
1521-0081/70/4/763–835$35.00 https://doi.org/10.1124/pr.117.015388
PHARMACOLOGICAL REVIEWS Pharmacol Rev 70:763–835, October 2018
Copyright © 2018 The Author(s).
This is an open access article distributed under the CC BY Attribution 4.0 International license.

ASSOCIATE EDITOR: ELIOT H. OHLSTEIN

International Union of Basic and Clinical
Pharmacology. CV. Somatostatin Receptors: Structure,

Function, Ligands, and New Nomenclature
Thomas Günther, Giovanni Tulipano, Pascal Dournaud, Corinne Bousquet, Zsolt Csaba, Hans-Jürgen Kreienkamp, Amelie Lupp,

Márta Korbonits, Justo P. Castaño, Hans-Jürgen Wester, Michael Culler,1 Shlomo Melmed, and Stefan Schulz

Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of
Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM,

Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR
1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center

Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London
School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of
Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.
C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.);

Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton,
Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
I. Introduction and Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
II. Endogenous Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767

A. Somatostatin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
1. Somatostatin Gene and Peptide Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
2. Regulation of Gene Expression and Peptide Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
3. Anatomic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
4. Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

B. Cortistatin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
III. Somatostatin Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

A. Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
B. General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

IV. Somatostatin Receptor 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
A. Somatostatin Receptor 1 Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
B. Somatostatin Receptor 1 Signaling Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
C. Somatostatin Receptor 1 Regulation and Trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
D. Somatostatin Receptor 1 Interacting Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
E. Somatostatin Receptor 1 Anatomic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

Address correspondence to: Dr. Stefan Schulz, Institute of Pharmacology and Toxicology, Jena University Hospital - Friedrich Schiller
University Jena, Drackendorfer Straße 1, D-07747 Jena, Germany. E-mail: Stefan.Schulz@med.uni-jena.de

This work was supported by the Deutsche Forschungsgemeinschaft [Grant GRK 1459 to H.-J.K.; Grants SCHU924/10-3, SCHU924/14-1,
and SFB/TR166-TPC5 to S.S.]; the Deutsche Krebshilfe [Grant 109952 to S.S.]; the Inserm and Paris Diderot University to P.D. and Z.C.; the
French National Institute for Cancer Research [INCa Grants 2013-102 and 2015-115 to C.B.]; the French Ligue Nationale Contre le Cancer
[Grant Equipe Labellisée to C.B.]; the Université Fédérale de Toulouse [Grant U1037-G16001BB-IDEX to C.B.]; the University of Brescia
[Grants 2015 and 2016_DMMT_Tulipano_EX60 to G.T.]; the Junta de Andalucia [Grants BIO-0139 and CTS-1406 to J.P.C.]; the MINECO
[Grant BFU2016-80360-R to J.P.C.]; the ISCIII [Grant PIE14-00005, CIBERobn to J.P.C.], the GETNE [Grant 2014, SAEDYN Grant 2016 to
J.P.C.]; the Medical Research Council and EU FP7 to M.K.; the National Institutes of Health [Grant DK103198 to S.M.]; and the Doris Factor
Molecular Endocrinology Laboratory at Cedars-Sinai Medical Center. G.T. has received research grants (2009 and 2015) from Novartis Farma
(Italy). C.B. has received research grants (2012–2017) from Novartis. M.K. has received research grants and lecture fees from Pfizer and
Ipsen, and is a consultant for Ono, Heptares, Ferring, and Pfizer. J.P.C. has received research grants and lecture fees from Novartis and Ipsen,
and is listed as inventor of patent PCT/ES2007/00627. M.C. was previously employed by Ipsen. S.M. has received research grants from Pfizer
and Ipsen, and is a consultant for Chiasma, Novartis, Ionis, Ono, Strongbridge, and Midatech. S.S. has received research grants and lecture
fees (2006–2017) from Novartis, Ipsen, Aspireo, Italfarmaco, and Strongbridge.

T.G., P.D., Z.C., H.-J.K., A.L., and H.-J.W. have nothing to disclose.
https://doi.org/10.1124/pr.117.015388.

763

https://doi.org/10.1124/pr.117.015388
http://creativecommons.org/licenses/by/4.0/
mailto:Stefan.Schulz@med.uni-jena.de
https://doi.org/10.1124/pr.117.015388


F. Somatostatin Receptor 1 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
G. Somatostatin Receptor 1 Ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

V. Somatostatin Receptor 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
A. Somatostatin Receptor 2 Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
B. Somatostatin Receptor 2 Signaling Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
C. Somatostatin Receptor 2 Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
D. Somatostatin Receptor 2 Trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
E. Somatostatin Receptor 2 Interacting Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
F. Somatostatin Receptor 2 Anatomic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

1. Central and Peripheral Nervous System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
2. Pituitary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
3. Peripheral Organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
4. Tumors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

G. Somatostatin Receptor 2 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
1. Endocrine System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
2. Central Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

a. Neuronal excitability and epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
b. Motor control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
c. Feeding and drinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
d. Stress response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

3. Retina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
H. Somatostatin Receptor 2 Ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

VI. Somatostatin Receptor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
A. Somatostatin Receptor 3 Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
B. Somatostatin Receptor 3 Signaling Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
C. Somatostatin Receptor 3 Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
D. Somatostatin Receptor 3 Trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
E. Somatostatin Receptor 3 Targeting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
F. Somatostatin Receptor 3 Interacting Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
G. Somatostatin Receptor 3 Anatomic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
H. Somatostatin Receptor 3 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
I. Somatostatin Receptor 3 Ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793

VII. Somatostatin Receptor 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
A. Somatostatin Receptor 4 Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
B. Somatostatin Receptor 4 Signaling Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
C. Somatostatin Receptor 4 Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

ABBREVIATIONS: ACTH, adrenocorticotropic hormone; AIP, aryl hydrocarbon receptor-interacting protein; AP, activator protein; ARC,
arcuate nucleus; BBS, Bardet–Biedl syndrome; CA, Cornu Ammonis; CCK, cholecystokinin; CD26, dipeptidyl peptidase-4/cluster of
differentiation 26; CHO, Chinese hamster ovary; CNS, central nervous system; CRF, corticotropin-releasing factor; CRH, corticotropin-
releasing hormone; CST, cortistatin; D2 receptor, dopamine receptor D2; DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid;
DOTANOC, DOTA-D-Nal3-octreotide; DOTATATE, DOTA-Tyr3-octreotate; DOTATOC, DOTA-D-Tyr3-octreotide; DRG, dorsal root ganglion;
DTPA, diethylenetriaminepentaacetic acid; ECE-1, endothelin-converting enzyme 1; ECL, extracellular loop; ERK, extracellular signal-
regulated kinase; FDA, Food and Drug Administration; FGF, fibroblast growth factor; FLNA, filamin A; GEP, gastroenteropancreatic; GH,
growth hormone; GHRH, GH-releasing hormone; GHS-R1a, ghrelin receptor 1a; GI, gastrointestinal; GIST, GI stromal tumor; GIT, GI tract;
GPCR, G protein–coupled receptor; GRK, G protein–coupled receptor kinase; HCC, hepatocellular carcinoma; HEK, human embryonic kidney;
ICL, intracellular loop; IGF-1, insulin-like growth factor 1; IL, interleukin; ITIM, immunoreceptor tyrosine-based inhibition motif; IUPHAR,
International Union of Basic and Clinical Pharmacology; JAK2, Janus kinase 2; KO, knockout; LAR, long-acting release; LNPEP, leucyl-
cysteinyl aminopeptidase; mAb, monoclonal antibody; MAPK, mitogen-activated protein kinase; MIBP1, c-myc intron binding protein 1;
mTOR, mammalian target of rapamycin; MUPP1, multi PDZ-domain protein 1; NET, neuroendocrine tumor; NHE1, sodium/hydrogen
exchanger 1; NHERF, sodium/hydrogen exchanger regulatory factor 1; NODAGA, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid;
NOS, nitric oxide synthase; PDZ, PSD-95/discs large/ZO-1; PET, positron emission tomography; PI3K, phosphatidylinositol-4,5-bisphosphate
3-kinase; PIST, protein interacting specifically with Tc10; PKA, protein kinase A; PLC, phosphoinositide-specific phospholipase C; PNGase F,
peptide N-glycosidase F; PP1, protein phosphatase 1; PRI, peptide receptor imaging; PRRT, peptide-receptor radiotherapy; PSD, postsynaptic
density; PTP, protein tyrosine phosphatase; PTPh, protein tyrosine phosphatase h; PTX, pertussis toxin; Rab, Ras-related in brain; Ras, rat
sarcoma; Rho, Ras homolog; SEF-2, helix-loop-helix transcription factor; SHP, Src homology region 2 domain-containing phosphatase; SPECT,
single-photon emission computed tomography; SRIF, somatotropin-release inhibitory factor; SST, somatostatin receptor; SST5TMD, SST5

transmembrane domain; t1/2, half-life; T3, triiodthyronine; TATE, Tyr
3-octreotate; TGN, trans-Golgi network; TMD, transmembrane domain;

TSH, thyroid-stimulating hormone; TSHoma, TSH-secreting pituitary adenoma; UFC, urinary-free cortisol; UTR, untranslated region; VOCC,
voltage-operated calcium channel; Zac1, zinc finger protein 1.

