

considerable role [40]. Schabrun, van den Hoorn, 

Moorcroft, Greenland and Hodges [41] reported texting 

and reading while walking (common among youngsters) 

to adversely impact gait stability [42], by increasing 

cognitive-motor interferences [43]. Consequently, such 

higher attentional constraints predisposing to falls might 

possess serious life-threatening consequences under 

“high-stress” environments [8, 44], for both younger and 

elderly age groups.  

Several strategies have been suggested in literature 

to curb these psycho-physiological deficits, such as 

pharmacotherapy (Methylphenidate) [5], virtual-reality 

[45], biofeedback [46], physical/occupational therapy 

[47], physical exercise [48], dance [49], treadmill [50], 

external sensory cueing [51, 52], martial arts [53, 54], 

dual-task training [5, 36], and more [55]. Amongst these, 

external sensory entrainment in rehabilitation is an 

emerging yet under-evaluated area of interest [56]. For 

instance, external auditory cueing can enhance motor 

performance in patients with sensorimotor deficits [57], 

even better vis-a-vis tactile and visual entrainment [56-

59]. Possibly, due to lower rhythm perceptional 

thresholds for auditory cortex [56, 60, 61], rich neural 

connectivity [52, 62, 63], and better temporal precision 

[52, 62, 63]. Moreover, published literature suggests 

beneficial effects auditory entrainment during gait 

amongst patients affected from traumatic neurological 

injuries [64], multiple sclerosis [65], stroke [66], 

parkinsonism [57], and even healthy young and elderly 

participants [67, 68]. The auditory entrainment might 

supplement sensory deficits present in fall prone 

individuals [69], and aid in performance by mediating 

multifactorial neurophysiological changes [52, 70], 

enhancing auditory imagery [71-74], reducing variability 

in musculoskeletal activation [75], and possibly 

cognitive-motor interference [67, 76]. 

Additionally, rhythmic auditory entrainment is 

cheap [77], viable [78], easy to follow and has shown 

enhancements even during unsupervised home-based 

training programs [79, 80]. This intervention can be a 

useful rehabilitation tool in middle and lower income 

countries, where poor healthcare services [81], might 

precipitate to majority of the fall related deaths [4]. 

Thereby, strongly warranting the need for such 

economical, and efficient rehabilitation techniques.  

High-quality systematic reviews and meta-analyses 

have been carried out to evaluate the beneficial effects of 

rhythmic auditory cueing on gait in patients affected from 

neurological conditions, such as stroke, and parkinsonism 

[57, 58, 66]. However, to the best of our knowledge, no 

review to date has analyzed the effects of rhythmic 

auditory cueing on aging gait. Therefore, we attempted to 

develop a state of the art knowledge for the use of 

rhythmic auditory cueing in gait rehabilitation across 

healthy population groups. The main aim of this review is 

to understand the effects of auditory entrainment on 

spatiotemporal, variability parameters for gait among 

young, and elderly age groups. The review also discusses 

possible applications of auditory entrainment in 

rehabilitation and activities for daily living.  

 

METHODS 

 

This review was conducted according to the guidelines 

outlined in Preferred Reporting Items for Systematic 

Reviews and Meta-analysis: The PRISMA statement [82]. 

 

Data sources and search strategy 

 

Academic databases such as Web of science, PEDro, 

EBSCO, MEDLINE, Cochrane, EMBASE and 

PROQUEST were searched from inception until July 

2017. A sample search strategy has been provided in 

(Supplementary Table 1). 

 

Data extraction 

 

Upon selection for review, the following data were 

extracted from each article; author, date of publication, 

selection criteria, sample size, sample description 

(gender, age, health status), disease duration, intervention, 

characteristics of auditory feedback, dual-task, outcome 
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measures, results, and conclusions. The data were then 

summarized and tabulated (Table 1).  

The inclusion criteria for the studies was (i) 

Performed studies were either randomized controlled 

trials, cluster randomized controlled trials or controlled 

clinical trials; (ii) Studies reporting reliable and valid 

spatiotemporal gait parameters (iii) Studies reporting 

dynamic aspects of gait stability (iv) Studies qualified 

PEDro methodological quality scale (≥4 score); (v) 

Experiments conducted on human participants; (vi) 

Published in a peer-reviewed academic journal; (vii) 

Articles published in English and German languages. 

 

Quality & risk of bias assessment 

 

The quality of the studies was assessed using the PEDro 

methodological quality scale [83]. The scale consists of 

11 items addressing external validity, internal validity, 

and interpretability and can detect potential bias with fair 

to good reliability [84], and validity [83]. A blinded rating 

of the methodological quality of the studies was carried 

out by the primary reviewer. Ambiguous issues were 

discussed with second (IG), third (AOE) reviewer and 

consensus was reached. Included studies were rated, and 

interpreted according to scoring of 9-10, 6-8 and 4-5 

considered of “excellent”, “good” and “fair” quality [85], 

respectively. Inadequate randomization, non-blinding of 

assessors, no intention to treat analysis and no 

measurement of compliance were considered as major 

threats to biasing [86]. 

 

 
 

Figure 1. PRISMA flow chart for the inclusion of studies. 
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Data Analysis 

 

This systematic review included a meta-analysis approach 

[87]. The presence and lack of heterogeneity asserted the 

use of either random or fixed effect meta-analysis [88], 

respectively. A narrative synthesis of the findings 

structured around the intervention, population 

characteristics; methodological quality (Table 1) and the 

type of outcome are provided. Likewise, summaries of 

intervention effects for each study are also provided in a 

tabular form (Table 1). A meta-analysis was conducted 

between pooled studies using CMA (Comprehensive 

meta-analysis V 2.0, USA). Heterogeneity between the 

studies was assessed using I2 statistics. The data in this 

review was systematically distributed and for each 

available variable pooled, dichotomous data was analyzed 

and forest plots with 95% confidence intervals are plotted. 

The weighted effect sizes are reported as Hedge’s g [89]. 

Thresholds for interpretation of effect sizes were as 

follows; a standard mean effect size of 0 means no change, 

negative effect size means a negative change, mean effect 

size of 0.2 considered a small effect, 0.5 a medium effect 

and 0.8 a large effect [90]. Interpretation of heterogeneity 

via I2 statistics was as; 0-0%, 25%, 75% as negligible, 

moderate and substantial heterogeneity, respectively. 

Meta-analysis reports including heterogeneity among 

studies were evaluated to determine the reason of 

heterogeneity, and the included studies were then pooled 

separately and analyzed again. The alpha level was set at 

95%. 

 

RESULTS 

 

Characteristics of included studies 

 

Our initial search yielded a total of 2789 studies, which on 

implementing our inclusion/exclusion criteria, were 

reduced to thirty-four (Fig. 1). Data from the included 

studies have been summarized in (Table 1). Of the thirty-

four included studies, one was randomized controlled 

trial, and thirty-three were controlled clinical trials.  

 
 

 

Table 1. Studies analyzing the effects of rhythmic auditory cueing on gait. 

 
Author Sample 

description, 

age: (M ± 

S.D years) 

PEDro 

score  

Assessment tools Research design Auditory feedback 

elements 

Conclusion 

Dotov, et al. 

[100] 

7F, 12M 

(60) 

  

6 Coefficient of 

variation of inter-

stride interval, 

cadence, gait 

velocity, stride 

length, DFA of 

short-long term 

series of inter-

response-interval 

correlations, 

circular statistics for 

synchronization of 

footfall & beat 

Pre-test, gait 

performance 

with/without RAC 

(no variability, 

biological 

variability, non-

biological 

variability; 

randomized), post-

test 

RAC with no 

variability, biological 

variability & non-

biological variability at 

+10% of preferred 

cadence 

Magnitude of 

biological & non-

biological variability: 

2% of inter-beat-

interval 

Metronome sequence: 

triangle timbre 

Musical excerpts 

Amplitude modulated 

noise: Modulated on 

musical excerpt with 

drum ensemble, 

discarding tonal 

information 

Significant enhancement in coefficient of 

variation for inter-stride interval after 

RAC in all conditions. 

