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Abstract

Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed throughout the brain and involved in vital molecular
pathways such as cell survival and synaptic reorganization and has emerged as a potential drug target for brain
diseases. A causal role for GSK-3, in particular the brain-enriched GSK-3{ isoform, has been demonstrated in
neurodegenerative diseases such as Alzheimer’s and Huntington'’s, and in psychiatric diseases. Recent studies have also
linked GSK-3 dysregulation to neuropathological outcomes in epilepsy. To date, however, there has been no genetic
evidence for the involvement of GSK-3 in seizure-induced pathology. Status epilepticus (prolonged, damaging seizure)
was induced via a microinjection of kainic acid into the amygdala of mice. Studies were conducted using two
transgenic mouse lines: a neuron-specific GSK-3(3 overexpression and a neuron-specific dominant-negative GSK-3(3
(GSK-33-DN) expression in order to determine the effects of increased or decreased GSK-3[3 activity, respectively, on
seizures and attendant pathological changes in the hippocampus. GSK-3 inhibitors were also employed to support the
genetic approach. Status epilepticus resulted in a spatiotemporal regulation of GSK-3 expression and activity in the
hippocampus, with decreased GSK-3 activity evident in non-damaged hippocampal areas. Consistent with this,
overexpression of GSK-3[3 exacerbated status epilepticus-induced neurodegeneration in mice. Surprisingly, decreasing
GSK-3 activity, either via overexpression of GSK-33-DN or through the use of specific GSK-3 inhibitors, also exacerbated
hippocampal damage and increased seizure severity during status epilepticus. In conclusion, our results demonstrate
that the brain has limited tolerance for modulation of GSK-3 activity in the setting of epileptic brain injury. These
findings caution against targeting GSK-3 as a treatment strategy for epilepsy or other neurologic disorders where
neuronal hyperexcitability is an underlying pathomechanism.
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associated with pathological changes in the hippocampus
including neurodegeneration®. Status epilepticus (SE) is a
prolonged seizure and clinical emergency associated with
a high mortality rate and wide-spread brain damage®.
Similarly to epilepsy, pharmacoresistance in SE remains a
serious clinical challenge with ~30% of patients not
responding to currently available drugs"®. There is
therefore an urgent need to identify new drug targets,
preferably with novel mechanisms of action.

Glycogen synthase kinase-3 (GSK-3) is a highly con-
served serine/threonine-directed protein kinase®. GSK-3
refers to two paralogs, GSK-3a and GSK-3p, which share
a highly conserved catalytic domain, but differ at both
termini and are encoded by separate genes, with GSK-33
particularly highly expressed in the brain®. GSK-3 is
present in all brain cell types, where it is highly expressed
in the cytoplasm. GSK-3 is, however, present in other
cellular compartments including the nucleus, mitochon-
dria and synapses®®. The regulation of GSK-3 is complex
and includes autophosphorylation, substrate priming
(pre-phosphorylation), association to different protein
complexes, and subcellular localization. Inhibitory serine
phosphorylation (Ser21 for GSK-3a and Ser9 for GSK-3)
is the most frequently suggested mechanism regulating
GSK-3 activity®. GSK-3, in particular GSK-3p, has more
predicted substrates than any other kinase (>100)°. Con-
sequently, GSK-3p has been implicated in the regulation
of numerous cellular processes including cellular survival,
synaptic reorganization, inflammation, and long-term
potentiation (LTP)%10-12,

GSK-3 has emerged as a potential drug target for an
array of diseases ranging from cancer to diabetes, cardi-
ovascular conditions, and neurological disorders*~"".
Among brain diseases, GSK-3 has been particularly linked
to Alzheimer’s disease where it promotes hyperpho-
sphorylation of the microtubule-associated protein Tau'®,
Roles have also been suggested for GSK-3 in Huntington’s
disease’®*® and psychiatric disorders, including bipolar
disorder’. Lithium, which has been used to treat bipolar
disorder for over 60 years, is a competitive GSK-3
inhibitor’>*,

Emerging evidence suggests GSK-3 may influence brain
excitability and seizure-induced pathology**~*°. Pathways
which directly regulate GSK-3 activity, such as the pro-
survival Akt/mammalian target of rapamycin (mTOR) or
Wingless-type (Wnt)/p-catenin signalling pathway are
strongly associated with epilepsy’®®'. Early studies
showed a protective effect of GSK-3p inhibition against
glutamate-induced toxicity in vitro and in vivo® and
GSK-3p is de-phosphorylated by the protein phosphatase
laforin which is mutated in the progressive myoclonus
epilepsy syndrome Lafora disease®*. Studies of GSK-3p
activity indicate that seizures may promote inhibition via
Ser9 phosphorylation®'*'*2*?3 Conversely, seizures have
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been reported to result in calpain-mediated truncation
of GSK-3, which is predicted to increase GSK-3 activa-
tion®***, GSK-3 has also been linked to mossy fiber
sprouting®?, Functional studies have resulted in
mixed findings. The GSK-3 inhibitor thiadiazolidindione
(TDZD-8) protects against seizure-induced damage®”®,
Valproic acid, a commonly used AED, has been reported
to inhibit GSK-3%°. In contrast, lithium is long-established
as having proconvulsant effects when combined with
the cholinergic agonist pilocarpine in models of SE*”. In
humans, lithium has been reported to either act as a
proconvulsant®**° or anticonvulsant®’.