764 Günther et al.



D. Somatostatin Receptor 4 Trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
E. Somatostatin Receptor 4 Interacting Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
F. Somatostatin Receptor 4 Anatomic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
G. Somatostatin Receptor 4 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
H. Somatostatin Receptor 4 Ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

VIII. Somatostatin Receptor 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
A. Somatostatin Receptor 5 Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
B. Somatostatin Receptor 5 Signaling Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
C. Somatostatin Receptor 5 Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

1. Regulation of Somatostatin Receptor 5 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
2. Ligand-Dependent Regulation of Somatostatin Receptor 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

D. Somatostatin Receptor 5 Trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
E. Somatostatin Receptor 5 Interacting Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
F. Somatostatin Receptor 5 Anatomic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
G. Somatostatin Receptor 5 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
H. Somatostatin Receptor 5 Ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

IX. Multireceptor Somatotropin-Release Inhibitory Factor Analogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
A. Evolution of Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
B. Potential Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
C. Pasireotide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
D. Dopastatin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

X. Somatotropin-Release Inhibitory Factor Analogs in Current Clinical Practice. . . . . . . . . . . . . . . . 810
A. Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

1. Acromegaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
a. Effects on biochemical control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
b. Effects on disease comorbidities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
c. Side effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812

2. Cushing Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
3. Thyroid-Stimulating Hormone-Secreting Pituitary Adenomas . . . . . . . . . . . . . . . . . . . . . . . . 812
4. Neuroendocrine Tumors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812

B. Factors Influencing Somatotropin-Release Inhibitory Factor Analog Resistance . . . . . . . . . . 812
C. Somatotropin-Release Inhibitory Factor–Based Radiopharmaceuticals . . . . . . . . . . . . . . . . . . . 814

1. Radiolabeled Agonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
2. Pan Somatotropin-Release Inhibitory Factor–Like Peptides . . . . . . . . . . . . . . . . . . . . . . . . . . 817
3. Antagonists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

XI. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820

Abstract——Somatostatin, also known as somatotropin-
release inhibitory factor, is a cyclopeptide that exerts
potent inhibitory actions on hormone secretion and
neuronal excitability. Its physiologic functions are
mediated by five G protein–coupled receptors (GPCRs)
called somatostatin receptor (SST)1–5. These five receptors
share common structural features and signaling
mechanisms but differ in their cellular and subcellular
localizationandmodeof regulation. SST2 andSST5 receptors

have evolved as primary targets for pharmacological
treatment of pituitary adenomas and neuroendocrine
tumors. In addition, SST2 is a prototypical GPCR for the
development of peptide-based radiopharmaceuticals
for diagnostic and therapeutic interventions. This review
article summarizes findings published in the last 25 years
on thephysiology, pharmacology, andclinical applications
related to SSTs. We also discuss potential future
developments and propose a new nomenclature.

I. Introduction and Historical Perspective

Since their discovery, research on somatostatin and its
receptors has remainedactivewithmore than700papers
published annually. Somatostatin—also known as so-
matotropin release-inhibiting factor (SRIF)—was origi-
nally discovered in 1973 as a hypothalamic neuropeptide
based on its ability to inhibit growth hormone (GH)

release from the anterior pituitary (Fig. 1) (Brazeau et al.,
1973). SRIF occurs in two forms, SRIF-14 and SRIF-28,
with broad antisecretory activity on many hormones,
including GH, insulin, glucagon, gastrin, cholecystokinin
(CCK), and ghrelin. In the original report, it was suggested
that SRIF could have potential for treatment of acromeg-
aly. However, due to its short circulating half-life (t1/2)
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(,3minutes), the therapeutic potential of natural SRIF-14
is limited. Consequently, highly potent and metabolically
stable SRIF analogs were synthesized in 1982 (Bauer
et al., 1982). The first SRIFanalogapproved for clinical use
was octreotide (Lamberts et al., 1996). About 10 years
later, the first SRIF-based radiopharmaceuticals were
synthesized by conjugating a chelator to octreotide, fol-
lowed by radiolabeling with a g-emitter, which paved the
way for in vivo imaging of human tumors (Bakker et al.,
1991a,b; Krenning et al., 1993). In the early 1990s, five
subtypes of somatostatin receptors (SSTs) termed SST1 to
SST5 were cloned in mice, rats, and humans (Meyerhof
et al., 1991, 1992; Bruno et al., 1992; Kluxen et al., 1992; Li
et al., 1992; O’Carroll et al., 1992; Yamada et al., 1992a,b,
1993; Yasuda et al., 1992; Rohrer et al., 1993; Panetta
et al., 1994; Schwabe et al., 1996;Lublin et al., 1997).Given
that only two SRIF tissue binding sites could be identi-
fied using ligands available at that time, the subsequent
discovery of five different SSTs was surprising and
triggered in-depth research into binding properties, local-
ization, and regulation of the ligand. This led to classifica-
tion of the clinically used SRIF analogs octreotide and
lanreotide as SST2-prefering ligands, which in turn stim-
ulated the search for novel compounds that bind either
more broadly or more selectively to individual SSTs. In
1996, a structurally related neuropeptide termed cortista-
tin (CST) with a more restricted distribution in the
cerebral cortex and hippocampus was identified (de Lecea
et al., 1996). In the late 1990s, knockout (KO) mice and
selective nonpeptide agonists were developed for all five
SSTs, which helped to define their physiologic functions
(Zheng et al., 1997; Kreienkamp et al., 1999; Strowski
et al., 2003; Tirone et al., 2003; Qiu et al., 2005, 2008;
Tallent et al., 2005; Einstein et al., 2010). In 1998, the

development of octreotide conjugates radiolabeled with a
b-emitter provided proof-of-principle for peptide-receptor
radiotherapy (PRRT) (Stolz et al., 1998). A few years later,
the capacity of SSTs to form homodimers and hetero-
dimers with other G protein–coupled receptors (GPCRs)
was observed, which stimulated the search for bitopic
chimeric compounds (Rocheville et al., 2000a; Pfeiffer
et al., 2001, 2002). In the early 2000s, the search for
multireceptor ligands led to the discovery of pasireo-
tide, which was the first pituitary-directed drug ap-
proved for therapy of Cushing’s disease (Bruns et al.,
2002; Colao et al., 2012). In 2008, high-affinity peptide
antagonists with utility for SST imaging and treat-
ment were synthesized, suggesting that receptor
internalization is not an absolute requirement for
tumor imaging (Cescato et al., 2008). Also in 2008, the
generation of highly specific rabbit monoclonal anti-
bodies (mAbs) facilitated detection of SSTs in human
tissues and enabled correlation of SST2 and SST5

receptor expression with octreotide and pasireotide
responses (Fischer et al., 2008; Lupp et al., 2011). Shortly
thereafter, development of phosphosite-specific antibodies
provided molecular insights into mechanisms for
SST activation by octreotide and pasireotide (Poll
et al., 2010; Petrich et al., 2013; Lehmann et al., 2016).
In 2009, a novel truncated variant of SST5 generated
by aberrant splicing was identified [SST5 transmem-
brane domain (SST5TMD4)] and shown to be overex-
pressed in several hormone-related tumors, wherein
the variant increases aggressiveness (Durán-Prado
et al., 2009, 2012b; Gahete et al., 2010a; Hormaechea-
Agulla et al., 2017). In the past few years, orally
available and subtype-selective SST agonists and
antagonists have been synthesized. Some of these

Fig. 1. Historical perspective of somatostatin and somatostatin receptor research.
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substances may become lead compounds for potential
new therapeutic indications directed toward individual
SSTs (He et al., 2014; Hirose et al., 2017).

II. Endogenous Ligands

A. Somatostatin

1. Somatostatin Gene and Peptide Structure. SRIF,
a cyclic neuroendocrine peptide, was first isolated
and identified as a hypothalamic factor that inhibited
GH secretion from anterior pituitary cells (Brazeau
et al., 1973). SRIF exists in twomain bioactive isoforms:
the tetradecapeptide (SRIF-14) isolated from the hypo-
thalamus and the 28-amino-acid isoform (SRIF-28),
generated from the same prepro-SRIF precursor through
post-translational processing at a distinct cleavage site and
which differs from the shorter isoform by an N-terminal
extension (Fig. 2) (Esch et al., 1980; Pradayrol et al., 1980;
Shen and Rutter, 1984). Both isoforms are expressed at
variable amounts in the same tissue areas. It is not clear
whether the two peptides are coexpressed by the same
cells or by separate cells. The family of somatostatin
peptides includes CST, a highly similar peptide reviewed
below, and which is structurally and functionally related
to the urotensin II peptide family. The two families
(somatostatin and urotensin II) as well as those of their

respective GPCRs may derive from a single ancestral
ligand–receptor pair. The duplication, generating the
two families, likely occurred before the emergence of
vertebrates. Subsequently, each family expanded during
evolution, through whole-genome duplications, followed
by local duplications and gene losses (Tostivint et al.,
2014). Despite their evolutional divergence, the two
families conserve close functional links (Malagon et al.,
2008). The vertebrate SRIF family is composed of at least
six paralogous genes namedSS1 toSS6 (Liu et al., 2010).
In mammals, SRIF-14 and SRIF-28 both derive from the
SS1 gene, localized on chromosome 3q27.3 in humans.
The SRIF-14 primary structure is highly conserved in
vertebrates, and cleavage sites generating SRIF-14 and
its extended isoform have been fully conserved during
evolution (Conlon et al., 1997). An additional product
of the mammalian processing of prepro-SRIF is a
13-amino-acid noncyclic amidated peptide, neuronos-
tatin, which immediately follows the signal peptide
(Samson et al., 2008; Yosten et al., 2015). Bioinfor-
matic analyses of evolutionary conserved sequences
suggest the occurrence of neuronostatin in other
vertebrates. A novel peptide showing structural simi-
larity to SRIF-28 and isolated from monkey ileum
comprises amino acid sequences matching the
N-terminal 13 amino acids of SRIF-28. This peptide

Fig. 2. Primary and secondary amino acid structure of mammalian SRIF and CST isoforms. Color code: brown, binding motif; blue, identical in SRIF
and CST; red, different in CST compared with SRIF; green, not present in rat/mouse CST-14.
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is expressed in enteric neurons andmay play a possible
role in food intake control (Ensinck et al., 2002, 2003).
2. Regulation of Gene Expression and Peptide Release.