Significant effect of RAC that was 

amplitude modulated for biological 

variability as compared to IC on short-

long term correlation for term series of 

inter-response-interval correlations. 

Enhanced synchronization, cadence but 

reduced short-long term correlation for 

term series of inter-response-interval 

correlations during metronome based IC 

as compared to feedback with amplitude 

modulated for biological variability. 

Maculewicz, 

et al. [141] 

5F, 15M 

(24.4±3.2) 

  

4 Mean square error 

for the asynchrony 

between target & 

performed measure 

& trend of tempo 

change obtained 

from slope of line 

fitted to measured 

tempo, 

questionnaire 

  

Gait performance 

with/without real-

time auditory 

feedback (adaptive), 

RAC (constant) &/or 

haptic feedback, 

with instructions to 

perform gait at 

preferred cadence or 

the tempo of the 

sound 

  

Real-time auditory 

feedback (adaptive), 

RAC (constant) by 

sine, wood & gravel 

sounds 

  

Significantly enhanced step wise 

interaction with real time auditory 

feedback with (sinusoid >wood>gravel). 

Significant reduction in asynchrony with 

audio-haptic feedback & real-time 

auditory feedback as compared to no 

feedback. 

Significant enhancement in comfort for 

perceiving haptic & audio-haptic 

feedback as compared to haptic only or 

no feedback in self-reported 

questionnaire. 

Schreiber, et 

al. [97] 

5F, 12M 

(37.4±15.7)  

  

4 Cadence, gait speed, 

rhythmicity, stance 

time, double 

support time, gait 

symmetry, step 

length, stride length, 

Gait performance 

with/without RAC 

cueing at preferred, 

reduced cadence 

(instructions & 

cueing randomized) 

RAC at preferred & 

reduced cadence 

Significantly reduced gait speed with 

RAC at preferred cadence as compared to 

preferred speed gait without cueing. 

No effect of RAC on cadence, 

rhythmicity, stance time, double support 

time, gait symmetry for RAC at preferred 
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step width, EMG 

activity of (tibialis 

anterior, soleus, 

gastrocnemius 

medialis, vastus 

medialis, rectus 

femoris, 

semitendinosus, 

gluteus medius & 

gluteus maximus), 

kinematics for 

pelvis, hips, knees 

& ankle joint 

(sagittal, frontal, 

transverse plane) 

  

or reduced cadence as compared to no 

cueing. 

Significantly reduced step width with 

RAC at reduced cadence as compared to 

reduced speed gait without cueing. 

Significantly enhanced step length with 

RAC at reduced cadence as compared to 

reduced speed gait without cueing. 

Significant differences for ankle 

dorsiflexion, hip flexion & hip abduction 

of the gait cycle with RAC at reduced 

cadence as compared to reduced speed 

gait without cueing. 

Hamacher, et 

al. [104] 

Young: 8F, 

12M 

(24.9±4.1) 

Old: 11F, 

9M 

(67.4±5.3) 

  

5 Stride length, 

minimum foot 

clearance, stride 

time, stride to stride 

analysis (mean & 

coefficient of 

variation) 

  

Gait performance 

with/without dual-

task (arithmetic 

subtraction in 3's 

task) &/ RAC 

(randomized) 

  

RAC at preferred 

cadence 

Significant enhancement in stride length, 

stride time with RAC (with/without dual-

task) in both younger & older adults. 

Significantly enhanced coefficient of 

variation of stride time in older 

participants under dual-task condition & 

with RAC 

Enhancement in coefficient of variation 

of stride to stride in older participants 

under dual-task condition & with RAC 

Terrier [96] 22F, 14M 

(33±10) 

  

4 DFA of coefficient 

of variability for 

stride time, stride 

length, stride speed, 

stride length, stride 

speed & stride time 

  

Gait performance on 

treadmill 

with/without visual 

(stepping stones), 

RAC 

  

RAC at preferred 

cadence 

Significant reduction in stride time & 

stride speed with RAC as compared to no 

cueing. 

No effect on coefficient of variation for 

stride length, stride time & stride speed 

(mean & coefficient of variation) with 

RAC 

  

Roerdink, et 

al. [162] 

5F, 7M 

(28±6) 

  

5 Stride-to-stride 

DFA for persistence 

of stride time, stride 

length, stride speed 

& anterior-posterior 

center of pressure 

sway 

  

Treadmill gait 

performed 

with/without RAC 

with isochronous 

metronome & non-

isochronous 

metronome 

containing inter-beat 

interval sequences 

with distinct scaling 

exponents 

(randomized)  

RAC with (IC) 

containing equidistant 

inter-beat interval & 4 

(non-isochronous) 

metronome containing 

inter-beat interval 

sequences with distinct 

scaling exponents 

Frequency: 600Hz 

RAC with mean inter-

beat intervals being 

equal to mean stride 

time of preferred 

cadence. 

Significant effect of IC cueing for 

changing the stride-to-stride fluctuations 

of stride length & stride time to anti-

persistent & vice versa for the non-IC. 

Significant effect of isochronous & non-

isochronous metronome cueing for 

changing the stride-to-stride fluctuations 

of stride speed to anti-persistent for both 

the cueing. 

Wright, 

Spurgeon 

and Elliott 

[163] 

8F, 2M (20-

33) 

5 Mean asynchrony, 

step time variability 

& mean percentage 

step correction  

Gait performance 

with/without RAC 

&/or visual cueing 

RAC, 500 ms (cue 

duration 30 ms), 800Hz 

Significant enhancement in & mean 

percentage step correction with audio & 

audio-visual cueing as compared to only 

visual cueing 

Significant reduction in mean synchrony 

of step with RAC with audio-visual 

cueing as compared to only audio or 

visual cueing. 

Significant reduction in step time 

variability with audio & audio-visual 

cueing as compared to only visual cueing 

Young, et al. 

[138] 

6F, 4M 

(63.9±4) 

II: same as I 

III: same as 

I 

 

5 I: Mean step length, 

% change stride 

length, mean step 

duration, % change 

in variability of 

stride length, 

duration 

II: same as I 

III: same as I 

I: Gait performance 

with/without verbal 

instruction, verbal 

instruction-

metronome cueing, 

stepping sound, 

stepping sound-

verbal instructions, 

for small and wide 

stride length 

(randomized) 

II: Gait performance 

with/without 

stepping sound, 

verbal instruction-

stepping sound 

feedback, 

synthesized gravel 

sound, synthesized 

gravel sound-verbal 

instructions, for 

I: RAC (Ct: 550-

649ms, Exp: 600-

700ms), foot step 

feedback on gravel 

(500, 600, 700ms) 

II: RAC (Ct: 550-

649ms, Exp: 600-

700ms), foot step 

feedback on gravel 

(500, 600, 700ms), 

synthesized gravel step 

sound corresponding 

to plantar force 

(developed by using 

ground reaction forces 

vector to modulate 

both intensity envelop, 

and central frequency 

of bandpass filter 

Significant enhancement in stride length 

for healthy Ct in all cueing conditions. 

No effect of auditory cueing or 

instructions on mean step duration. 

Significant reduction in stride length 

variability with synthesized feedback as 

compared to footstep feedback-verbal 

instruction, synthesized feedback-verbal 

instructions. 

Significant reduction in stride length 

variability with stepping, synthesized 

feedback, stepping-verbal instructions. 

Significant enhancements in stride 

length with rhythmic auditory cueing 

(synthesized) and motor imagery 

together. 

No effect on stride duration parameters. 
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small and wide 

stride length 

(randomized) 

III: Gait performance 

with/without motor 

imagery, motor 

imagery-stepping 

sound feedback, 

synthesized gravel 

sound, synthesized 

gravel sound-motor 

imagery, for small 

and wide stride 

length (randomized) 

applied to stochastic 

noise impulse signal) 

III: same as II 

Leow, et al. 