There have been no genetic studies carried out to assess
the contribution of GSK-3B to seizures and seizure-
induced neuropathology relevant to epilepsy. The present
study shows that both increased and decreased GSK-3f3
activity exacerbates seizure-induced cell death, indicating
a narrow tolerance for manipulation of this pathway
in epilepsy.

Materials and methods
All reagents and antibodies were purchased from
Sigma-Aldrich, Dublin, Ireland, if not stated otherwise.

Transgenic animal models

All animal procedures were performed in accordance
with the principals of the European Communities Council
Directive (86/609/EEC) and National Institute of Health’s
Guide for the Care and Use of Laboratory Animals. All
studies involving animals were approved by the Research
Ethics Committee of the Royal College of Surgeons in
Ireland (REC 205 and 1322) and the Centro de Biologia
Molecular Severo Ochoa Institutional Animal Care
and Utilization Committee (Comité de Etica de Experi-
mentacién Animal del CBM, CEEA-CBM), Madrid,
Spain (PROEX293/15). Animal housing and maintenance
protocols followed the guidelines of the Council of the
European Convention ETS123 and were performed in
accordance with the principals of the European Union
adopted Directive (2010/63/EU). All transgenic mouse
lines are bred on a C57BL/6] background. To establish
the role of GSK-3p during SE two different genetic stra-
tegies were employed: mice overexpressing GSK-3f
(GSK-3B)*' and mice expressing a dominate-negative
version of GSK-3p (GSK-3B-DN)**. GSK-3p and GSK-3p-
DN mice were generated as previously described*"*,
Briefly, GSK-3B mice result from the breeding of TetO
mice (bidirectional tet-responsive promoter followed by
GSK-3p and p-galactosidase (B-Gal) complementary
DNAs, one in each direction) with CamKIIa-tTA (tetra-
cycline-regulated transactivator) mice. The double
transgenic mice are designated GSK-3p and overexpress
GSK-3p in cortical and hippocampal neurons. The model
is based on an inducible promoter that allows postnatal
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upregulation of GSK-3p**. Neuronal transgene expression
is achieved via the tTA, which is under the control of
the calcium/calmodulin kinase Ila promoter and which
binds to the tet-responsive promoter (tetO) driving
the expression of both GSK-3p and the reporter gene (-
Gal. Hippocampal overexpression of GSK-3p leads
to an approximately 25% increase in GSK-3 activity in
the hippocampus®. GSK-3p mice show impairment in
spatial memory*>*%; GSK-3B overexpression, however,
has no effect on body weight (Supplementary Figure 1a)
or mortality in the first 12 months of life (data not shown).
To suppress GSK-3p activity in GSK-3B-DN mice, a
mutated version of GSK-3p carrying the K85R mutation®’
is overexpressed in forebrain neurons using the same
strategy used for GSK-3B-overexpressing mice®. This
leads to an approximately 10% reduction in GSK-3
activity in the hippocampus of GSK-3B-DN mice®.
Mice expressing DN-GSK-3p also show impaired motor
coordination on the Rotarod. No difference, however, can
be observed on general motor activity using the open
field*. Similar to GSK-3B-overexpressing mice, no
change in body weight (Supplementary data 1B) or life
expectancy can be observed in GSK-3B-DN mice when
compared to wild-type mice (data not shown).
Fas-deficient Lpr mice were obtained from Jackson
Laboratories (B6.MRL-Faslpr/], stock number: 000482).

Animal model of SE

SE was induced in adult male mice (C57Bl/6 wild-type,
GSK-3B, GSK-3B-DN, and Lpr mice) by a unilateral ste-
reotaxic microinjection of kainic acid (KA) into the
amygdala, as described*®. Briefly, deeply anesthetized mice
(isoflurane 3—5% induction and 1-2% maintenance) were
affixed with skull-mounted electrodes (Bilaney Con-
sultants Ltd., Sevenoaks, UK) to record surface electro-
encephalogram (EEG) using a Grass Comet digital EEG
(Medivent Ltd., Lucan, Ireland) and Xltek EEG system
(Optima Medical Ltd., Guildford, UK). A guide cannula
was affixed over the dura (coordinates from Bregma:
AP = —0.94; L = —2.85 mm) and the entire skull assembly
fixed in place with dental cement. EEG recordings were
commenced once mice fully recovered from anesthesia.
Then a 31-gauge internal cannula was inserted into the
lumen of the guide to inject KA into the amygdala (0.3 pg
in 0.2l vehicle; phosphate-buffered saline (PBS), pH
adjusted to 7.4). Non-seizure control mice received 0.2 pl
intra-amygdala vehicle. Lorazepam (6 mg/kg, intraper-
itoneal) was administered 40 min after KA. Mice were
euthanized at different time points after anticonvulsant
and brains flash-frozen whole in 2-methylbutane at
—30 °C for Fluoro-Jade B (FjB) staining, perfused with PBS
and paraformaldehyde (PFA) 4% for immunofluorescence
or microdissected and frozen for Western blot and
quantitative PCR (qPCR) analysis.
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Drug treatment