The structure of rat and human SRIF genes, as well as
the transcriptional unit and upstream regulatory ele-
ments of the rat gene, has been characterized (Montminy
et al., 1984; Shen and Rutter, 1984). Expression of the
SRIF precursor gene is regulated by growth factors and
cytokines, including GH, insulin-like growth factor
1 (IGF-1), insulin, leptin, and inflammatory cytokines,
and by glucocorticoids, testosterone, and estradiol. cAMP
is a potent activator of SRIF transcription, and SRIF
release from neurons and peripheral secretory cells is
triggered by membrane depolarization and increased
cytosolic calcium concentrations. Several neurotransmit-
ters, neuropeptides, hormones, and nutrients, some also
altering gene transcription, affect SRIF release in the
central nervous system (CNS) and in peripheral tissues
(Montminy et al., 1996; Müller et al., 1999; Patel, 1999;
Eigler and Ben-Shlomo, 2014). Characterization of neu-
rotransmitter, neuropeptide, andhormonemodulation of
hypothalamic SRIFergic neurons has raised interest in
light of the key role played by SRIF as a distal mediator
for neuroendocrine and metabolic control of the GH axis
activity in health and disease (Müller et al., 1999).
3. Anatomic Framework. Abundant SRIF immuno-

reactivity is evident in the mediobasal hypothalamus
and median eminence, amygdala, preoptic area, hippo-
campus, striatum, cerebral cortex, olfactory regions,
and the brainstem (Johansson et al., 1984). Three main
categories of SRIFergic neurons can be distinguished:
hypophysiotropic neurons, long-projecting GABAergic
neurons, and GABAergic interneurons acting within
microcircuits (Viollet et al., 2008; Urban-Ciecko and
Barth, 2016).
In the rat CNS, SRIFergic neurons regulating pitui-

tary function are located within the periventricular
nucleus and the parvocellular part of the paraventric-
ular nucleus and send axonal projections to the median
eminence at the base of the hypothalamus. SRIF-
producing neuronal cell bodies are also found in the
arcuate (ARC) and ventromedial nuclei. Hypophysio-
tropic SRIFergic neuronal axons descend toward the
pituitary stalk and release SRIF into the portal blood
vessel system, thereby reaching anterior pituitary cells.
Some axons travel through the neural pituitary stalk
into the neurohypophysis. Other fibers project outside
the hypothalamus to areas such as the limbic system or
may interact, through interneurons, with other hypo-
thalamic nuclei, including the ARC where GH-releasing
hormone (GHRH) is expressed, the preoptic nucleus, the
ventromedial nucleus, and the suprachiasmatic nucleus,
which exhibits circadian pacemaker activity (Müller
et al., 1999; Eigler and Ben-Shlomo, 2014). SRIF is
ubiquitously expressed in mammalian brain. Extra-
hypothalamic SRIF immunoreactivity is found in
the amygdala, preoptic area, hippocampus, striatum,

cerebral cortex, sensory regions, and brainstem. SRIF
neurons are classified into two main categories: inter-
neurons acting locally within microcircuits and long-
range–projecting neurons whose fibers reach distant
areas. SRIF frequently colocalizes with GABA. SRIFergic
interneurons likely play a role in regulation of distal
dendrite excitability, and long-range–projecting SRIFergic
neurons may participate in coordinating activity be-
tween distant brain regions. Accordingly, nonpyramidal
cells located in the hippocampus and targeting the
medial septum and the medial entorhinal cortex form
inhibitory synapses on GABAergic interneurons, and
may cooperate in generation and synchronization of
rhythmic oscillatory activity in these areas (Viollet et al.,
2008; Melzer et al., 2012). Recently, brain-wide SRIF
neuron maps have established the precise cell number,
density, and somatic morphology with anatomic refer-
ences for SRIF-related specific functions (Kim et al.,
2017; Zhang et al., 2017).

Peripheral SRIF is produced by secretory cells in
gastrointestinal mucosa and by d-cells in pancreatic
islets, as well as by a subpopulation of C cells within the
thyroid gland. In addition to SRIF-producing neuroen-
docrine cells, inflammatory and immune response cells
and tumor cellsmay also express SRIF (Patel, 1999). The
peptide has been immunolocalized in human epidermis,
with low expression levels in keratinocytes and higher
expression in subsets of Merkel and dendritic cells
(Vockel et al., 2010, 2011). SRIF is a neurotransmitter
and neuromodulator, an endocrine hormone and a para-
crine factor acting in the same tissue where it is
expressed. Circulating levels of SRIF are very low
because the peptide is rapidly degraded by ubiquitous
peptidases (Rai et al., 2015). In the retina, SRIF was
detected by immunohistochemical studies in amacrine
and ganglion cells, as well as in interplexiform cells,
whereas electrophysiological studies support the view
that it may function as a neurotransmitter, neuromodu-
lator, or trophic factor (Cervia et al., 2008).

4. Functions. Within the hypothalamus–pituitary
system, SRIF is the main regulatory element exerting
inhibitory control on both basal and stimulated GH
secretion and reduces prolactin and thyroid-stimulating
hormone (TSH) secretion in normal subjects (Müller
et al., 1999). It can also suppress release of adrenocor-
ticotropic hormone (ACTH) from tumor cells (Hofland
et al., 2010). SRIF brain actions are mediated by
presynaptic or postsynaptic mechanisms. SRIF modu-
lates neuronal excitability, and in the hippocampus,
cortex, and hypothalamus it also induces presynaptic
inhibition of excitatory neurotransmission (Peineau
et al., 2003). In other brain areas, SRIF also decreases
GABA release. Postsynaptic mechanisms of action in-
clude membrane hyperpolarization via activation of
potassium ion currents (K+ currents), in particular
voltage-gated K+ currents, noninactivating potassium
currents (M currents), and voltage-insensitive leak
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currents (Moore et al., 1988; Schweitzer et al., 1998;
Jiang et al., 2003; Qiu et al., 2008). SRIF is coreleased
with GABA from hippocampal neurons and from axonal
terminals in other brain areas (Olias et al., 2004). SRIF
inhibits dopamine release from the midbrain as well as
hypothalamic release of noradrenaline, thyrotropin-
releasing hormone, and corticotropin-releasing hor-
mone (CRH) (Patel, 1999). Activation of brain SRIF
signaling may alleviate endocrine, autonomic, and be-
havioral responses to stress mediated by central CRH
andCRH receptors (Stengel and Taché, 2017). SRIF has
a role in cognitive functions, learning and memory
processes, control of locomotor activity, control of food
intake, nociception, and autonomic functions. SRIF is
highly expressed in brain regions associated with
seizures and has been suggested as an endogenous
antiepileptic (Olias et al., 2004; Tallent and Qiu, 2008;
Stengel et al., 2015).
Peripheral SRIF actions include inhibition of hor-

mone secretion, exocrine secretion, and cell prolifera-
tion. In the gastrointestinal (GI) tract (GIT), SRIF
exerts a generalized inhibitory effect on release of gut
hormones [including gastrin, CCK, gastric inhibitory
polypeptide, vasoactive intestinal peptide, enterogluca-
gon, motilin], gastric acid, digestive enzymes, bile, and
colonic fluid. SRIF also negatively affects gallbladder
contraction, small intestinal segmentation, and gastric
emptying. In pancreatic islets, release of SRIF from
d-cells inhibits secretion of insulin, glucagon, and other
peptides from neighboring cells. SRIF reduces TSH-
induced release of triiodothyronine (T3) and thyroxine as
well as calcitonin release. In the adrenals, SRIF inhibits
angiotensin II–stimulated aldosterone secretion and
acetylcholine-stimulated medullary catecholamine secre-
tion. SRIF reduces release of kidney-derived renin caused
by hypovolemia and vasopressin-mediated water absorp-
tion. In addition to nervous system functions and regu-
lation of endocrine andGI functions, SRIF alsomay affect
key cellular processes in diverse tissues by regulating the
release of both growth factors and cytokines as well as
cellular responses to these stimuli. SRIF can contribute to
control of smooth muscle cell contractility, lymphocyte
and inflammatory cell proliferation and activity, tumor
cell growth, and normal tissue plasticity (Patel, 1999; Rai
et al., 2015). In human skin, SRIF has been suggested as
a negative regulator of epidermal wound healing (Vockel
et al., 2011). Finally, at variancewith its nearly universal
inhibitory actions, low (pM) concentrations of SRIF
stimulate in vitro GH release on cultured pituitary cells
derived from pigs (Luque et al., 2006) and nonhuman
primates (Cordoba-Chacon et al., 2012b) and from hu-
man somatotroph adenomas (Matrone et al., 2004).