[105] 

24F, 19M 

(18-20) 

  

5 Stride velocity, step 

length, step time, 

stride width, double 

support, & 

coefficient of 

variability for stride 

length  

  

Gait performance 

with/without 

rhythmic music, 

RAC (low/high 

groove) at 0% & 

+22.5% of preferred 

cadence 

RAC (low/high groove 

music) at 0% & 

+22.5% of preferred 

cadence (50ms 1kHz 

sine tones) 

  

Significant enhancement in stride 

velocity with rhythmic music cueing 

(high groove) & metronome at +22.5% of 

preferred cadence as compared to no 

cueing. 

Significant reduction in double support 

with metronome cueing at 0% & +25% 

of preferred cadence as compared to no 

cueing. 

Significant reduction in step length with 

high groove music at +25% of preferred 

cadence. 

Significant reduction in step time in low 

(0% also), high groove music cueing & 

RAC at +25% of preferred cadence 

cueing as compared to no cueing. 

Significant enhancement in coefficient of 

variability for stride length with low & 

high groove RAC at 0% & +25% of 

preferred cadence. 

Sejdić, et al. 

[164] 

8F, 7M 

(23.9±4.7) 

5 Gait speed, mean 

stride interval, 

stride interval 

variability, stride 

interval dynamics, 

dynamic stability of 

gait in anterior-

posterior, vertical & 

medio-lateral 

dimension (short: 

between 0th & 1st 

stride & long: 

between 4th & 10th 

stride, term 

Lyapunov 

exponent) 

Gait performance 

with rhythmic 

auditory, visual & 

haptic cueing 

(randomly spate or 

together) at preferred 

cadence during 2 

sessions 

RAC at preferred 

cadence 

Significantly reduced stride interval 

variability with RAC (alone & combined 

with visual & haptic cueing) as compared 

to no cueing condition. 

Significantly reduced stride interval 

dynamics (long term Lyapunov 

exponent) with RAC (alone & combined 

with visual & haptic cueing) as compared 

to no cueing condition. 

Significant enhancement in dynamic 

stability of gait with RAC (alone & 

combined with visual & haptic cueing) as 

compared to no cueing condition. 

Terrier and 

Dériaz [165] 

10F, 10M 

(36±11) 

  

4 DFA on time series 

of stride time, stride 

length & stride 

speed 

Short & long-term 

local dynamic 

stability in anterior-

posterior & medial-

lateral direction 

Gait performance on 

treadmill at slow (0.7 

times preferred 

cadence), fast (1.3 

times preferred 

cadence) & at 

preferred cadence 

with/ without RAC 

(randomly) 

  

RAC at slow (0.7 times 

slower than preferred 

cadence), fast (1.3 

times faster than 

preferred cadence) 

cadence 

Significant enhancement in long term 

local dynamic stability with RAC 

Significant reduction of stride time & 

stride length variability at slow speed 

with RAC 

No effect on short term local dynamic 

stability with RAC 

Roerdink, et 

al. [166] 

10F, 10M 

(63.2±3.6) 

5 Cadence, mean 

relative timing 

between footfalls & 

auditory stimuli, 

variability of mean 

relative timing (by 

circular statistics) 

  

Participants 

performed gait at 

preferred cadence 

followed by 7 

random trials with 

adjusted RAC i.e. 

77.5%, 85%, 92.5%, 

100%, 107.5%, 

115% or 122.5% 

Auditory input from 

drum RAC at 77.5%, 

85%, 92.5%, 100%, 

107.5%, 115% or 

122.5% of preferred 

cadence 

Different pitch to pace 

for RAC i.e. for step 

left: 440Hz, right: 

1000Hz 

Significant effect of RAC on cadence, 

mean relative timing & variability of 

mean relative timing between footfalls & 

auditory inputs. 

Significantly fewer steps required to 

reach synchronization 

  

Lohnes and 

Earhart [67] 

Young: 7F, 

4M 

(24±0.8) 

Old: 7F, 4M 

(70.8±10.4) 

  

5 Gait velocity, 

cadence & stride 

length 

Patients performed 

gait with/without 

RAC at -10%, +10% 

of preferred cadence 

or with additional 

cueing strategy 

“think about larger 

strides” with/without 

-10% & +10% of 

auditory inputs tone, 

RAC at ±10% of 

preferred cadence. 

Significant effect on gait velocity stride 

length, cadence for both groups with 

±10% of RAC under both single and 

dual-task conditions.  

Larger effects noted in young 

participants as compared to older 

counterparts. 

Verbal instructions had no influence on 

cadence among both groups under both 

single and dual-task conditions. 
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with/without dual-

task “word 

generation task” 

  

Trombetti, et 

al. [167] 

Exp: 64F, 

2M (75±8) 

Ct: 65F, 3M 

(76±6) 

8 Gait velocity, stride 

length, cadence, 

double, single 

support phase, 

stride time/length 

variability, TUG 

test, trunk angular 

displacement, 

Tinetti tests & 

assessment of falls 

Exp: Pre-test, gait & 

exercise training 

with auditory input 

performed for 1-hour 

session/ week for 12 

months, 6-month 

test, post-test, 

with/without dual-

task (counting 

backward aloud task) 

Ct: started 6-month 

delayed intervention, 

with/without dual-

task (counting 

backward aloud task) 

RAC as piano music Single task: Significant enhancement in 

gait velocity, stride length & stride time 

variability for the Exp as compared to Ct. 

Dual-task: Significant enhancement in 

stride length, decrease in stride length 

variability in Exp as compared to Ct 

Significant enhancement in 1 legged 

stance, Tinetti tests, TUG & decreased 

mediolateral angular velocity. 

Significantly reduced incidences of falls 

in Exp as compared to Ct. 

Wittwer, et 

al. [136] 

12F, 7M 

(79±7.8) 

4 Swing time, stride 

time, velocity, stride 

length, double 

support %, stride 

width, stride length 

& time variability 

Participants 

performed gait 

with/without 

auditory feedback 

“randomly” i.e. 

music or RAC 

Music or metronome or 

RAC at participants 

preferred cadence 

Significant enhancement in velocity, 

stride length with music as compared to 

no sound.  

Significant reduction in stride time, 

double limb support & enhancement in 

cadence with both music & RAC input, 

as compared to no auditory input. 

No effect on mean step width, mean 

temporal or spatial gat variability. 

Yu, et al. [93] 13F 

(21.8±0.4) 

  

5 Stride length, 

cadence & gait 

speed 

  

Gait performance 

with/without RAC at 

0% & ±10% of 

preferred cadence 

  

RAC at 0% & ±10% of 

preferred cadence 

  

Significant enhancement in stride length, 

cadence & gait speed with +10% RAC as 

compared to all conditions. 

Significant reduction in cadence & gait 

speed with -10% of RAC as compared to 

0% & no cueing. 

Almeida, et 

al. [92] 

Exp I: 9 

(42.7±6.6) 

Exp II: 10 

(42.4±4.5) 

Ct: 9 

(41.7±5) 

4 Gait speed, heart 

rate, maximal 

oxygen 

consumption, rating 

of perceived 

exertion 

  

Gait performance 

with/without (Ct) 

RAC at 90 bpm (Exp 

II) & 140 bpm (Exp 

I) for 30 minutes 

with re-tests at every 

5-minute interval 

  

RAC at 90 & 140 bpm Significant enhancement in gait 

performance in Exp I as compared to Exp 

II & Ct. 

No effect on heart rate & maximal 

oxygen consumption in Exp or Ct. 