The GSK-3 inhibitors NP031112 (Tideglusib, NP12)*
and NP060103 (NP103)*° were injected with a 2yl
infusion of intracerebroventricular (i.c.v.) Dimethyl
sulfoxide (DMSO) 30 min before intra-amygdala KA to
reach a final concentration of 100 yM and 1 mM in the
ventricle (ventricle volume was calculated as 30 pl). In
the vehicle group, animals were injected with 2pl of
sterile DMSO. Tideglusib belongs to the TDZD family
and progressed to clinical trials for Alzheimer’s disease
and progressive supranuclear palsy**°"*% Decreased
phosphorylation of the known GSK-3 target Tau using
antibodies (AT100 and Tau-1), which specifically recog-
nizes GSK-3-dependent phosphoepitopes®>**, confirmed
a reduction of GSK-3 activity in the hippocampus fol-
lowing ic.v. GSK-3 inhibitor delivery (Supplementary
Figure 2a, b).

EEG analysis

EEG recordings were analyzed either manually by
counting high-frequency high-amplitude discharge poly-
spiking or by uploading EEG into the Labchart7 software
(ADInstruments) to calculate total seizure power of the
EEG signal*®.

Histopathology

Neuronal death was assessed using FjB staining®.
Briefly, brains were sectioned on a Leica cryostat and 12-
um-thick sections collected at the level of the dorsal
hippocampus and stored at —80°C. For FjB staining,
sections were defrosted, post-fixed with 4% PFA,
rehydrated, and transferred to a 0.006% potassium
permanganate solution followed by incubation with
0.001% FjB (Chemicon Europe Ltd., Chandlers Ford,
UK) and mounted in DPX. Hippocampal cell counts
(CA1, C3, and DG separately) were the average of two
adjacent sections with a x40 lens by an observer blind
to treatment.

Diaminobenzidine staining

Diaminobenzidine staining was carried out as previously
reported®®, Mice were 4% PFA perfused, brains post-
fixed and cryoprotected in 30% sucrose solution, and
30 um sagittal sections were cut on a Leica cryostat.
Next, brain sections were pretreated for 1h with 1%
bovine serum albumin, 5% fetal bovine serum, and
0.2% Triton X-100 followed by an overnight incubation
with primary antibody p-Gal (Promega, Madison, WI,
USA). Next, brain sections were incubated in
avidin—biotin complex using the Elite” VECTASTAIN"
kit (Vector Laboratories). Chromogen reactions were
performed with diaminobenzidine and 0.003% hydrogen
peroxide for 10 min. Sections were coverslipped with
Fluorosave .
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Synaptosome preparation

Synaptosomes were prepared as reported previously®.
Mouse hippocampi were dissected on ice, and tissue
samples (two ipsilateral hippocampi per sample) were
homogenized in 10 ml of ice-cold homogenizing buffer
(0.32M sucrose, 1mMm EDTA, 1mg/ml bovine serum
albumin, and 5mm HEPES, pH 7.4) in a glass-Teflon
douncer with ~10 strokes at 4 °C. Next, samples were
centrifuged for 10 min at 3000 x g at 4 °C, and supernatant
containing cytoplasm and synaptosomes recovered.
Samples were again centrifuged for 12 min at 14,000 x g at
4°C, and supernatant discarded. Pelleted synaptosomes
were resuspended in 550 pl of Krebs—Ringer buffer (140
mM NaCl, 5 mm KCI, 5 mm glucose, 1 mm EDTA, and 10
mm HEPES, pH 7.4). Then, 450 pl of Percoll (45% (v/v))
was added, and the two components were mixed by gently
inverting the tube. After a 2 min spin at 14,000 x g at 4 °C,
enriched synaptosomes were recovered and resuspended
in 1 ml of Krebs—Ringer buffer. Samples were again spun
for 30s at 14,000 x g, and supernatant discarded. Finally,
pellet containing synaptosomes was resuspended in assay
buffer (HEPES—Krebs buffer) and stored at —20 °C.

Hippocampal microdissection

Microdissection of the three hippocampal subfields
CA3, CAl, and DG was carried out as described pre-
viously”’. Briefly, following the separation of the cere-
bellum, the two hemispheres were separated. Then, using
a dissecting microscope, the whole hippocampus (ipsi-
lateral and contralateral) was separated from the cortex.
This was then followed by a microdissection of the dif-
ferent hippocampal subfields of the ipsilateral hippo-
campus. Following the identification of the boundaries
between CAl, DG, and CA3, the three subfields were
separated and immediately put on dry ice and stored at
—80°C.

Western blotting

Western blotting was performed as described pre-
viously*®. Following quantification of protein concentra-
tion, 30 pg of protein samples were boiled in gel-loading
buffer =~ and  separated by  sodium  dodecyl
sulfate—polyacrylamide gel electrophoresis. Proteins were
transferred to nitrocellulose membranes and probed with
the following primary antibodies: B-actin, a-tubulin, GSK-
3 (BD Transduction laboratories, Oxford, UK), AT100
and Tau-1 (Innogenetics, Ghent, Belgium), GAPDH,
GSK-3B, and P9Ser-GSK-3B (Cell Signaling, Leiden,
Netherlands), and synaptophysin (Abcam, Cambridge,
UK). Next, membranes were incubated with horseradish
peroxidase-conjugated secondary antibodies (Isis Ltd.,
Bray, Ireland) and protein bands visualized using chemi-
luminescence (Pierce Biotechnology, Rockford, IL, USA).
Gel bands were captured using a Fujifilm LAS-3000
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(Fujifilm, Tokyo, Japan) and analyzed using Alpha-
EaseFC4.0 software.