B. Cortistatin

CST, a cyclic neuropeptide, highly homologous to
SRIF, was identified as a region-specific brain mRNA
encoding a protein of 112-amino-acid residues, which

was called preproCST (de Lecea et al., 1996). CST in
mammals derives from theCORT gene (Liu et al., 2010).
The gene encoding for human and mouse CST is located
on 1p36.3–1p36.2 and on chromosome 4, respectively.
Similarly to preproSRIF, cleavage of preproCST gives
rise tomultiplemature products, CST-14 and CST-29 in
rats and CST-17 andCST-29 in humans (Fig. 2). CST-14
and SRIF-14 differ in three amino acid; CST aligns
with the second-amino-acid residue of SRIF on the
N-terminus and terminates one-amino-acid residue
beyond the C-terminal of SRIF (de Lecea et al.,
1997b). Human CST-17 contains an arginine for lysine
substitution and is extended by three amino acids at the
amino-terminal end, resulting in CST-17 sharing 10 of
the 14 SRIF-14 residues. Similar to their prepropep-
tides, mature CST and SRIF are also highly homolo-
gous, including the two cysteine residues that render
the peptides cyclic as well as a FWKT motif critical for
SST binding (de Lecea et al., 1997b). Consequently, CST
peptides bind to all SST subtypes with similar affinity
than SRIF, and yet there is no evidence for a selective
cortistatin receptor (Siehler et al., 2008). Notably, the
FWKT motif is also present in urotensin II and
urotensin-related peptide, which are indeed agonists
of SSTs (Vaudry et al., 2015).

PreproCST mRNA is predominantly expressed in the
cerebral cortex and hippocampus. In the cortex, mainly
layers II–III and VI contain CST-positive cells. In-
terestingly, CST-positive cell bodies are not uniformly
distributed in all cortical areas, with highest numbers
evident in the visual and temporal cortex and lowest in
the somatosensory cortex (de Lecea et al., 1997a). CST-
containing neurons are also detected in the piriform
cortex and entorhinal area. In the hippocampus, CST
expression is found in a small subset of nonpyramidal
neurons of the subiculum and in the stratum oriens of
hippocampus subfields Cornu Ammonis (CA)1–3. In the
hilar region of the dentate gyrus, however, CST-positive
neurons are only transiently present during develop-
ment (de Lecea et al., 1997a). In parallel, there is a
temporary increase of cortical CST expression during
development, which correlates with maturation of
cortical interneurons. Indeed, cortical CST-expressing
neurons, similarly to SRIF-positive neurons, are also
GABAergic. However, CST- and SRIF-containing neu-
rons are expressed in distinct, only partially overlap-
ping populations (de Lecea et al., 1997a). CST is also
expressed in other brain areas, such as in the olfactory
bulb, in the striatum, in the periventricular nucleus
of the hypothalamus, and in GABAergic interneurons
of the deep layers of the spinal cord dorsal horn (de
Lecea, 2008; Morell et al., 2013). No CST expression
was detected in the thalamus, brainstem, or cerebellum
(de Lecea, 2008). The projections of CST-positive
neurons were not analyzed in detail, but due to their
high homology it is possible that anti-SRIF antibodies
may also label CST-containing axons.

Nomenclature of Somatostatin Receptors 769



CST is also expressed in the periphery, in general at
lower level than SRIF but with a broader distribution:
preproCST mRNA was detected in peripheral nocicep-
tive neurons, endocrine organs (e.g., pituitary gland,
adrenal gland, thyroid gland, parathyroid gland, endo-
crine pancreas), digestive system (e.g., stomach, jeju-
num, ileum, colon, rectum, liver), kidney, lung, and
gonads, and also in smooth muscle cells, endothelial
cells, and immune cells (e.g., lymphocytes, monocytes,
macrophages, dendritic cells) (Broglio et al., 2007;
Gahete et al., 2008; Gonzalez-Rey et al., 2015). Discrep-
ancies betweenmRNA expression and protein synthesis
were observed in several tissues (including adrenal,
thyroid, lung, and gonads) (Broglio et al., 2007). Nota-
bly, predominant CST is present in parathyroid chief
cells and immune cells (Dalm et al., 2003a; Allia et al.,
2005).
In keeping with their similar affinities to SSTs, CST

and SRIF share several biologic properties, including
inhibition of neuronal activity and consequent antiep-
ileptic activity (Braun et al., 1998; Aourz et al., 2014),
inhibition of cell proliferation, and regulation of hor-
mones, and particularly inhibition of GH secretion
(Spier and de Lecea, 2000). Double KO mice devoid of
both SRIF and CST show markedly increased GH
levels, although they do not display overt giant pheno-
types (Pedraza-Arevalo et al., 2015). Nevertheless,
functional differences of CST and SRIF can only
partly be attributed to their distinct tissue distributions
(de Lecea and Castaño, 2006). At the cellular level, CST,
similarly to SRIF, increases the M current in hippocam-
pal neurons but also augments the hyperpolarization-
activated currents (Schweitzer et al., 2003), thereby
modulating synaptic integration and regulation of
oscillatory activity. At the behavioral level, CST induces
hypomotility, whereas SRIF causes hypermotility
(Criado et al., 1999); CST enhances slow-wave sleep,
whereas SRIF increases rapid eye movement sleep (de
Lecea et al., 1996; Bourgin et al., 2007). CST and SRIF
also regulate differently endocrine functions (Ibáñez-
Costa et al., 2017b) as well as learning and memory
processes (Borbély et al., 2013). Consistent with its
widespread distribution in the immune system (Dalm
et al., 2003b), CST is a potent anti-inflammatory factor,
decreasing the production of several inflammatory cyto-
kines [tumor necrosis factor-a, interleukin (IL)-1b, IL-6,
IL-12, interferon-g], chemokines, andacute-phaseproteins
(Gonzalez-Rey et al., 2015). CST also inhibits T helper
1- and 17-driven inflammatory responses in models of
inflammation [e.g., sepsis (Gonzalez-Rey et al., 2006a),
atherosclerosis (Delgado-Maroto et al., 2017)], and autoim-
mune diseases [e.g., inflammatory bowel disease (Gonzalez-
Rey et al., 2006b), rheumatoid arthritis (Gonzalez-Rey et al.,
2007), andmultiple sclerosis (Souza-Moreiraet al., 2013)]. In
parallel with its potent anti-inflammatory effect, CST is
also an endogenous analgesic factor acting at both the
peripheral and spinal level (Morell et al., 2013).

CST may activate GPCRs other than SSTs (Ibáñez-
Costa et al., 2017b), including the ghrelin receptor 1a
(GHS-R1a) (Callaghan and Furness, 2014) and human-
specific MAS-related GPR family member X2 (Solinski
et al., 2014). Functions of CST not shared by SRIF in the
immune (Gonzalez-Rey et al., 2015) and endocrine
(Cordoba-Chacon et al., 2011) systems are likely medi-
ated by GHS-R1a, whereas MAS-related GPR family
member X2 might play an important role in the
analgesic effects of CST in humans. In addition, some
CST-specific functions might be mediated by a yet un-
identified CST-selective receptor (Gonzalez-Rey et al.,
2015), and by truncated SST5 variants that selectively
respond to CST (Gahete et al., 2008; Durán-Prado et al.,
2009; Cordoba-Chacon et al., 2010, 2011; Ibáñez-Costa
et al., 2017b).

III. Somatostatin Receptors

A. Nomenclature

There is yet considerable misconception and lack of
clarity regarding classification and nomenclature of
SSTs. SRIF binding sites were initially defined through
radioligand-binding studies performed in rat brain
cerebral cortex membranes. SRIF-1 (also called SS-1)
recognition sites were characterized by high affinity for
SRIF-14 and SRIF-28, and for cyclic peptides such as
octreotide and seglitide. In contrast, SRIF-2 (also called
SS-2) sites exhibit high affinity for SRIF-14 and SRIF-
28, but very low affinity for octreotide and seglitide. In
fact, SS-1 and SS-2 binding sites correlate with recombi-
nant SST2 and SST1 receptors, respectively (Hoyer
et al., 1995b; Schoeffter et al., 1995).

Subsequently, five distinct receptor genes have been
cloned and named chronologically according to their
respective publication dates, but two were regrettably
given the same appellation (SST4). In 1995, a consistent
nomenclature for the recombinant receptors was agreed
upon according to International Union of Basic and
Clinical Pharmacology (IUPHAR) guidelines (sst1, sst2,
sst3, sst4, and sst5) (Hoyer et al., 1995a). Given that
radioligands could differentiate only two distinct SRIF
binding sites, the subsequent cloning of five receptors was
indeed surprising. IUPHAR guidelines recommended that
recombinant receptors without well-defined functional
characteristics should be referred to by lower case letters,
i.e., sst1, sst2, etc. (Vanhoutte et al., 1996). When the
recombinant receptor is shown to be of functional relevance
in whole tissues and is fully characterized, upper case
letters should be used, i.e., SST1, SST2, etc. (Vanhoutte
et al., 1996). Moreover, the name of a receptor should not
include the letter “R” or “r” as an abbreviation for receptor
(Vanhoutte et al., 1996). Thus, according to IUPHAR
guidelines, employing receptor names such as SSTR1,
SSTR2, etc., is discouraged (Vanhoutte et al., 1996).

Shortly after cloning, it became apparent that the five
recombinant receptors comprise two classes or groups,
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on the basis of their phylogeny, structural homologies,
and pharmacological properties. One class was referred
to as SRIF1, comprising SST2, SST3, and SST5 re-
ceptor subtypes. The other class was referred to as
SRIF2, comprising the other two recombinant recep-
tor subtypes SST1 and SST4 (Hoyer et al., 1995a). SST
subtypes share many structural characteristics and
their main intracellular signaling pathways. Con-
versely, individual SST subtypes can now clearly be
differentiated according to their cellular and subcellular
localization as well as distinct modes of regulation and
functional and pharmacological properties. The IUPHAR
Committee on Receptor Nomenclature and Drug Classi-
fication subcommittee now recognizes the physiologic
correlates of SSTs and has decided on upper case
nomenclature for all five SSTs. Thus, the new recom-
mended nomenclature for SSTs is SST1, SST2, SST3,
SST4, and SST5 (Alexander et al., 2017; Schulz et al.,
2017).