Hunt, 

McGrath and 

Stergiou 

[168] 

4F, 6M 

(28.1±5.3) 

4 Stride time, sample 

entropy of stride 

time interval for 

individualized 

fractal RAC, DFA 

for auditory signals 

scaling exponent & 

stride time scaling 

exponent 

Gait performance 

with/without 

individualized 

fractal RAC for 

white, pink & brown 

noise (randomized) 

Individualized fractal 

RAC (embedding 

white, pink & brown 

noise variables into 

inter-beat interval of 

music) 

Inter-beat interval: 

stretched or 

compressed based on 

dynamics of pink, 

white or brown noise 

time series 

Amplitude: standard 

deviation of inter-beat 

intervals matched 

standard deviation of 

step time 

Tempo: at preferred 

cadence  

Significant effect of RAC on sample 

entropy of stride interval time series 

(brown>pink>white>no sound) 

Significant enhancement of fractal 

scaling exponent with auditory feedback 

of stride interval time series 

(brown>pink>white>no sound) 

Marmelat, et 

al. [169] 

7F (28±6) 

  

5 DFA of inter slide 

interval variability, 

inter-beat interval 

variability & 

asynchrony with 

metronome between 

two successive right 

heel strikes 

Gait performed on 

treadmill with 

/without RAC with 

either IC or fractal 

feedback 

  

RAC with either IC or 

fractal feedback 

Inter-beat intervals 

contained fractal 

Gaussian noise with 

corresponding scaling 

exponent (600 Hz) 

Significant effects of pacing rhythmic 

metronome feedback on global 

exponents of inter-beat & slide intervals 

(persistent correlations) 

No effect on inter slide interval, 

asynchrony with RAC 

Participants anticipated the metronome 

& adapted with pacing stimuli 

No significant correlations between 

inter-beat intervals & inter-slide intervals 

(increased correlation with increased 

variability) 

5F, 7M 

(28±6) 

5 DFA of inter slide 

interval variability, 

inter-beat interval 

variability & 

asynchrony with 

metronome between 

two successive right 

heel strikes 

Gait performed on 

treadmill with 

/without RAC with 

either IC or fractal 

feedback 

  

RAC with non-IC 

(different scaling 

exponents)  

Significant effects of pacing rhythmic 

metronome feedback on global 

exponents of inter-slide intervals (anti-

persistent correlations) 

No significant correlations between 

inter-beat intervals & interslide intervals 

(increased correlation with increased 

variability) 
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Franěk, et al. 

[68] 

30F, 42M 

(20.2±1.2) 

4 Gait speed, 

synchronization 

(inter step times)  

Gait performed 

with/without 

rhythmic music 

feedback at 114, 124, 

133 bpm 

RAC at 114, 124, 133 

bpm 

Significant enhancement in gait speed 

with faster tempo music feedback as 

compared to slower tempo RAC & no 

feedback. 

No effect on synchronization with 

rhythmic music feedback. 

60F, 61M 

(20.6±1.5) 

4 Gait speed, 

synchronization 

(inter step times) 

Gait performed 

with/without] RAC 

(music 

motivational/non-

motivational) 

RAC (music 

motivational: 131-200 

bpm, non-

motivational: 52-96 

bpm) 

Significant enhancement in gait speed 

with motivational rhythmic music 

feedback as compared to non-

motivational RAC & no feedback. 

Leman, et al. 

[142] 

11F, 7M 

(22-51) 

4 Gait speed, gait 

tempo, 

synchronization of 

steps to tempo 

  

Gait performance 

with 52 rhythmic 

music excerpts 

(activating & 

relaxing)  

  

RAC (relaxing or 

activating effects) at 

130 beats per minute, 

short fade in of 50 ms 

& fade out of 100 ms 

applied to each musical 

excerpt 

RAC superimposed at 

position 1, 12, 23, 34, 

45, & 58 

  

Significant effect of activating (increased 

gait speed), relaxing (reduced gait speed) 

in gait speed with RAC with same tempo. 

Significant enhancement in 

synchronization of steps with RAC 

Peper, et al. 

[170] 

Young: 4F, 

8M (22-28) 

Old: 5F, 7M 

(55-69) 

5 Mean reaction time, 

gait speed, step 

length, step width  

Gait performed 

with/without RAC & 

visual feedback 

(stepping stones), 

dual-task (probe 

reaction task 

generating vibrating 

stimuli) 

RAC Left (440Hz), 

right (1000Hz) 

Temporal shift of 

±1/6th of interval 

between consecutive 

ipsilateral beeps, 

causing ±60º phase 

delay/advance 

Significantly enhanced step length & step 

width RAC No effect on gait speed in 

young & older adults with RAC 

Significantly enhanced reaction times 

with RAC as compared to no cueing.  

Significantly reduced reaction time with 

RAC as compared to visual cueing. 

Bank, 

Roerdink 

and Peper 

[171] 

10F, 10 M 

(63.2±3.6) 

5 Mean normalized 

step time, step 

length, relative 

phase shift between 

gait & cues 

Gait performance 

with RAC ±22.5% 

(introduced in steps 

of ±7.5% randomly) 

of preferred cadence 

&/or stepping stone 

visual feedback 

RAC at ±22.5% of 

preferred cadence  

Temporal shift of 

±1/6th of interval 

between consecutive 

ipsilateral beeps, 

causing ±60º phase 

delay/advance 

Significant effect of phase delay on 

increasing/decreasing step length, step 

time with auditory & visual feedback. 

However visual cueing > RAC 

Significantly enhanced phase shift from 

auditory to visual cueing condition. 

Significant reduction in coordination of 

RAC with gait as compared to visual 

cueing 

Wellner, et 

al. [91] 

17 (28±8) 

  

4 Obstacle hit %, 

average obstacle 

clearance & 

individually chosen 

gait speed 

Gait performance on 

robot assisted device 

with/without 

Rhythmic auditory 

feedback (distance to 

obstacle &/or foot 

clearance feedback) 

  

Rhythmic real-time 

feedback for distance 

to obstacle & foot 

clearance  

Obstacle distance: 

Rhythm (repeating 

sound with shorter 

pause interval as 

distance decreases), 

continuous/discrete 

pitch (continuous 

sound with higher pitch 

as distance 

increases/decreases), 

dynamics (increase in 

volume as distance 

decreases) 

Absolute foot 

clearance: harmony 

(dissonant/consonant 

chords below/above 

obstacle), pitch with 2 

& 3 levels, noise 

(Gaussian noise below, 

no sound above 

obstacle) 

Significantly enhanced self-chosen gait 

speed with auditory feedback as 

compared to only visual feedback. 

Significant enhancement in gait speed 

with rhythmic feedback for distance to 

obstacle &/or foot clearance as compared 

to no feedback 

  

Arias and 

Cudeiro 

[102] 

6F, 5M 

(65.7±7.6) 

5 Cadence, gait 

velocity, step 

amplitude, 

coefficient of 

variation for step 

amplitude & stride 

time 

Patients performed 

gait with/without 

rhythmic cueing 

from auditory, visual 

& audio-visual 

condition, with 

frequency ranging 

from 70-110% 

increment/decrement 

at ±10% of preferred 

cadence 

RAC with wave 

frequency of 4625 Hz 

delivered at frequency 

ranging from 70-110% 

increment/decrement 

at ±10% of preferred 

cadence 

Significant enhancement in cadence, step 

amplitude in Ct with RAC 

No effects on gait velocity, coefficient of 

variability for stride time & stride 

amplitude. 

Baker, et al. 

[172] 

7F, 5M 

(71.5±2.5) 

7 Gait speed, 

coefficient of 

velocity for (step 

Pre-test, functional 

gait performance 

with/without RAC -

10% of preferred 

RAC at -10% of 

preferred cadence 

Significant effect of RAC back and 

verbal instructions on enhancing stride 

length, gait velocity. 
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time, double limb 

support time) 

  

cadence, attentional 

cue instructions "try 

to take big steps", 

together "take a big 

step with the beat", 

& with/without a 

dual-task (a tray with 

2 cups of water on 

top), post-test 

Significantly reduced cadence with RAC 

and verbal instructions.  

Reduced gait speed, cadence with -10% 

RAC No effect on stride length. 