RNA extraction and real-time quantitative polymerase
chain reaction

RNA extraction was undertaken as previously described
using TRIzol" (QIAzol Lysis Reagent, Qiagen, Hilden,
Germany)*®, One microgram of total RNA was used to
generate complementary DNA by reverse transcription
using SuperScript” Il reverse transcriptase enzyme
(Thermo-Fisher, MA, USA). Quantitative real-time PCR
was performed using a LightCycler 1.5 (Roche Diagnostics
GmbH, Mannheim, Germany) in combination with
QuantiTect” SYBR® Green PCR Kit (Qiagen, Hilden,
Germany) as per the manufacturer’s protocol, and
1.25uM of primer pair was used. Data were analyzed
by LightCycler 1.5 software, data were normalized
to expression of [B-actin and represented as relative
quantification values. Primers were designed using
Primer3 software (http://frodo.wimit.edu). Primer
sequences: gsk-3f (F: tggcgtgtgatgtcaggtat; R: taagctggcea
tcctgcaacac); p21¥4F e (F: tccegactcttgacattget; R: tgea-
gaaggggaagtatggg); c-Myc (F: tcagacacggaggaaaacga; R: cg
tctgettgaatggacagg); wnt9b (F: agcttectctctcaacaccc; R: tttg
ttggctttctectege); mcl-1 (F: gaaggeggcatcagaaatgt; R: geag
cttcaagtccaccttc); and S-actin (F: gggtgtgatggtgggaatgg; R:
ggttggccttagggttcagg).

Microarray analysis

Microarray studies were undertaken at an Affymetrix
authorized service provider (University College Dublin,
Dublin, Ireland) as described previously“. Total RNA was
extracted from wild-type and GSK-3[-overexpressing
mice 6h following SE and was hybridized to the
Mouse Genome 430 2.0 Genechip array. Affymetrix
GeneChip image files were analyzed by robust multichip
analysis using RMAExpress 0.5 (http://rmaexpress.
bmbolstad.com). Data were log transformed, and
the threshold for significant regulation was set at 1.5-fold
to retain genes that exhibit a biologically meaningful
level of regulation, but not exclude certain genes that,
because of high constitutive expression, may show lower
degrees of change. Gene ontology and function were
assigned using the two bioinformatic programs DAVID
Bioinformatics Resources 6.8 (http://david.abcc.ncifcrf.
gov/) and Enrichr®®,

Statistical analysis

Data are presented as the mean ts.e.m. Two group
comparisons were made using unpaired Student’s two-
tailed ¢ test, while multi-group comparisons were made
using two-way analysis of variance (ANOVA) followed
by post hoc testing using Fisher’s exact test (StatView).
Significance was accepted at p < 0.05.
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Results
Spatiotemporal changes in GSK-3f expression and
phosphorylation following SE

To explore the response of GSK-3f to prolonged
seizures, we used a well-characterized model of intra-
amygdala KA-induced SE in mice®. As previously
reported, SE resulted in hippocampal damage that was
mainly localized to the ipsilateral CA3 subfield, although
scattered cell death was present in the CA1 and the hilus
regions (Fig. 1a)*”. Neuronal death was not observed in
the contralateral hippocampus or in vehicle-injected mice,
as described™.

To explore whether seizures in this model triggered
changes in signalling pathways regulated by GSK-3, we
interrogated a previously published gene array profile of
the model*®. We focused our analysis on the PI3K/Akt,
Wht, insulin, and the mTOR pathways that are linked to
both epilepsy and GSK-3 function®*°~%3, Interrogation of
the data identified changes in the expression of multiple
genes associated with each pathway. The P13K/Akt
pathway showed the largest number of genes undergoing
SE-induced changes (Fig. 1b and Supplementary infor-
mation Table 1). An increase in gene expression was the
predominant response among all four selected pathways
(Fig. 1b). These results were validated using individual
qPCR for a subset of genes previously associated with
GSK-3, including the myelocytomatosis oncogene (c-
Myc), myeloid cell leukemia sequence-1 (MCL-1), cyclin-
dependent kinase inhibitor 1 (p21waﬂ), and the Wnt
signalling pathway member Wnt9a® (Fig. 1c). Together,
these findings demonstrate that SE modulates expression
of numerous pathways linked to GSK-3.

We next investigated whether SE directly affects GSK-
3P expression and activity. SE led to an increase in GSK-
3P protein levels in the ipsilateral hippocampus (Fig. 1d).
We also detected a strong increase in GSK-3p Ser9
phosphorylation following SE, consistent with inhibition
of GSK-3p activity (Fig. 1d). Ser9 GSK-3p phosphoryla-
tion was also increased in the contralateral hippocampus,
although GSK-3B expression levels were unchanged
(Fig. le).