B. General Properties

All five SSTs are prototypical class A GPCRs that
belong to the rhodopsin-like family of receptors. All
possess seven transmembrane domains (TMDs) that
provide the characteristic architecture of GPCRs. Re-
ceptor sequences for human SSTs range in length from
364 amino acids for SST5 to 418 amino acids for SST3

(Table 1). Unfortunately, crystal structures are not yet
available for any SST. However, the five SST subtypes

share common structural features such as a conserved
sequence (YANSCANPILY) in transmembrane region
7 (mammalian SST signature). In addition, there is a
consensusmotif (X-[S/T]-X-F) at the end of the carboxyl-
terminal tail of all mammalian SSTs. The X-S/T-X-F
motif is regarded as a potential postsynaptic density
protein (PSD)-95/discs large/ZO-1 (PDZ) domain bind-
ing site crucial for interaction with scaffolding proteins.
Like all prototypical GPCRs, SSTs contain a DRY motif
in the second intracellular loop (ICL) and are involved
in coupling to G proteins. Genes encoding human SST1–

SST5 are located on chromosomes 14, 17, 22, 20, and 16,
respectively (Table 1). There is considerable sequence
similarity between different SST subtypes (39%–57%)
(Table 2). In fact, sequence similarity is high for a given
subtype when compared across species (81%–98% for
mouse, human, and rat homologs).

Comparative genomic analysis suggests that the
current set of receptors present in mammalian species
arose from a single ancestral gene. This precursor was
duplicated before the appearance of vertebrates, lead-
ing to genes coding for ancestral SRIF1-type and SRIF2-
type receptors, and one gene coding for the ligand, SRIF
(Ocampo Daza et al., 2012; Tostivint et al., 2014).
Further tetraploidizations occurred during vertebrate
evolution, generating genes coding for SST2, SST3, and
SST5 from the SRIF1-type precursor gene, and genes
coding for SST1, SST4, and SST6 from the SRIF2-type
precursor gene. The gene coding for SST6 has been lost

TABLE 1
Nomenclature and properties of somatostatin receptors

SST1 SST2 SST3 SST4 SST5

Gennomic location 14q13 17q24 22q13.1 20p11.2 16p13.3
Amino acids 391 369 418 388 364
Naturally occurring

agonists
SRIF-14, SRIF-28 SRIF-14, SRIF-28 SRIF-14, SRIF-28 SRIF-14, SRIF-28 SRIF-14, SRIF-28
CST-17, CST-29 CST-17, CST-29 CST-17, CST-29 CST-17, CST-29 CST-17, CST-29

G protein coupling Gai/o Gai/o Gai/o Gai/o Gai/o
Primary signal

transduction
cAMP↓ cAMP↓ cAMP↓ cAMP↓ cAMP↓
VOCC ↓ VOCC ↓ VOCC ↓ VOCC ↓ VOCC ↓
GIRK↑ GIRK↑ GIRK↑ GIRK↑ GIRK↑
NHE1↓ PTP↑ NHE1↓ NHE1↓ PTP↑
PTP↑ PTP↑ PTP↑

Expression in human
normal tissue

Brain Brain Brain Brain
Anterior pituitary
Pancreatic islets

Anterior pituitary Anterior pituitary Retina Anterior pituitary

Gastrointestinal tract Pancreatic islets Pancreatic islets Dorsal root ganglia Pancreatic islets
Dorsal root ganglia Gastrointestinal tract Placenta Gastrointestinal

tract
Gastrointestinal tract Lymphatic tissue Lymphatic tissue
Lymphatic tissue Adrenals Adrenals
Adrenals

Expression in human
tumorsa

GH-Adenomas
NET

GH-Adenomas GH-Adenomas GH-Adenomas
TSH-Adenomas ACTH-Adenomas ACTH-Adenomas
NET NF-Adenomas NET
Pheochromocytomas
Paragangliomas

Phenotype of mice
lacking receptor

Altered insulin
homeostasis

High basal acid
secretion

Impaired novel object
recognition

Increased seizure
susceptibility

Increased insulin
secretion

Inhibition of glucagon
release

Increased anxiety Basal
hypoglycemia

Impaired motor
coordination

aExpression in .50% of cases.
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in mammals, but is identifiable in several fish species.
An additional tetraploidization in teleost fish gave rise
to evenmore receptor species (OcampoDaza et al., 2012;
Tostivint et al., 2014). The common ancestor also gave
rise to two so-called Drostar receptors in Drosophila
(Kreienkamp et al., 2002) that are not activated by
known mammalian peptides (including SRIF variants
and opioids). However, their endogenous ligand allatos-
tatin C bears only superficial similarity to SRIF. In
contrast, the signature motif YANSCANPILY present
in mammalian receptors is only slightly modified to
YSNSAVNPILY in Drostar1, and the C-terminal PDZ
ligand motif found in all SSTs is also present in the fly
(Kreienkamp et al., 2002).
Genes encoding SSTs are intronless within their

coding sequence, except for SST2. The SST2 gene can
be alternatively spliced to produce two receptor pro-
teins, SST2A and SST2B, that differ in length and
sequence of their carboxyl termini. Human tissues
contain the unspliced SST2A variant exclusively,
whereas both spliced forms have been identified in
rodents (Vanetti et al., 1992). Although the SST5 gene
does not contain CD introns, variants of SST5 mRNA
formed by splicing of noncanonical donor and acceptor
splice sites are identified in humans, pigs, and rodents
(Durán-Prado et al., 2009). The human SST5 variants
encode truncated receptors containing five (SST5TMD5)
or four (SST5TMD4) transmembrane domains and dis-
tinct carboxyl-termini (Durán-Prado et al., 2009).
Despite the prominent therapeutic role of SST2- and

SST5-targeting SRIF analogs in pharmacotherapy of
endocrine tumors, surprisingly few disease-associated
mutations have been identified in any of the seven genes
comprising the SRIF system (two peptide precursors
and five receptor genes). To date, it has been reported
that a single acromegaly patient resistant to octreotide
treatment displayed a coding polymorphism in SST5

that clearly affected receptor signaling (Ballare et al.,
2001). The R240W mutation presumably disrupts G
protein and mitogen-activated protein kinase (MAPK)
signaling, abolishing the antisecretory effects of SRIF
on SST5-expressing cells. Besides this unique case, loss
of heterozygosity at SST5 was speculated to lead to
reduced mRNA expression, but molecular mechanisms
for this notion have not been conclusively elucidated

(Lania et al., 2008). Although numerous studies have
reported reduced SST2 and SST5 expression in treatment-
resistant tumors, correlations with any particular poly-
morphism in SST genes have not been established.
Molecular mechanisms underlying low SST expression
in octreotide- or lanreotide-resistant tumors must there-
fore reside in genes outside of the SRIF system and still
await identification.

Data from large-scale human sequencing studies,
such as the exome aggregation consortium (which
includes about 60,000 healthy individuals), further show
that all five genes coding for SSTs are rather tolerant to
sequence variations. In a ranking of about 18,000 human
genes based on the presence of missense mutations, the
genes coding for SST receptors are placed between
positions 1459 (SST1) and 9488 (SST5), where 1 would
be the gene that has the lowest tolerance for missense
mutations (Lek et al., 2016).

The best-characterized action of SRIF is its strong
inhibitory effect on both endocrine and exocrine cell
secretion (Konturek et al., 1976; Dolais-Kitabgi et al.,
1979; Mandarino et al., 1981). SRIF also inhibits
neuronal excitability. All SST subtypes mediate in-
hibitory actions by association with Gi/Go proteins,
members of the heterotrimeric guanine-nucleotide–
binding protein family characterized by sensitivity to
pertussis toxin (PTX) (Demchyshyn et al., 1993; Gu
et al., 1995a,b; Gu and Schonbrunn, 1997; Carruthers
et al., 1999). Activation of Gi/Go proteins by SSTs leads
to suppression of two critical second messengers: cAMP
and cytosolic Ca2+. The reduction in cAMP results from
inhibition of adenylyl cyclase. SSTs act to inhibit cal-
cium channels both directly and indirectly, the latter by
opening G protein–activated inward-rectifier K channels
(Kir3.x) to produce hyperpolarization and, as a conse-
quence, inhibition of Ca2+ influx through voltage-operated
calcium channels (VOCC) (Gromada et al., 2001). Re-
duction of either cAMPor cytosolic Ca2+ leads to inhibition
of secretion, and the simultaneous reduction of both
second messengers by SRIF results in synergistic in-
hibitory effects on hormone release. Signaling events
responsible for inhibition of cell proliferation are less well
understood than those that inhibit hormone secretion.
One such pathway involves activation of protein tyrosine
phosphatases (PTP) (Pan et al., 1992), including the Src
homology region 2 domain-containing phosphatase (SHP)-1
and SHP-2. Ensuing dephosphorylation of specific sub-
strates may counteract growth factor–stimulated tyro-
sine kinase activity and thus inhibit multiple mitogenic
signaling pathways (Table 1).

Before subtype-specific antibodies became avail-
able, detailed mapping of receptor mRNA and binding
sites had been described and comprehensively reviewed
(Epelbaum et al., 1994; Patel, 1999; Dournaud et al.,
2000). SSTs are widely expressed in the CNS and
the endocrine system with some overlapping distribu-
tions, but different cellular and subcellular localizations

TABLE 2
Sequences of human receptors were aligned using the BLAST algorithm,
and the percentages of sequence identity (upper right) and similarity (i.e.,

the presence of similar amino acids; lower left) were determined
Sequence comparisons are limited to the core regions of receptors (i.e., sequences

encompassing the seven-helix bundle plus adjacent segments), whereas no
significant similarities were detected in the N-terminal and C-terminal tails.