Hausdorff, et 

al. [117] 

14F, 12M 

(64.6±6.8) 

5 Stride time, gait 

speed, stride length, 

swing time, stride 

time variability & 

swing time 

variability 

Pre-test, gait 

performance 

with/without RAC at 

preferred cadence, 

+10%, Post-test 2 & 

15 min short term 

retention test 

RAC at 0% & +10% of 

preferred cadence 

Significant enhancement in gait speed 

with +10% RAC 

Significant reduction in stride time with 

+10% RAC 

No effect on stride length, swing time, 

stride time variability, swing time 

variability with RAC 

Willems, et 

al. [103] 

9 (68.1±7.3) 5 Steps (number, 

time, height, width, 

length), step length, 

step width, step 

duration, coefficient 

of variation of step 

duration 

Gait performance 

while turning 

with/without RAC 

RAC at preferred 

cadence 

  

Enhancement in step length. 

No effects on steps (number, time, 

height, width), step length, step width, 

step duration, coefficient of variation of 

step duration with RAC 

Baram and 

Miller [99] 

6F, 5M 

(25.4±1.9) 

4 Gait speed, stride 

length, 10 meters 

walking test 

Pre-test, followed by 

rhythmic auditory 

feedback & 10 min 

follow-up short term 

residual performance 

test 

Rhythmic auditory 

feedback generated 

with gait step in real-

time 

No effects on stride length and gait 

velocity with rhythmic feedback 

generated in real-time 

Willems, et 

al. [173] 

10 

(67.2±9.1) 

4 Step frequency, gait 

speed, stride length 

& double support 

(%) phase 

Pre-test, gait 

performance at 0%, -

20%, -10%, +10%, 

+20% of RAC 

(randomized), post-

test 

RAC at 0%, -20%, -

10%, +10%, +20% 

preferred cadence 

Significant effect of RAC on cadence, 

gait speed, with 0%, -10%, +10%, +20% 

pacing of RAC 

No significant effects on double limb 

support, stride length 

  

Baker, et al. 

[101] 

7F, 4M 

(71.5±2.5) 

  

6 Gait speed, step 

amplitude & step 

frequency 

  

Pre-test, functional 

gait performance 

with/without RAC -

10% of preferred 

cadence, attentional 

cue instructions "try 

to take big steps", 

together "take a big 

step with the beat", 

& with/without a 

dual-task (a tray with 

2 cups of water on 

top), post-test 

  

RAC at -10% of 

preferred cadence 

Significant effect of RAC & attentional 

cue "big steps with beat" on step 

frequency in gait speed (single-task 

only), step amplitude, step frequency in 

Ct in both single & dual-task conditions 

Non-significant effects on gait speed, 

step amplitude & step frequency with 

RAC only.  

Effects not evitable once the RAC was 

removed, in post-test 

Rochester, et 

al. [94] 

4F, 6M 

(63.5±7) 

6 Step length, step 

frequency, walking 

speed, time duration 

& cadence 

Complex functional 

walking & sitting 

task under single & 

dual-motor task 

(carrying a tray) 

condition 

with/without RAC 

RAC generated per 

preferred speed of 

patients. 

No effects of RAC on gait speed, step 

length & cadence under single/dual-task 

conditions. However, reduction in 

cadence under dual-task conditions with 

RAC 

  

Thaut, et al. 

[174] 

10F, 6M 

(25-40) 

4 Stride symmetry, 

stride duration & 

EMG amplitude 

variability 

(Gastrocnemius) 

Gait performance 

tested with/without 

RAC 3 times for 5 

weeks 

RAC at 4/4-time 

signature (1st & 3rd beat 

accentuated by 

tambourine beat, 

70dB) at preferred 

cadence, at slower, 

faster than preferred 

cadence  

Significant enhancement in stride 

rhythmicity between right & left limb 

with RAC 

Significantly delayed & shortened onset 

of gastrocnemius EMG activity with 

RAC  

Significant reduction in EMG variability 

of gastrocnemius muscle with RAC 

Significantly enhanced integrated 

amplitude ratios for gastrocnemius EMG 

activity 

McIntosh, et 

al. [175] 

6F, 4M 

(72±5) 

4 Gait velocity, stride 

length, cadence & 

cadence-auditory 

stimulus 

synchronization 

Gait performance by 

participants with pre-

test, with & without 

RAC at +10% of 

preferred cadence, 

post-test 

RAC at 0%, +10% of 

preferred cadence 

Significant enhancement in gait velocity 

and cadence with RAC 

Enhancement in stride length. 

No effect on gait symmetry 

 

F: Female, M: Male, Exp: Experimental group, Ct: Control group, RAC: Rhythmic auditory cueing, DFA: Detrended Fluctual Analysis, PD: Parkinson’s 

disease, EMG: Electromyography, IC: Isosynchronous cueing, bpm: beats per minute. 
 

  



 Ghai S., et al                                                                                                  Rhythmic auditory cueing in aging gait 

Aging and Disease • Volume 9, Number 5, October 2018                                                                               910 

 

Participants 

 

A total of 854 participants were analyzed in the 

incorporated studies. Studies were then categorized into 

sub-groups for evaluating young and elderly participants. 

Three studies compared the effects of rhythmic auditory 

cueing amongst young and elderly participants. Eighteen 

studies evaluated elderly participants (68±5.6 years). A 

total of 355 participants were evaluated (235 females/ 100 

males). Two studies did not specify the gender of the 

participants. All the studies evaluated a mixed gender 

sample size. Nineteen studies evaluated young 

participants (26.8±6 years). A total of 499 participants 

were evaluated (215 females/ 248 males). Two studies did 

not specify the gender of the included participants [91, 

92]. Only one study evaluated a non-mixed gender sample 

i.e. only females [93]. Descriptive statistics relating to the 

age (mean ± standard deviation) of the participants were 

tabulated across the studies (Table 1).  

Risk of bias 

  

The review included studies scoring ≥4 on PEDro to 

reduce the incidence of biasing. Moreover, the limitation 

of research protocols to be included in the review was 

limited to gold standard randomized controlled trials, 

cluster randomized controlled trials and controlled 

clinical trials. The individual scores attained by the studies 

using the PEDro scale have been reported (Table 1, 

Supplementary table 2). The average PEDro score for the 

fifty included studies was computed to be 4.7 out of 10, 

indicating fair-quality of the overall studies. One study 

scored 8, four scored 6, fourteen studies scored 5, and 

sixteen studies scored 4. Publication bias was analyzed by 

plotting a Hedge’s g against standard error (Fig. 2). 

Asymmetries concerning mean in the funnel plot might 

suggest bias (either positive or negative), in which case 

results are published. Risk of bias across the studies has 

been demonstrated in Fig. 3. 

 

Meta-Analysis 

 

Outcomes 

 

The results suggest evidence for a positive impact of 

rhythmic auditory cueing on spatiotemporal gait 

parameters amongst both young and elderly participants. 

In the included thirty-four studies, thirty studies reported 

significant enhancements, two studies reported 

enhancements (p>0.05) [94, 95], and two studies reported 

significant reduction in gait parameters with rhythmic 

auditory cueing [96, 97].  

 

 

 

 
Figure 2. Funnel plot for Hedge's g & standardized effect for each effect in the meta-analysis. Each of the effect 

is represented in the plot as a circle. Funnel boundaries represent area where 95% of the effects are expected to abstain 

if there were no publication bias. The vertical line represents mean standardized effect of zero. Absence of publication 

bias is represented when the effects should be equally dispersed on either side of the line. 



 Ghai S., et al                                                                                                  Rhythmic auditory cueing in aging gait 

Aging and Disease • Volume 9, Number 5, October 2018                                                                               911 

 

 
Figure 3. Risk of bias across studies. 