We next separately analyzed each ipsilateral hippo-
campal subfield. GSK-3p transcription was increased in
CAl, decreased in CA3, and no changes were observed in
the DG (Fig. 1f). In line with an increase in GSK-3
transcription, increased GSK-3p expression was also
found in the ipsilateral CAl subfield (Fig. 1g). No sig-
nificant changes in GSK-3f expression were observed for
the other subfields (Fig. 1g). Thus, the upregulation of
GSK-3p following SE appears to be driven by changes
within the CA1 subfield. Increased phosphorylation at
Ser9 of GSK-3p was restricted to the CAl and DG hip-
pocampal subfields. GSK-3p phosphorylation was not
changed in the damage-vulnerable ipsilateral CA3 subfield
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(Fig. 1g). Together, our results establish a subfield-specific
spectrum of transcriptional and post-transcriptional
responses of GSK-3f in the hippocampus following SE.

GSK-3f3 overexpression exacerbates seizure-induced cell
death

Since GSK-3p inhibition was a feature of hippocampal
subfields spared from seizure-induced cell death, we
hypothesized that an increase in GSK-3f activity would
increase seizure-induced neuronal death in this model.
To test this, we used a transgenic mouse model which
specifically overexpresses GSK-3fB in forebrain neurons
(Fig. 2a)*".

We first explored whether increased GSK-3p expression
has effects on the duration or severity of SE. Cortical EEG
analysis covered the 40 min from intra-amygdala KA
injection until the administration of anticonvulsant. The
duration of HAHFDs, which are associated with seizure-
induced cell death in the model, was not different between
wild-type and GSK-3B-overexpressing mice (Fig. 2b).
These findings indicate that overexpression of GSK-3p is
not sufficient to change general seizure susceptibility in
this model.

Next, the hippocampus from these mice was examined
using the neuronal cell death marker FjB. Wild-type mice
showed the typical lesion in the CA3 subfield with only
scattered cell death in the remaining hippocampal sub-
fields (Fig. 2c, d). In contrast, mice overexpressing GSK-
3f displayed significantly increased seizure-induced neu-
ronal death in the hippocampus, particularly within the
CA3 subfield (Fig. 2c, d). Thus, consistent with our
hypothesis, GSK-3p overexpression in neurons increases
seizure-induced neurodegeneration.

GSK-3pB overexpression during SE impacts on the
expression of genes involved in inflammatory signalling
and synaptic transmission

To explore possible mechanisms by which GSK-3§
overexpression promotes neurodegeneration during
SE, we performed genome-wide analysis of gene expres-
sion in the hippocampus of wild-type and GSK-3p-
overexpressing mice subjected to SE.

From the total of genes called present in the
mouse hippocampus, 1474 displayed at least a 1.5-fold-
change in expression between wild-type and GSK-3p-
overexpressing mice (Supplementary information data
set 1). Overall, GSK-3p overexpression resulted in down-
regulation of more genes than upregulation (Fig. 3a).
However, the average fold-change was higher in genes
with an increased expression (Fig. 3b). To establish which
pathways and target genes were altered by GSK-33
overexpression following SE, we used two bioinformatics
tools, Enrichr*® for pathway analysis and the DAVID
Bioinformatics Resources to identify specific target genes.
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Fig. 1 Spatiotemporal changes in hippocampal GSK-3 expression and inhibitory Ser9 phosphorylation following SE. a Representative
photomicrograph (x5 lens) showing characteristic cell death in the CA3 subfield of the hippocampus (arrows and insert) 24 h following intra-
amygdala KA injection in mice. Only sporadic cell death can be observed in the remaining hippocampal subfields (CAT and DG). Scale bar = 500 um
for overview and 250 um for insert. b Graph showing numbers of genes with altered expression 6 h post SE determined by mRNA array involved in
pathways associated with GSK-3 signalling. € Graphs showing increased expression of genes encoding for the proteins c-Myc, MCL-1, P21 and
Wnt9a in the ipsilateral hippocampus following SE (mean £ s.d., *p < 0.05 and **p < 0.001 by two-way ANOVA with Fisher's post hoc test; n =4 per
group). d Representative Western blots (n =1 per lane) and corresponding graphs showing increased expression and Ser9 phosphorylation of GSK-
3B in the ipsilateral hippocampus post-SE (mean + sd, *p < 0.05 and **p < 0.001 by two-way ANOVA with Fisher's post hoc test; n =4 per group).
e Western blots (n =1 per lane) showing no apparent changes in GSK-3(3 expression, however, increased GSK-3 Ser9 phosphorylation in the
contralateral hippocampus following SE (mean + s.d., *p < 0.05 by two-way ANOVA with Fisher's post hoc test; n =6 per group). f Graphs showing
gsk-3B mRNA levels in the hippocampal subfields DG, CA1, and CA3 following SE (mean +sd. *p < 0.05 by two-way ANOVA with Fisher's post
hoc test; n =4 per group). g Representative Western blots (n =1 per lane) and corresponding graphs showing SE-induced GSK-3(3 expression and
Ser9 phosphorylation changes in the hippocampal subfields DG, CA1. and CA3 (mean + s.d., *p < 0.05 by two-way ANOVA with Fisher's post hoc test;
n =4 per group). *p < 0.05. DG dentate gyrus, CA cornu ammonis
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Using Enrichr and analyzing two sets of gene pools con-
sisting of genes which were found to be upregulated and
genes which were found to be down-regulated in GSK-3p-
overexpressing mice subjected to SE, we found that in
mice overexpressing GSK-3fB, transcripts involved in
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inflammatory processes were particular abundant, in line
with GSK-3f driving inflammation'' (Fig. 3c and Sup-
plementary information Table 2). Interestingly, using
DAVID Bioinformatics Resources we found that there was
a strong signal associated with control of apoptosis,