SST1 SST2 SST3 SST4 SST5

SST1 100 55 52 69 49
SST2 74 100 53 53 56
SST3 69 69 100 48 56
SST4 82 73 66 100 53
SST5 64 74 69 70 100
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(Piwko et al., 1996; Thoss et al., 1996a; Lanneau et al.,
2000). Within the CNS, SSTs are mainly expressed on
neurons in the cortex, hippocampus, amygdala, and
hypothalamus (Perez et al., 1994; Perez and Hoyer,
1995; Thoss et al., 1996b; Hannon et al., 2002). In the
endocrine system, SSTs are expressed on distinct cell
populations in the anterior pituitary, pancreatic islets,
adrenals, and neuroendocrine cells of the GIT. SSTs are
also expressed on enteric ganglion and immune cells
(Table 1).
All five SSTs bind the endogenous SRIF and CST

ligands with high affinity. Many peptidic SRIF analogs
have been developed, leading not only to the discovery of
metabolically stable multireceptor SRIF analogs but
also to subtype-selective receptor agonists and antago-
nists. Selective nonpeptide agonists and antagonists
are now available for all five SSTs, except SST4, for
which selective antagonists are still lacking (Table 1).

IV. Somatostatin Receptor 1

A. Somatostatin Receptor 1 Structure

Human SST1 was the first SST cDNA to be cloned by
Yamada et al. (1992a). Cloning was accomplished from
a pool of GPCR-like sequences amplified from human
pancreatic islet RNA by reverse-transcriptase polymer-
ase chain reaction using a generic set of primers
covering highly conserved amino acid sequences in the
third and sixthGPCR transmembrane segments (Libert
et al., 1989). The mouse homolog was then obtained by
screening a mouse genomic library with a human SST1

probe (Yamada et al., 1992a). There is 99% amino acid
identity between human and mouse SST1 sequences.
Meyerhof et al. (1991) had previously reported the

sequence of a rat cDNA encoding a novel putative GPCR
expressed primarily in the hypothalamus and cerebral
cortex, but whose ligand could not be identified. The
high identity of the predicted amino acid sequence of
this orphan receptor (97% and 98% identity with human
and mouse SST1, respectively) indicated that it corre-
sponded to the rat homolog.

In humans, SST1 is a 391-amino-acid protein encoded
on chromosome 14q13 by an intronless gene whose
promoter region, transcription start site, and 59-
untranslated region (UTR) have been elucidated (Fig. 3)
(Redmann et al., 2007). Characterization of rabbit mAbs
against SST1 (UMB-7) indicated that the protein is
heavily glycosylated, migrating in SDS-PAGE at Mr

45,000–60,000, but displaying the expected mol. wt. of
Mr 45,000 after protein extracts had been subjected to
enzymatic deglycosylation (Lupp et al., 2013). The gene
coding for mouse and rat SST1 is localized on chromo-
somes 12 C1 and 6q23, respectively, and both encode a
391-amino-acid protein.

B. Somatostatin Receptor 1 Signaling Mechanisms

Studies on SST1 signaling in various cell types have
yielded heterogeneous results, depending on whether
SST1 is expressed endogenously or heterologously by
transfection, indicating that the cellular environment
is important in determining the signal transduction
machinery. Signal transduction studied in SST1 heter-
ologous cell systems was first thought to be G protein-
independent (Rens-Domiano et al., 1992; Buscail et al.,
1994), but later shown to involve both PTX-sensitive
and -insensitive G proteins (Garcia and Myers, 1994;
Hadcock et al., 1994; Hershberger et al., 1994; Hou
et al., 1994; Patel et al., 1994). Development of a

Fig. 3. Structure of human SST1. The primary and secondary amino acid structure of the human SST1 (UniProtKB - P30872) is shown in a schematic
serpentine format. Glycosylation sites are colored in purple; the DRY motif is highlighted in green; the human SST motif is in light blue; potential
phosphorylation sites are in gray; the PDZ ligand motif is in dark blue; the disulfide-forming cysteines are in pale blue; and the potential
palmitoylation site is in orange. UMB-7 is a rabbit monoclonal antibody, which detects the carboxyl-terminal tail of SST1 in a phosphorylation-
independent manner.
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polyclonal antibody to a 15-amino-acid peptide corre-
sponding to a unique sequence in the SST1 carboxyl
terminus has made it possible to immunoprecipitate
endogenously expressed SST1 from pituitary tumor cell
lysates and to demonstrate specific coupling to PTX-
sensitive G proteins (Gu et al., 1995a). Gi proteins
reported to couple to SST1 in SST1-transfected cells
include Gia1,2,3 (Hadcock et al., 1994; Kubota et al.,
1994), although only Gia3 dominantly couples SST1 to
downstream adenylate cyclase inhibition (Kubota et al.,
1994). SST1 transduces reduction of both cAMP accu-
mulation and intracellular Ca2+ concentrations in het-
erologous cell systems (Fig. 4) (Garcia and Myers, 1994;
Hadcock et al., 1994; Hershberger et al., 1994; Patel
et al., 1994), as well as in insulinoma cells expressing
SST1 endogenously (Roosterman et al., 1998). All SSTs
regulate ion channels, including potassium channels
(ATP-sensitive, inward, and delayed rectifying), as re-
cently shown using an elegant fluorescence-basedmem-
brane potential assay in pituitary cells (Günther et al.,
2016). SST1 activation results in membrane hyperpo-
larization and subsequent reduction of Ca2+ influx
through voltage-sensitive Ca2+ channels, as demon-
strated in endogenously SST1-expressing insulinoma
cells (Roosterman et al., 1998). Interestingly, SST1, but

not the other SSTs endogenously expressed in the
mouse pancreatic b-cell line MIN6, shows exclusive
coupling with N-type voltage-sensitive Ca2+ channels,
resulting in reduced intracellular Ca2+ concentrations
and in inhibition of insulin secretion (Smith, 2009).
Such SST specificities were also observed in pituitary
tumor cells, where, in contrast to SST2, SST1 fails to
stimulate phosphoinositide-specific phospholipase C
(PLC) activity or PLC-dependent release of Ca2+ from
intracellular stores (Chen et al., 1997), but transduces
inhibition of phospholipase A2 activity and arachidonic
acid release, similar to SST2 (Cervia et al., 2002).
Additionally, SST1 (like SST3 or SST4, but not SST2 or
SST5) inhibits sodium/hydrogen exchanger 1 (NHE1)
activity via a PTX-independent mechanism, as demon-
strated in SST1-transfected cells (Hou et al., 1994),
resulting in decreased extracellular acidification (Chen
and Tashjian, 1999) that may be involved in inhibition
of cell migration by SRIF (Buchan et al., 2002). Hence,
SST1, but not SST2, attenuated rat sarcoma (Ras)
homolog (Rho)–GTP levels and subsequent Rock activ-
ity induced both by GPCR or integrin activation when
expressed in Chinese hamster lung fibroblast cells
(CCL39), and these inhibitory effects correlated with
decreased actin stress fiber assembly and cell migration

Fig. 4. SST1 signaling leading to inhibition of hormone secretion, cell proliferation and migration, and angiogenesis. By coupling to Gi protein, SRIF-
bound SST1 inhibits adenylate cyclase and reduces cAMP accumulation, as well as intracellular Ca2+ concentrations by regulating GIRK channels,
which results in membrane hyperpolarization and subsequent reduction of Ca2+ influx through VOCC. This results in decreased hormone secretion.
Inhibition of cell proliferation by SST1 involves upregulation of expression of the cyclin-dependent kinase inhibitor p21 (cip1/WAF1) and sequential
activation through Src activity of tyrosine phosphatases (PTPh and SHP-2). Whereas p21 blocks cell cycling, tyrosine phosphatases block mitogenic
signals through dephosphorylation (and inactivation) of effectors. Both PI3K–mTOR and MAPK pathways are inhibited, resulting in decreased cell
growth and proliferation through inhibition of mRNA transcription and translation. SST1 also reduces endothelial NOS activation, resulting in reduced
guanylate cyclase activity, cGMP production, and protein kinase G activity. Additionally, SST1 inhibits the NHE1 activity, resulting in a decrease of
extracellular acidification rate. This involves inhibition of Rho activity through activation of Ga12 protein by SST1.
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(Buchan et al., 2002). Interestingly, a reported substrate
of Rock isNHE1,which can serve as a plasmamembrane-
anchoring scaffold for actin filaments to control assembly
of cortical stress fibers and focal adhesions. Because Rho
inhibition by SST1 is PTX-independent, it may involve
activation of Ga12, a trimeric Ga protein reported to
inhibit bothNHE1 (Lin et al., 1996) and the Rho guanine
nucleotide exchange factor p115 RhoGEF (Hart et al.,
1998). Notably, NHE1 localizes at the invadopodia
(membrane structures involved in cell invasion) of
human malignant breast carcinoma cells, where it
generates extracellular acidification necessary for
invadopodial-dependent extracellular matrix degrada-
tion and tumor invasion (Busco et al., 2010).
SRIF-induced increase of PTP activity (Hierowski

et al., 1985; Liebow et al., 1989; Pan et al., 1992) was
shown to be mainly involved in SRIF inhibitory effects
on growth factor–stimulated cell growth (Buscail et al.,
1994; Florio et al., 1994, 1996). PTP activity was found
in a membrane complex containing SRIF and SSTs
(Zeggari et al., 1994; Srikant and Shen, 1996). In
pituitary tumor cells, SRIF-induced activation of pro-
tein phosphatases via PTX-sensitive G proteins (White
et al., 1991; Duerson et al., 1996) correlates with endog-
enous SST1 expression (Florio et al., 1994). The rat
membrane-associated protein tyrosine phosphatase h
(PTPh) (homolog to human receptor tyrosine phosphatase
type J, formerly known as DEP-1) transduces SRIF
antiproliferative effects, in both insulin and/or TSH-
treated thyroid PC C13 cells (which express all SSTs but
predominantly SST1), and in glioblastoma cells (Massa
et al., 2004; Barbieri et al., 2008), which express all five
SSTs (Mawrin et al., 2004). In SST1-expressing heterolo-
gous cell systems, PTP-dependent inhibition of cell pro-
liferation by SRIF was reported to rely on a complex
interplay of different PTPs, comprising the receptor-
like PTPh, which provides a long-lasting PTP activity
(.2 hours), and the cytosolic SHP-2, which is rapidly
activated (1–5 minutes) (Arena et al., 2007). SHP-2 and
PTPh are sequentially activated in a complex comprising
the Janus kinase 2 (JAK2) that phosphorylates and
activates SHP-2, which in turn activates (by dephosphor-
ylation) the SRC proto-oncogene, nonreceptor tyrosine
kinase (Src) that tyrosine phosphorylates and activates
PTPh. The latter phosphatase is directly responsible for
SRIF-mediated inhibitory effect on fibroblast growth
factor (FGF)–stimulated proliferation through SST1