 

 

 

Meta-analysis report 

 

The evaluation of research studies via meta-analysis 

requires strict inclusion criteria to efficiently limit the 

heterogeneity [98]. However, among the pooled group of 

studies post strict inclusion criteria, some amount of 

unexplained heterogeneity was still observed. Sub-group 

analysis was then performed for identical studies to 

evaluate the cause of heterogeneity. The evaluated 

parameters were the spatio-temporal gait parameters such 

as, cadence, stride length, gait velocity, coefficient of 

variability for stride time and stride length. The effects of 

fast/slow tempo on gait parameters in the included studies 

was determined by keeping the patient’s preferred 

cadence as reference. Analyses were also conducted to 

evaluate the effects of dual-task conditions, presence of 

instructions, and different tempo at which rhythmic 

auditory cueing was provided on gait parameters. We 

included a generalized group analysis first combined for 

all the pooled studies. A separate analysis in addition to 

clinical controlled trials was performed for high quality 

randomized controlled trails, for allowing a better 

interpretation of the direction and magnitude of effects. 

The main reason for not including the statistical approach 
within the studies was due to major differences in between 

assessment methods and lack of descriptive statistics 

within the manuscript. However, data was not received 

even after contacting the respective corresponding 

authors. 

 

Gait velocity 

 

The meta-analysis on healthy patients revealed (Fig. 4) a 

large effect size in positive domain with moderate 

heterogeneity (Hedge’s g: 0.85, 95% CI: 0.55 to 1.16, I2: 

57.9%, p<0.01). Further, sub-group analysis was 

performed by dividing the groups in only young/elderly 

participants. 

Young:  The analysis for young participants 

performing gait with rhythmic auditory cueing revealed 

(Supplementary Fig. 1) beneficial effects with large effect 

and substantial heterogeneity (g: 0.92, 95% C.I: 0.42 to 

1.41, I2: 93.2%, p<0.01). Further, sub-group analysis with 

non-modulated rhythmic auditory cueing (Supplementary 

Fig. 2), under a single task condition, revealed a large 

effect size with substantial heterogeneity (Hedge’s g: 

1.24, 95% CI: 0.4 to 2, I2: 90.5%, p<0.01). The 

heterogeneity here could be attributed to different 

interventions utilized by studies. Wellner, et al. [91] for 

instance, utilized robot assisted gait, and Almeida, et al. 
[92] analyzed treadmill gait. Moreover, different 

measures of rhythmic auditory cueing were utilized by 
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[99], as the study reported generation of rhythmic patterns 

by converting the foot strike patterns to rhythmic pattern 

in real-time. 

Further, analysis with fast paced stimuli revealed 

(Supplementary Fig. 3) large effect size with substantial 

heterogeneity (g: 1.17, 95% C.I: 0.38 to 1.96, I2: 91.4%, 

p<0.01). Likewise, slow paced stimuli revealed 

(Supplementary Fig. 4) reduction in gait velocity 

parameters with medium effect size and substantial 

heterogeneity (g: -0.3, 95% C.I: 90.4%, I2: 90.4%, 

p<0.01). Here as well, the heterogeneity could be 

attributed to the type of entrainment used, for instance, 

low groove, non-motivating cueing and slow cueing were 

paired together and vice versa for the fast-paced stimuli. 

These stimuli differ in terms of emotional and 

expressiveness components, which might be considerably 

different from each other [68]. 

Dual task performance with auditory cueing in 

young participants with/without instructions to walk fast 

revealed (Supplementary Fig. 5) large effect size with 

substantial heterogeneity (g: 0.81, 95% C.I: 0.3-1.3, I2: 

95.8%, p<0.01). Further, performance under pure dual-

task conditions without any instructions revealed a 

medium positive effect size with substantial heterogeneity 

(g: 0.38, 95% C.I: -0.16 to 0.94, I2: 95%, p<0.01). Here, 

heterogeneity could be attributed to differential 

complexities of dual tasks incorporated within the studies, 

which in published literature have shown to portray 

different effects on motor performance [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Forest plot illustrating individual 

studies evaluating the effects of rhythmic 

auditory cueing on gait velocity among 

healthy young and elderly participants. A 

negative effect size indicated reduction in gait 

velocity; a positive effect size indicated 

enhancement in gait velocity. Weighted effect 

sizes; Hedge’s g (boxes) and 95% C.I 

(whiskers) are presented, demonstrating 

repositioning errors for individual studies. The 

(Diamond) represents pooled effect sizes and 

95% CI. A negative mean difference indicates 

a favorable outcome for control groups; a 

positive mean difference indicates a favorable 

outcome for experimental groups. (O: Old, Y: 

Young, FP: Fast paced, SP: Slow paced, DT: 

Dual-task, I: Isosynchronous, B: Biological 

variability, LG: Low groove, HG: High 

groove, INS: Instructions, Mt: Motivating 

feedback, NMt: Non-motivating feedback). 
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Figure 5. Forest plot illustrating 

individual studies evaluating the effects 

of rhythmic auditory cueing on stride 

length among healthy young and 

elderly participants. A negative effect 

size indicated reduction in stride length; a 

positive effect size indicated enhancement 

in stride length. Weighted effect sizes; 

Hedge’s g (boxes) and 95% C.I (whiskers) 

are presented, demonstrating 

repositioning errors for individual studies. 

The (Diamond) represents pooled effect 

sizes and 95% CI. A negative mean 

difference indicates a favorable outcome 

for control groups; a positive mean 

difference indicates a favorable outcome 

for experimental groups. (O: Old, Y: 

Young, FP: Fast paced, SP: Slow paced, 

DT: Dual-task, I: Isosynchronous, B: 

Biological variability, LG: Low groove, 

HG: High groove, INS: Instructions, Mt: 

Motivating feedback, NMt: Non-

motivating feedback). 

 

Old: The analysis for old participants performing 

gait with rhythmic auditory cueing revealed 

(Supplementary Fig. 6) beneficial effects with medium 

effect and substantial heterogeneity (g: 0.68, 95% C.I: 

0.28 to 1, I2: 81%, p<0.01). Further, sub-group analysis 

with non-modulated rhythmic auditory cueing revealed 

(Supplementary Fig. 7), under a single task condition, 

revealed a medium effect size with substantial 

heterogeneity (Hedge’s g: 0.73, 95% CI: 0.2 to 1.2, I2: 

80.2%, p<0.01). Here, Dotov, Bayard, de Cock, Geny, 

Driss, Garrigue, Bardy and Dalla Bella [100] evaluated 

the effectiveness of feedbacks which were 

isosynchronous, and with/without biological variability. 

Possibly, the heterogeneity in the sub-group analysis 

could be attributed to the differential cueing utilized. 

Further, only one study analyzed the effects of fast paced 

stimuli amongst elderly and further couldn’t be included 

in sub-group analysis [67]. Slow paced stimuli, 
with/without verbal instructions revealed (Supplementary 

Fig. 8) enhancements in gait velocity parameters with 

small effect size and negligible heterogeneity (g: 0.25, 

95% C.I: -0.49 to 1, I2: 0%, p>0.05). Additional, sub-

group analysis revealed a considerable effect of verbal 

instructions over gait velocity i.e. analysis for 

performance without verbal instructions revealed a 

negative medium effect size with negligible heterogeneity 

(g: -0.4, 95% C.I: -0.98 to 0.18, I2: 0%, p>0.05), and 

including verbal instructions revealed a positive large 

effect size with negligible heterogeneity (g: 0.92, 95% 

C.I: 0.32 to 1.5, I2: 0%, p>0.05). Dual task performance 

with auditory cueing in elderly participants with/without 

instructions to walk fast revealed (Supplementary Fig. 9) 

a medium positive effect size with substantial 

heterogeneity (g: 0.58, 95% C.I: -0.05 to 1.2, I2: 79.2%, 

p>0.05). Performing under non-modulated rhythmic 

auditory cueing without any instructions with dual task 

revealed (Supplementary Fig. 10) a medium positive 

effect size (g: 0.43, 95% C.I: -0.44 to 1.3, I2: 13.4%, 

p>0.05) with negligible heterogeneity. 
 