Engel et al. Cell Death and Disease (2018)9:969

Page 8 of 14

Q
O]
(2]

d KEGG pathway - Apoptosis

/- a2t N\

ER-stress| IP3R | —>| Calpain| —» | Casp12 |

Apoptosome ) —» —»
S %

f Synaptosomes
Vehicle SE

o

- - — W Synapto

1000 5 Top 10 Biological process (up-regulated)
3
B e
c w500 25
59 g ° hvoncntanmatory s
< . [0)
g8 s o
5 < 5 [ inflammatory response |
o0 01 k)
5% o _scute inflammstory respons
o > > Y

—

50 -egulation of ERK1 and ERK2 cascade
% up down
= -kine (C-C motif) ligand 5 signaling pathway

-1000-

e Top 10 Biological process (down-regulated)

<
)
=
o
3
o
o
0
<
F]
o
°
=
)
-
I~
o
>
]
3
@
o
)
H]

neous synaptic transmission

Fig. 3 Increased expression of apoptosis-inducing genes in mice overexpressing GSK-3f following SE. a Microarray analysis found more
genes down-regulated in GSK-33 mice when compared to wild-type mice than upregulated following SE. b Graph showing higher fold-change in
upregulated gene pool when compared to down-regulated gene pool of genes showing altered expression in GSK-3f3 mice when compared to wild-
type mice after SE (mean + s.d., ***p < 0.001 by Student's two tailed t test, n = 642 (up) and 832 (down)). ¢ Diagram showing top ten biological
processes of the upregulated gene pool in GSK-33 mice subjected to SE determined by bioinformatic program Enrichr. d KEGG pathway showing
caspases (Casp, red) with higher fold increase in GSK-3f3 mice. ER endoplasmic reticulum, IP3R inositol trisphosphate receptor. e Diagram showing
top ten biological processes of the down-regulated gene pool in GSK-33 mice subjected to SE determined by bioinformatic program Enrichr.
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including the upregulation of caspase-7, -9, and -12
in GSK-3B-overexpressing mice (Fig. 3d). Despite the
lack of effects of GSK-3B overexpression on electro-
graphic seizures, we identified a number of down-
regulated genes involved in synaptic transmission in
GSK-3p-overexpressing mice. This suggests that GSK-3[3
may directly affect excitability, consistent with known
inhibitory effects of increased GSK-3 on LTP'>'* (Fig. 3e
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and Supplementary information Table 2). In support of a
link to synaptic function, we observed that SE led to an
enrichment of GSK-3f protein in the synaptosomal
compartment (Fig. 3f). Interestingly, synaptosomal Ser9
phosphorylation of GSK-3p was highly increased follow-
ing SE (Fig. 3f).

In summary, GSK-3 overexpression during SE pro-
motes an increase in transcription of genes involved in
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following SE. No significant difference can be observed between Fas knockout mice (Lpr) treated with GSK-3 inhibitor NP12 when compared to
vehicle-treated Fas knockout mice 24 h following SE (mean + s.d., **p < 0.01 by Student’s two-tailed t test, n = 7 (wt Veh), 8 (wt NP12), 7 (Lpr Veh), and

GSK-3 inhibitor NP12 when compared to vehicle Lpr wild-type mice 24 h

inflammatory processes and a down-regulation in genes
involved in synaptic transmission.

Pharmacological inhibition of GSK-3 exacerbates seizure-
induced cell death during SE

To test a potential neuroprotective effect of GSK-3
inhibition during SE, mice were treated with two highly
specific, structurally different GSK-3 inhibitors before the
injection of intra-amygdala KA (Tideglusib (NP031112,
NP12) and NP060103 (NP103)).

Neither Tideglusib nor NP103 had a significant effect
on seizure severity during SE (Fig. 4a). Analysis of the
hippocampus of mice given either GSK-3 inhibitor
revealed, however, increased neurodegeneration in the
hippocampus following SE (Fig. 4b).

We next sought to explore the mechanism by which
inhibition of GSK-3 increased seizure-induced neuronal
death. GSK-3 has been shown to promote cell death via
the intrinsic (mitochondrial) apoptosis pathway as well as
protect against apoptosis through blocking the extrinsic
apoptosis pathway mediated by tumor necrosis factor
(TNF) receptor family members such as Fas®*. Notably,
TNF signalling components are upregulated in brain tis-
sue from TLE patients and inhibiting this pathway is
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neuroprotective in experimental seizure models®>°.

In line with GSK-3 inhibition promoting cell death via
extrinsic Fas signalling, two recent studies showed that
loss of Fas protected against GSK-3 inhibition-induced
neuronal death®®’, Therefore, to test whether the
increased seizure-induced cell death observed in mice
treated with GSK-3 inhibitors is mediated via Fas signal-
ling, we studied their effects in mice deficient for Fas
treated with NP12 or vehicle. Confirming our previous
findings, GSK-3 inhibition led to increased seizure-
induced neuronal death in wild-type mice subjected to
SE (Fig. 4c). In contrast, hippocampal cell death was
similar between GSK-3 inhibitor and vehicle-treated Fas
knockout mice (Fig. 4c). Taken together, these results
suggest that increased seizure-induced neuronal death in
response to GSK-3 inhibition is at least in part mediated
by the Fas extrinsic cell death pathway.