(Arena et al., 2007). SRIF-activated PTPs inhibit
cell proliferation by dephosphorylating tyrosine kinase
receptors and/or downstream effectors, such as platelet-
derived growth factor receptor, as demonstrated in SST1-
expressing pancreatic cancer–associated fibroblasts
(Duluc et al., 2015), or by inducing cell cycle arrest via
upregulation of p21 (cip1/Waf1) expression in SST1-
transfected cells (Florio et al., 1999). In addition to
SST3, SST1 and SST2 blunt FGF-induced nitric oxide
production through inhibition of endothelial nitric oxide

synthase (NOS) in Chinese hamster ovary (CHO) cells in
a PTX-dependent manner (Arena et al., 2005).

C. Somatostatin Receptor 1 Regulation
and Trafficking

Sequence analyses of the rat Sstr1 gene promoter
(Baumeister and Meyerhof, 1998, 2000a) demonstrated
presence of putative transcription factor binding sites
[GC box transcription factor, specificity protein 1, and
activator protein (AP)-2] that are often found in TATA-
less promoters (Smale et al., 1990). Presence of binding
sites for tissue-specific transcriptional factors of the
POU domain protein family (Rosenfeld, 1991) was also
noted, including sites for pituitary-specific positive
transcription factor 1 and POU family transcription
factor Tst-1 that regulate tissue-specific rat Sstr1 gene
expression in the pituitary and in pancreatic b-cells,
respectively (Baumeister and Meyerhof, 1998, 2000b).
The porcine Sstr1 gene promoter showed positive reg-
ulation by cAMP (through a CREBBP1 binding site)
(Gahete et al., 2014), consistent with the cAMP-mediated
upregulation of SST1 mRNA in rat pituitary primary
cultures induced by GHRH treatment (Park et al., 2000),
and in pituitary adenomas expressing a mutated Gas

(gsp oncogene) that constitutively activates the cAMP
pathway (Kim et al., 2005). SST1 mouse pituitary
expression may also be controlled by testosterone
because pituitary SST1 mRNA levels are decreased in
gonadectomized males but restored upon testosterone
injection, and are increased by testosterone treatment
in rat pituitary tumor cells (GH4C1 cells) (Xu et al.,
1995a; Senaris et al., 1996). Such Sstr1 gene regulation
reported in mouse, rat, or pig was also confirmed for the
humanSSTR1 gene (Redmann et al., 2007). Finally, the
SST1 gene promoter contains twoCpG islands (Redmann
et al., 2007), putatively involved in head and neck
squamous cell carcinoma tumorigenesis, where hyper-
methylation of the SSTR1, but also of SRIF, gene has
been correlated with reduced disease-free survival
(Misawa et al., 2015).

SRIF binding to its receptors results in internaliza-
tion of receptor–ligand complexes, a critical process for
receptor downregulation, resensitization, and signaling
(Tulipano and Schulz, 2007). Intriguingly, SST inter-
nalization may differ across species, explaining contro-
versial results reported for SST1. In the rat insulinoma
cell line 1046-38, which endogenously expresses SST1, a
recombinant rat epitope-labeled SST1 was expressed to
demonstrate that SST1 endocytosis is observed upon
cell treatment with SRIF (Roosterman et al., 1997). This
was also confirmed in other rat SST1-expressing heterolo-
gous cells (Roth et al., 1997b). Interestingly, ligand-induced
rat SST1 trafficking was dynamic, involving endocytosis
followed by recycling, and then re-endocytosis of the re-
ceptor and of the intact and biologically active ligand, which
are not directed to lysosomal degradation (Roosterman
et al., 1997). In contrast, other studies showed that
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human SST1 expressed in heterologous cell systems
demonstrates very slow, if any, internalization upon
ligand binding (Stroh et al., 2000a; Liu and Schonbrunn,
2001), although it undergoes acute desensitization of
adenylyl cyclase coupling that correlates with its phos-
phorylation status (Hukovic et al., 1996; Liu and Schon-
brunn, 2001). Differences in rat and human SST1

internalizationmay be due to species-specific trafficking.
Responsible for this species effect might be an amino
acid change at a putative phospho-acceptor site (Thr383-
Cys384-Thr385-Ser386) in the rat versus human SST1

C-terminal tail, where human Ser386 has been replaced
by alanine in rat SST1. This substitution might explain
the reported differences between rat and human SST1

affinity for b-arrestin-1 and subsequent trafficking
(Tulipano et al., 2004; Ramirez et al., 2005). Confocal
microscopy analyses showed bright immunoreactivity of
both human and rat SST1 within the cytoplasm, both
receptors accumulating the ligand (SRIF-14) into super-
ficial compartments. Intriguingly, a fraction of SST1

stays clustered immediately beneath the plasma mem-
brane, in as yet unidentified intracellular vesicular
compartments (Nouel et al., 1997; Roosterman et al.,
1997, 2007; Hukovic et al., 1999). This peculiar localiza-
tion may be caused by the absence of a domain in the
SST1 N terminus required for cell surface targeting, as
described for SST3 (Ammon et al., 2002). The SST1

cytoplasmic pool serves as a reservoir for short-term
upregulation of human SST1 expression at the mem-
brane upon prolonged agonist treatment. Upregulation
depends on phosphorylation events at the SST1

C-terminal tail (Hukovic et al., 1999). SST1 immunore-
activity is observed both at the membrane and in the
cytoplasm in primary and heterologous cell models
(Gahete et al., 2014), and in paraffin-embedded sections
of diverse human tumor tissues, in contrast to SST2,
which is predominantly membrane-associated (Hofland
et al., 1999; Lupp et al., 2013).

D. Somatostatin Receptor 1 Interacting Proteins

Unlike other SSTs, SST1 is not capable of homodime-
rization, prevented by structures within the C-terminal
domain (Grant et al., 2004). SST1 was nevertheless
found heterodimerized with SST5 in SST1- and SST5-
coexpressing heterologous cell systems. Heterodimeriza-
tion is induced by SST5- but not SST1-selective ligands
and changes intracellular signaling (inhibition of
forskolin-stimulated cAMP production) of the SST1/SST5

heterodimer as compared with SST5 homodimers or
SST1monomers (Grant et al., 2004). SST1was also found
heterodimerized with SST2 in prostate cancer cells; this
complex stabilized with a bispecific (SST1/SST2) SRIF
agonist, which nevertheless was less efficient than a
mono-specific SST1 agonist to produce inhibition of cell
proliferation (Ruscica et al., 2010). SST1, like other SSTs,
harbors within its C terminus a PDZ-binding motif that
interacts with membrane-associated guanylate kinase

homologs, including PSD-95 and PSD-93 (Christenn
et al., 2007), or synapse-associated protein SAP-97 (Cai
et al., 2008), involved in SRIF signaling to regulate
neuronal growth cone stability in neurons (including
retraction of filopodia and lamellipodia). Whereas
members of the membrane-associated guanylate ki-
nase homolog subfamily are believed to play a role as
molecular scaffolds in the organization of postsynaptic
signaling machineries, SAP97 is also prominently
expressed in axons and presynaptic terminals, where
it may be involved in SST1 presynaptic functions (Cai
et al., 2008).