Stride length 
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The meta-analysis on healthy patients revealed (Fig. 5) a 

medium effect size in positive domain with substantial 

heterogeneity (Hedge’s g: 0.61, 95% CI: 0.23 to 1, I2: 

58.8%, p<0.05). Further, sub-group analysis was 

performed by dividing the groups in only young/elderly 

participants. 

Young:  The analysis for young participants 

performing gait with rhythmic auditory cueing revealed 

(Supplementary Fig. 11) beneficial effects with large 

effect and substantial heterogeneity (g: 1.2, 95% C.I: 0.38 

to 2.85, I2: 92%, p<0.01). Further, sub-group analysis with 

non-modulated rhythmic auditory cueing revealed 

(Supplementary Fig. 12), under a single task condition, 

revealed a large effect size with substantial heterogeneity 

(Hedge’s g: 0.81, 95% CI: -0.5 to 1.7, I2: 88%, p<0.01). 

Further, analysis with fast paced stimuli revealed small 
effect size with substantial heterogeneity (g: -0.01, 95% 

C.I: -0.4 to 0.4, I2: 92.5%, p<0.01). The heterogeneity as 

stated before could be attributed to differential rhythmic 

stimuli utilized by studies. Moreover, none of the studies 

analyzing a slow-paced stimulus evaluated stride length. 

Dual task performance was analyzed in only one included 

study. Therefore, no further analysis could be carried out 

to evaluate the effects of higher information processing 

constraints on stride length. 

 

 

 

 

 

 

 

Figure 6. Forest plot 

illustrating individual studies 

evaluating the effects of 

rhythmic auditory cueing on 

cadence among healthy young 

and elderly participants. A 

negative effect size indicated 

reduction in step frequency; a 

positive effect size indicated 

enhancement in step frequency. 

Weighted effect sizes; Hedge’s 

g (boxes) and 95% C.I 

(whiskers) are presented, 

demonstrating repositioning 

errors for individual studies. 

The (Diamond) represents 

pooled effect sizes and 95% CI. 

A negative mean difference 

indicates a favorable outcome 

for control groups; a positive 

mean difference indicates a 

favorable outcome for 

experimental groups. (O: Old, 

Y: Young, FP: Fast paced, SP: 

Slow paced, DT: Dual-task, I: 

Isosynchronous, B: Biological 

variability, LG: Low groove, 

HG: High groove, INS: 

Instructions, Mt: Motivating 

feedback, NMt: Non-

motivating feedback) 

 

 

 

 

Old: The analysis for old participants performing 

gait with rhythmic auditory cueing revealed 

(Supplementary Fig. 13) beneficial effects with medium 

effect and substantial heterogeneity (g: 0.39, 95% C.I: -

0.01 to 0.78, I2: 77%, p<0.01). Further, sub-group analysis 

with non-modulated rhythmic auditory cueing revealed 

(Supplementary Fig. 14), under a single task condition, 

revealed a small effect size with negligible heterogeneity 

(Hedge’s g: 0.22, 95% CI: -0.03 to 0.46, I2: 10.5%, 

p>0.05). Further, one study each analyzed the effects of 

fast, slow paced stimuli amongst elderly and further 

couldn’t be included in sub-group analysis [67, 101]. Dual 
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task performance with auditory cueing in elderly 

participants was analyzed amongst two studies [67, 94], a 

small effect size with negligible heterogeneity (g: -0.03, 

95% C.I: -0.64 to 0.56, I2: 0%, p>0.05). 

 

Cadence 

 

The meta-analysis on healthy patients revealed (Fig. 6) a 

large effect size in positive domain with moderate 

heterogeneity (Hedge’s g: 1.2, 95% CI: 0.51 to 1.8, I2: 

41.9%, p<0.01). Further, sub-group analysis was 

performed by dividing the groups in only young/elderly 

participants. 

Young:  Further, sub-group analysis with non-

modulated rhythmic auditory cueing revealed 

(Supplementary Fig. 15), under a single task condition, 

revealed a large effect size with substantial heterogeneity 

(Hedge’s g: 1.76, 95% CI: -0.29 to 3.8, I2: 93.2%, p<0.01). 

Only one study performed [67], rhythmic auditory cueing 

with fast pace and no study analyzed the effects with slow 

paced stimulus. Therefore, no additional analysis was 

carried out. Dual task performance was analyzed in only 

one included study. Therefore, no further analysis could 

be carried out to evaluate the effects of higher information 

processing constraints on cadence. 

Old: The analysis for old participants performing 

gait with rhythmic auditory cueing revealed 

(Supplementary Fig. 16) beneficial effects with medium 

effect and substantial heterogeneity (g: 0.78, 95% C.I: 

0.01 to 1.54, I2: 91.5%, p<0.01). Sub-group analysis with 

non-modulated rhythmic auditory (Supplementary Fig. 

17), under a single task condition, revealed a large effect 

size with substantial heterogeneity (Hedge’s g: 1.02, 95% 

CI: 0.19 to 1.84, I2: 88.6%, p<0.01). Further, one study 

each analyzed the effects of fast, slow paced stimuli 

amongst elderly and further couldn’t be included in sub-

group analysis [67, 101]. Dual task performance with 

auditory cueing in elderly participants was analyzed 

amongst two studies [67, 94], a medium effect size with 

substantial heterogeneity (g: 0.68, 95% C.I: -0.03 to -1.41, 

I2: 96%, p<0.01). 

 

Coefficient of variability stride time 

 

Analysis of coefficient of variability for stride time 

revealed (Supplementary Fig. 18) a small effect in 

positive domain with substantial heterogeneity (g: 0.21, 

95% C.I: -0.42 to 0.85, I2: 67.7%, p<0.05). Further, in a 

sub-group analysis for only old participants revealed a 

medium effect size in positive domain with substantial 

heterogeneity (g: 0.4, 95% C.I: -0.33 to 1.13, I2: 63%, 

p<0.05) [102-104]. 

 

 

Coefficient of variability stride length 

 

Analysis of coefficient of variability for stride length 

revealed (Supplementary Fig. 19) a medium effect in 

positive domain with moderate heterogeneity (g: 0.76, 

95% C.I: 0.43 to 1.1, I2: 48.7%, p>0.05) [102, 104, 105]. 

Further, in a sub-group analysis for only young 

participants with non-modulated rhythmic auditory 

cueing revealed a medium effect size in positive domain 

with negligible heterogeneity (g: 0.47, 95% C.I: -0.09 to 

0.85, I2: 4.7%, p>0.05) [104, 105]. Likewise, for only old 

participants a large effect size in positive domain with 

negligible heterogeneity (g: 1.01, 95% C.I: -0.17 to 2.2, 

I2: 0%, p>0.05) was observed [102, 104]. 

 

DISCUSSION 

 

The primary objective of this present systematic review 

and meta-analysis was to synthesize the current state of 

knowledge for effects that rhythmic auditory cueing 

might lay over aging gait. Out of thirty-four included 

studies, 88% studies reported beneficial effects of 

rhythmic auditory cueing on primary spatiotemporal gait 

parameters.  

Typically, spatiotemporal parameters of gait worsen 

with age [19, 106]. Callisaya, Beare, Phan, Blizzard, 

Thrift, Chen and Srikanth [107], studied age associated 

decline in brain structure with gait performance, and 

linked a reduction in gait velocity, stride length, cadence 

with white matter atrophy, lesions, hippocampal atrophy, 

and gray matter atrophy with cerebral infarcts, 

respectively [107, 108]. Moreover, research suggests that 

degenerative changes in the fronto-striatal circuits might 

add increasing bi-directional stress on automated control 

for posture, gait and cognitive processing [109-111]. 

Possibly, explaining the loss of gait rhythmicity in elderly 

(see also, Nombela, et al. [56]). Likewise, increased 

energy expenditure [108], weak musculoskeletal structure 

associated variability in muscle contraction, and force 

production add towards the woes [112]. The current meta-

analysis reported enhancements in gait velocity (g: 0.68), 

stride length (0.39) and cadence (0.78), post application 

of rhythmic auditory cueing in elderly population groups. 