Genetically reduced GSK-3 activity increases seizure
pathology during SE

To support our pharmacological results, we sought
genetic evidence that inhibition of GSK-3 promotes
seizure-induced neuronal death in vivo. For this, we used
a recently developed mouse model which overexpresses a
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dominant-negative form of GSK-3p in forebrain neurons
(GSK-3B-DN mice), reducing the activity of both GSK-33
and GSK-3a (Fig. 52)*>. When subjected to SE induced by
intra-amygdala KA, GSK-33-DN mice showed a >50%
increase in seizure severity during SE (Fig. 5b). Analysis of
hippocampal sections of GSK-33-DN mice following SE
revealed increased seizure-induced neurodegeneration
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throughout the hippocampus, which was particularly
severe in the CAl and CA3-hilus subfields (Fig. 5¢, d).
Therefore, this genetic approach reveals an additional
aspect of GSK-3 function not observed with pharmaco-
logical inhibitors, that reduction of GSK-3 activity during
SE increases seizure severity and the resulting seizure-
induced pathology.
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Discussion

The present study provides genetic as well as pharma-
cological evidence that GSK-3 can influence seizure
severity and seizure-induced brain pathology. The main
finding was that both an increase as well as a decrease in
the activity of GSK-3p exacerbates seizure-induced brain
damage. Taken together, the study indicates a narrow
tolerance for GSK-3 manipulation and argues against
targeting this enzyme for the treatment of SE and atten-
dant epileptic brain injury.

The present study shows that prolonged seizures
cause a temporal and subfield-specific expression and
activation pattern of GSK-3B in the hippocampus. We
also observed a strong increase in Ser9 phosphorylation
that is known to inhibit kinase activity. While SE led
to an increase in GSK-3[ expression in the CA1 subfield
of the hippocampus, GSK-3p transcript levels were
decreased in CA3. The decrease in CA3 was not, however,
accompanied by a decrease in protein levels, possibly
due to seizure-induced inhibition of the ubiquitin-
proteasome system”. Overall, these findings extend ear-
lier reports that seizures increase GSK-3 expression
within the hippocampus while also having an inhibitory
action on GSK-3*'®'*%%, By using a model in which
there is divergent damage within the ipsilateral hippo-
campus, we could further demonstrate that protected
brain regions display increased inhibition after seizures.
It is uncertain why GSK-3pB expression was particularly
increased in the CA1l subfield and what drives this
response. The cause of the decrease in CA3 is perhaps
via damage-induced impairment of transcription and
translation since the CA3 is the main site of pathology
in the model®. The decrease in GSK-3B transcription
in CA3 may also represent an intracellular survival
mechanism since GSK-3p overexpression leads to an
increase in seizure-induced neurodegeneration. As to
what functional consequences an increase in GSK-3f
expression in CAl represents and why this expression
increase does not lead to cell death remains elusive. The
most likely explanation is the concordant increase in
inhibitory phosphorylation status, with Ser9 phosphor-
ylation being increased in CAl and DG. This would
effectively counter the risk of elevated GSK-3-promoting
neurodegeneration. While inhibitory GSK-3 phosphor-
ylation is the most studied process controlling GSK-3
activity, it is, however, not the only one. Other post-
translational mechanisms have been described including
substrate priming, the incorporation of GSK-3 into pro-
tein complexes and subcellular localization®. GSK-3p has
been shown to be truncated by calpains at the N-terminal
end removing the inhibitory Ser9 phosphorylation side,
thereby increasing GSK-3p activity®*. Notably, we pre-
viously showed in the intra-amygdala KA mouse model
that this was most evident in the CA3 subfield”, possibly
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contributing to seizure-induced neurodegeneration. GSK-
3B truncation in CA3 may also be the reason why this
specific subfield showed no increase in GSK-33 Ser9
phosphorylation.

A key finding of our study was in vivo genetic evidence
that GSK-3p overexpression can promote seizure-induced
neuronal death. A proapoptotic role of GSK-3p has been
well described, with GSK-3f driving the intrinsic apop-
totic signalling pathway®®. Our findings support GSK-3p
as an additional mediator of seizure-induced neuronal
death linked to the intrinsic pathway, which includes
various Bcl-2 family proteins and mitochondrial compo-
nents®, Notably, analysis of gene expression responses to
increased GSK-3 during SE showed a strong signal for
members of the caspase family’®. Thus, GSK-3f may also
be involved in the promotion of intrinsic apoptotic
pathways during SE. Whether GSK-3f directly regulates
the transcription of caspases is unknown, although tran-
scription factors are by far the largest protein family tar-
geted by GSK-3%. Gene profiling also showed GSK-3pB
overexpression during SE increased genes involved in
inflammatory processes. This is consistent with early links
between GSK-3 and inflammatory signalling pathways’*
and evidence that GSK-3 inhibitors reduce inflammation
in various disease models®. Indeed, there remains strong
interest in GSK-3 as a target to control inflammatory
processes72. In the brain, GSK-3 has been found to drive
the production of pro-inflammatory cytokines such as
TNEF-a, interleukins (e.g., interleukin-1f (IL-1pB), IL-6),
interferons, or chemokines released by glia, possibly
through the regulation of transcription factors including
nuclear factor kappa-light chain enhancer of activated B
cells or signal transducer and activator of transcription-
37%. Neuroinflammatory processes have been repeatedly
shown to be activated in both experimental and human
epilepsy, including the release of cytokines such as II-1p
and TNF-a. Moreover, inflammation-interfering drugs
reduce seizure severity and brain damage in experimental
models of epilepsy’®’*. Our data suggest, therefore, that
an increase in GSK-3 activity may contribute to the
seizure-induced pro-inflammatory state in the brain
exacerbating brain pathology.

The second major finding here was that GSK-3 inhibi-
tion during SE also increases damage to the brain. These
results were unexpected and have important implications
for efforts to develop treatments for brain diseases based
on targeting this enzyme. This apparently contradictory
finding may be explained by the previously elucidated
dual and opposing effects of GSK-3 on apoptosis signal-
ling pathways. GSK-3 has been shown to promote the
intrinsic apoptotic pathway but also to inhibit the
extrinsic apoptotic pathway®®. Both are activated by sei-
zures and have been previously linked to seizure-induced
cell death®>°%7>7¢,
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Recent work showed that GSK-3 inhibition can lead to
neurodegeneration in a Fas receptor-dependent man-
ner*>**%’_ QOur investigation of the mechanism by which
GSK-3 inhibition promotes seizure-induced neuronal
death is consistent with those findings. Specifically, GSK-3
inhibition did not increase cell death in mice lacking the
Fas receptor. In contrast to our findings, a previous study
using a GSK-3 inhibitor (TDZD-8) belonging to the same
drug family as NP12, which was used in our study, pro-
vided protection against seizure-induced cell death in a
mouse model of intraperitoneal KA-induced SE*®. In
addition, no difference in seizure severity was reported®.
The reason for these discrepancies is uncertain but may
relate to differences in animal models (intra-amygdala KA
vs. intraperitoneal KA) or drug delivery route (i.c.v. vs.
intraperitoneal), which could result in quite different local
drug concentrations within the target tissues. Never-
theless, our use of two different drugs at two doses in
combination with a genetic approach provides strong
evidence that GSK-3 inhibition leads to an increase in
neurodegeneration in the tested model.

Finally, some of our data support GSK-3 having a direct
role in the control of brain excitability. Specifically,
genetic inhibition of GSK-3 led to increased seizure
severity during SE. This finding is consistent with other
emerging work linking GSK-3 to synaptic plasticity. For
example, increased GSK-3 has been reported to promote
long-term depression, whereas GSK-3 inhibition can
promote LTP'*', Several mechanisms have been pro-
posed including modulation of y-aminobutyric acid
(GABA), and N-methyl-p-aspartate receptors'®’”, Nota-
bly, our gene expression profiling study shows that GSK-3
overexpression leads to a suppression of genes implicated
in synaptic transmission. This suggests that GSK-3 may
act as a break on processes leading to an increase in the
expression of genes implicated in neurotransmission, and
that by removing this break via GSK-3 inhibition, genes
facilitating seizure generation are upregulated. We also
noted that GSK-3 accumulates within synaptic structures
after SE where it may act locally to alter activity of targets.
The fact that seizures lead to an increase in synaptic GSK-
3P levels further strengthens a possible role of GSK-3
during synaptic transmission during seizures. Interest-
ingly, the strong increase in inhibitory Ser9 phosphor-
ylation of GSK-3 within this compartment following SE
further suggests this being proconvulsant, as GSK-3
inhibition increased seizure severity during SE. It is
unclear why overexpression of GSK-3f, in contrast to
GSK-3 suppression, leads to an increase in seizure-
induced cell death without altering seizure severity.
There may be a specific activity threshold, not reached in
the present study, that must be exceeded for differences in
GSK-3 activity to alter both seizures and seizure-induced
cell death. Although seizure damage is loosely correlated
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with seizure duration in the intra-amygdala KA model®,

other manipulations of cell death-regulatory genes have
been shown to modulate either the seizures or the damage
but not both”*°. Future studies could test whether fur-
ther elevating GSK-3, perhaps via delivery of the gene via
a viral approach, can increase seizures and resolve this
apparent discrepancy. Another explanation may be dif-
ferences in GSK-3 down-stream targets depending on the
GSK-3 activity status. Exploring these differences, for
example, by using mass spectrometry, and how exactly
GSK-3 influences neuronal survival and neuronal trans-
mission during seizures has, however, not been further
explored and must be addressed in future studies. While
our studies have focused primarily on GSK-3p, GSK-3«
may also carry out a functional role during seizures. GSK-
3 inhibitors impact on both isoforms and the activity of
both GSK-3f and GSK-3a is down-regulated in GSK-3f-
DN-expressing mice. GSK-3a-knockout mice are avail-
able® and the impact of a specific modulation of GSK-3a
should be addressed in future studies.

In summary, our findings demonstrate GSK-3 is
important in seizure-generation and seizure-induced
pathology. Caution must be exercised when targeting
GSK-3 as a possible treatment where brain hyperexcit-
ability is one of the main underlying pathological char-
acteristics of the disease.
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