Likewise, beneficial effects of rhythmic auditory cueing 

were also observed in gait amongst younger population 

groups. 

Several mechanisms have been suggested to ascertain 

the beneficial effects of rhythmic auditory cueing. Rizzo, 

Raghavan, McCrery, Oh-Park and Verghese [113] for 

instance, speculated that auditory entrainment while 

performing gait might act as an efficient distractor. In 

addition, the auditory entrainment might also have aided 

in reducing the errors while executing the gait [114, 115]. 

Possibly, by acting as an external guidance for “heel-
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contact” and “push-off” timings.  Moreover, application 

of auditory entrainment is believed to allow enhancement 

in gait performance by bypassing or facilitating the 

degenerated basal ganglia-motor loop via alternative 

pathways [116-118]. Cunnington, Iansek, Bradshaw and 

Phillips [119] suggested that the external stimulation by 

entrainment might surpass deficient pallidal-cortical 

projections, and can directly serve an input supplementary 

motor area, thereby reducing the onset of motor deficit 

and aiding in performance. Moreover, the external cueing 

has shown to allow modulation of neuromagnetic β 

oscillations in auditory cortex, cerebellum, inferior frontal 

gyrus, somatosensory area and sensorimotor cortex [120], 

and reduce hemispheric asymmetry [121]. Neuroimaging 

studies reveal enhance activation in inferior colliculi 

[122], cerebellum, brainstem [117, 123], sensorimotor 

cortex [124, 125], further instigating cortico-cerebellar 

network re-organization [126]. Another crucial factor that 

considerably influences the aging gait is “change in 

tempo”. Neurophysiological analysis suggests,  increased 

neuronal activation in fronto-occipital networks [127], 

and excitability of the spinal motor neurons by 

reticulospinal pathways, with fast-paced entrainment. A 

paced-stimuli is thought to reduce the response time, limit 

the stagnating effects of constant entrainment over fractal 

scaling of stride times from healthy 1/f structure [128-

130], and optimizing the velocity and acceleration profiles 

of joint motions by scaling movement time [59].  

The present-meta-analysis also observed 

enhancements in the spatiotemporal parameters while 

performing dual-tasks, for both age groups. According to 

literature, dual-task performance predisposes to gait 

instability and falls by increasing cognitive motor 

interferences, across age groups [8, 131-133]. 

Interpretations from our results suggest that rhythmic 

auditory cueing counteracts cognitive constraints imposed 

by cognitively demanding dual-tasks such as carrying a 

tray and that this cueing might be useful in counteracting 

fall while carrying out activities of daily living [8]. 

Lohnes and Earhart [67], suggested that co-performance 

of dual-tasks with rhythmic auditory cueing might allow 

enhancements (or even stability) in performance, by 

possibly freeing up cognitive resources for dual-task 

performance. The authors also mentioned the influence of 

task complexity across age groups. Possibly, the freed up 

cognitive resources might not be sufficient especially in 

elderly to perform complex dual-tasks, such as coin 

transfer [134], and sentence reciting tasks [135]. This 

might possibly explain the reduced dual tasks costs on gait 

performance in young participants. In addition, the 

enhanced performance could also be attributed as to how 

the participants might perceive the auditory entrainment 

based on their cognitive capabilities. Wittwer, Webster 

and Hill [136], and Thaut, Miltner, Lange, Hurt and 

Hoemberg [137], suggested a strong relationship in 

between the cognitive capabilities and the ability to 

interpret and discern the structure of a beat. Thereby, 

suggesting a better rhythmic perception and interpretation 

by younger population groups as compared to their older 

counterparts. 

Moreover, the progressive degradation of 

neuromuscular structures with aging has further been 

suggested to alleviate the threshold for action relevant 

acoustic input [138]. To counteract this deficiency use of 

ecologically valid acoustic feedback has been suggested 

[138]. The ecologically valid action related sounds might 

enhance saliency of sensory information concerning 

spatiotemporal information, thereby aiding in movement 

execution [100, 138-141]. This was also demonstrated by 

Dotov, et al. [100], here the authors demonstrated 

beneficial effects in parkinsonian and healthy gait 

parameters with biologically variable rhythmic auditory 

cueing as compared to isosynchronous cueing. Moreover, 

recent research has also revealed the possibilities of 

including emotional [113], motivational [68], and 

expressiveness [142], component in auditory entrainment 

to portray differential effects on gait parameters. 

Unfortunately, lack of pertinent, repeatable literature 

concerning the specific type of modified auditory 

feedback makes it difficult to interpret, as to which type 

of feedback might be most optimal, and for which age 

groups. We suggest future studies to replicate data 

concerning the use of ecological auditory entrainment 

across different age groups, to allow a reliable 

interpretation, which could then be included in gait 

rehabilitation protocols.  Moreover, we also suggest 

future researchers to analyze the “entrainment effects” 

while multitasking in high-stress situations pertinent to 

modern day scenarios (for example, walking and texting, 

listening to music while crossing a traffic light). 

This current meta-analysis also reported an increase 

in coefficient of stride-time and length variability in 

elderly participants with rhythmic auditory cueing. Based, 

on the published literature initial increase in variability 

during learning paradigm is efficient for improving gait 

performance [143]. Here, interpretations could possibly 

be drawn from “dynamic system theory” [144]. The 

theory suggests that a biological system might allow 

variability to identify and self-organize the most stable 

and viable outcome [144, 145]. Thereby, interpretations 

could be made for regulating gait amongst young and 

elderly population groups to regulate gait when passing 

through fall-prone environments [41]. The present meta-

analysis did not evaluate the the influence of gait training 

with rhythmic auditory cueing on ageing gait. Whereas, 

training regimes with auditory entrainment have 

demonstrated reduced variability in parkinsonism [101, 

146], and stroke [126]. We suggest future research to 
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address this gap in the literature and evaluate the effects 

of long term training with rhythmic auditory cueing on 

aging gait. 

Finally, we believe that the benefits of auditory 

entrainment might surpass that of co-treatment techniques 

(for instance, biofeedback, virtual reality, physiotherapy 

etc.) because of its economical nature, and high viability 

[77, 78]. The rhythmic entrainment factor could be 

utilized with music in rehabilitation, day to day lives. This 

could allow benefits in both psycho-physiological 

domains [147-151]. For instance, improving stress, 

mediating arousal, emotions, internal motivation, 

memory, attention, executive functions [152], power 

[153], and endurance [154]. Moreover, it is important to 

consider that the retention of enhancements in gait 

parameters relies not only on the training received in the 

clinic but also depends largely on how much the patient 

follows the treatment protocol at home. Lim, et al. [13] for 

instance, reported enhancement in parkinsonian gait 

activity to 35 minutes per day (qualifying the 30 minutes 

criteria by WHO [155]). We believe that delivering this 

type of home-based intervention could possibly be 

beneficial for people lacking proper exposure to medical 

interventions in developing countries [156]. For instance, 

a booming number of smartphone devices in developing 

countries [157], can be used as a delivery tool while using 

a simple metronome app such as, Walkmate [129], or 

Listenmee [158], which with proper medical guidance 

might allow curbing the motor deficits associated with 

aging [159]. We also suggest the use of rhythmic auditory 

cueing as an adjunct to other rehabilitation strategies, for 

instance, dance, tai-chi, aerobics, as it might enhance the 

rehabilitation progress by focusing on both psycho-

physiological components. 

To the best of our knowledge, this present review for 

the first time analyzed the effects of auditory entrainment 

on aging gait. The present findings are in agreement with 

systematic reviews and meta-analysis carried out to 

analyze auditory entrainment effect on stroke [66], 

cerebral palsy [160], and parkinsonism [57, 161]. In 

conclusion, this review strongly suggests the 

incorporation of rhythmic auditory cueing for enhancing 

gait performance with aging gait. The results from the 

meta-analysis also direct towards the possible use of 

auditory entrainment to reduce the incidence of falls in 

high-stress situations. 
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