E. Somatostatin Receptor 1 Anatomic Framework

Binding studies using iodinated SRIFs in mice de-
ficient for each of the SSTs suggest that SST2 is most
abundant in the murine CNS (Hannon et al., 2002;
Videau et al., 2003), although expression of other SST
subtypes, including SST1, was confirmed by in situ
hybridization in rat brain (Beaudet et al., 1995; Stumm
et al., 2004). Immunohistochemistry studies demon-
strated that SST1 is highly expressed in the hypotha-
lamic paraventricular and ARC, the median eminence
(Helboe et al., 1998; Hervieu and Emson, 1998; Stroh
et al., 2006), as well as other brain regions, including
basal ganglia, basal forebrain regions, and hippocam-
pus (Schulz et al., 2000a). SST1 has also been localized
in SRIF-containing amacrine cells of rat and rabbit
retina (Dal Monte et al., 2003; Mastrodimou and Ther-
mos, 2004). SST1 immunoreactivity is also intense in the
spinal cord, especially in dorsal horn and dorsal medulla
(Schulz et al., 2000a). Peripherally, SST1 is expressed in
neurons of mouse, rat, and human dorsal root ganglia
(DRG) (Bär et al., 2004; Imhof et al., 2011), and on
intestinal mucosal nerve fibers (Van Op den Bosch et al.,
2007). Outside the nervous system, high expression of
human SST1 mRNA is apparent in stomach, intestine,
and endocrine pancreas (Fig. 5) (Yamada et al., 1992a).
Immunohistochemistry studies later confirmed that the
SST1 protein is expressed mainly in these locations and
also in the anterior pituitary (Portela-Gomes et al., 2000;
Taniyama et al., 2005; Unger et al., 2012; Lambertini
et al., 2013; Lupp et al., 2013). SST1 immunoreactivity is
also positive in the parathyroid and bronchial glands
(Taniyama et al., 2005), testis (staining in single cells
between the tubules, resembling Leydig cells), and
skeletal muscles (Unger et al., 2012). In the GI tract,
SST1 is found expressed in stomach (Fig. 5), including
antrum and corpus, in single cells resembling neuroen-
docrine or enterochromaffin-like cells (Unger et al.,
2012), although expression in enterochromaffin cells
(chromogranin-positive) was not always confirmed
(Taniyama et al., 2005). Further SST1 expression was
noted in the rectum (Taniyama et al., 2005) and also in
enteric ganglion cells and corresponding nerve fibers
and nerve terminals (Lupp et al., 2013). SST1 immunore-
activity was also detected in endothelial cells of blood
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vessels (Taniyama et al., 2005). In the immune system,
SST1 protein is expressed in lymphocytes and macro-
phages (Taniyama et al., 2005), consistent with the
positive SST1 immunoreactivity observed in cells resem-
bling macrophages (cluster of differentiation 68 (CD68)
positive) in spleen, lymph nodes, tonsils, thymus, lung,
and gut mucosa, as well as in the stroma of diverse
neoplasms (Lupp et al., 2013).
In neoplastic tissues, receptor autoradiography with

SST1 subtype-selective ligands showed preferential ex-
pression of SST1 in prostate carcinomas and sarcomas
(Reubi et al., 2001). Using the rabbit mAb UMB-7
(Table 3), SST1 expression was confirmed in prostate
adenocarcinomas, rhabdomyosarcoma and liposarcoma,
pituitary somatotroph adenomas, pancreatic adenocar-
cinoma, stomach cancer, urinary bladder cancer, pheo-
chromocytoma, GI neuroendocrine tumors (NETs), breast
carcinoma, cervix carcinoma, and ovarian tumors (Lupp
et al., 2013). SST1 was abundantly expressed in broncho-
pulmonary NETs (Herrera-Martinez et al., 2017b) and
positively associated with patient survival (Kaemmerer
et al., 2015a).

F. Somatostatin Receptor 1 Function

In the CNS, SST1 immunoreactivity is primarily
found in fibers and terminals morphologically similar
to varicose axons and that exhibit the highest brain
SRIF immunoreactivity or are closely apposed by SRIF-
immunoreactive fibers. This observation suggests that
SST1 is predominantly targeted to presynaptic com-
partments (Schulz et al., 2000a). In this position it

negatively modulates release of SRIF itself or of hypo-
thalamic releasing and release-inhibiting hormones,
including GHRH in ARC neurons, where high SST1

mRNA concentrations are found (Tannenbaum et al.,
1998). Accordingly, SST1 was defined as an inhibitory
autoreceptor located on the mediobasal hypothalamus,
basal ganglia, and retina SRIF neurons (Thermos et al.,
2006). Negative regulation of GHRH release by SRIF is
consistent with the reported SST1 inhibitory role on
hypothalamic regulation of GH secretion (Kreienkamp
et al., 1999; Lanneau et al., 2000). Intriguingly, gender-
related differences in both number and labeling density
of SST1 mRNA-expressing cells are observed in the rat
ARC (i.e., two- to threefold increase in males versus
females) (Zhang et al., 1999). This observation may
explain lower basal GH levels in male than in female
mammals (Jansson et al., 1985), and also the sexually
dimorphic GH pulsatile secretion (Low et al., 2001).
More recently, the negative regulation by SRIF of
GHRH neuron electrical activity was decrypted using
a GHRH–GFP transgenic model (Osterstock et al.,
2016). It revealed a sexual dimorphism, which is
primarily attributable to a sex-dependent control of
GABAergic and glutamatergic inputs by SRIF, rather
than intrinsic differences in the GHRH neurons them-
selves. Interestingly, the positive glutaminergic neuro-
transmission onto GHRH neurons is an obligatory
target of SRIF in female, providing a mechanism for a
more tonic inhibition in female than in male, where this
inhibitory signal was absent in one-third of animals.
Intriguingly, this is the opposite for SRIF inhibition of

Fig. 5. SST1 expression pattern in normal human tissues. Immunohistochemistry (red-brown color), counterstaining with hematoxylin; primary
antibody: UMB-7; scale bar, 50 mm. SST1 displays both membranous and cytoplasmic expression.

TABLE 3
Rabbit monoclonal SST antibodies

Clone Epitope Species Reactivity Reference

SST1 UMB-7 377ENLESGGVFRNGTCTSRITTL391 Human Lupp et al. (2013)
SST2 UMB-1 355ETQRTLLNGDLQTSI369 Mouse, rat human Fischer et al. (2008)
SST3 UMB-5 398QLLPQEASTGEKSSTMRISYL418 Human Lupp et al. (2012)
SST5 UMB-4 344QEATPPAHRAAANGLMQTSKL364 Human Lupp et al. (2011)
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GABAergic (negative) inputs, being especially robust
and synchronized in males. Both SST1 and SST2 are
involved in GHRH neuron rhythmicity, but SST1 recep-
tors specifically transduce SRIF inhibitory control of
GABAergic inputs, likely taking place at the presynap-
tic level (Osterstock et al., 2016). Seven percent of
neuropeptide Y–positive neurons in the ARC coexpress
SST1 mRNA, suggesting a direct interaction between
the somatotropic axis and neuroendocrine regulatory
loops of energy homeostasis (Fodor et al., 2005). Hypo-
thalamic paraventricular and ARC SST1 may account
for prevention of acute stress-induced gut motor func-
tions in mice after central injection of a SST1-selective
agonist, including inhibition of gastric emptying and
stimulation of colonic motility (Stengel et al., 2011),
putatively through central SRIFergic regulation of
corticotropin-releasing factor (CRF) release and down-
stream stress-induced CRF actions (Stengel et al.,
2013). Recently, neuroanatomical connections between
somatostatin and kisspeptin neurones were observed in
the rat ARC and ventromedial hypothalamus, where
one-third of kisspeptin neurones exhibit SST1 immu-
noreactivity. Because kisspeptin is a gonadotropin-
releasing hormone secretagogue, these observations
suggest that the regulation of kisspeptin release by
SST1 may at least be partly involved in the well-known
inhibition of gonadotropin-releasing hormone release
by SRIF (Dufourny et al., 2018). In the basal ganglia
(substantia nigra, nucleus accumbens, globus pallidus,
and ventral pallidum), SST1 is also present presynap-
tically, where it negatively regulates SRIF release
(Vasilaki et al., 2004), strongly suggesting that it may
serve as an autoreceptor to modulate systems regulated
by SRIF (including dopamine). SST1 (together with
SST2) are abundantly expressed in nerve processes of
basal forebrain regions, including substantia innomi-
nata and the horizontal limb of the diagonal band
(Hervieu and Emson, 1998), where SRIF inhibits glu-
tamate release presynaptically through SST1, thereby
regulating excitability of forebrain cholinergic neurons
(Momiyama and Zaborszky, 2006). Expression and
function of SST1 in the rodent hippocampus have been
controversial until the demonstration of SST1-mediated
SRIF inhibitory action on synaptic transmission, using
hippocampal slices of SST1 KO mice and a SST1

selective agonist (Cammalleri et al., 2009). Hippocampal
activity is regulated by SST1 through presynaptic in-
hibition of glutamate release induced by epileptiform
treatment. In the spinal cord, SST1 may be involved in
nociceptive transmission because dorsal horn and me-
dulla regions coexpress SST1 together with SRIF, which
has analgesic effects in rodents and humans (Malcangio,
2003; Imhof et al., 2011). In the peripheral nervous
system, SST1 may be involved in inhibitory effects of
SRIF on inflammation and nociception (Pinter et al.,
2006), such as in mouse models of stress-related visceral
nociception (Mulak et al., 2015) or immune-mediated

arthritis (Imhof et al., 2011). In the retina, activation of
SST1 with a selective ligand decreases SRIF release
from retinal explants (MastrodimouandThermos, 2004).
Surprisingly, loss of SST1 expression in SST1 KO mice
results inupregulated SRIFandSST2 retinal expression,
together with an enlargement of axonal terminals of
rod bipolar cells, where SST2 is expressed, as well as
enhanced SST2 function (Bigiani et al., 2004; Pavan
et al., 2004). Conversely, in SST2 KO mice, SST1

expression is upregulated and rod bipolar cell axonal
terminals are smaller (Casini et al., 2004). This suggests
reciprocal inhibitory retinal roles of SST1 on SST2

expression, and vice versa. It certainly contributes to
SRIFergic regulation of glutamatergic transmission
along the vertical retinal visual pathway in which the
SST2/SRIF receptor/ligand pair is probably restrained by
SST1, consistent with reported SST1 autoreceptor func-
tions (Dal Monte et al., 2003; Thermos et al., 2006).

In the periphery, SST1 is expressed, together with
SST5 (Strowski et al., 2003), in a high percentage of
pancreatic b-cells (Portela-Gomes et al., 2000), consis-
tent with its reported role in regulating insulin secre-
tion in studies using SST-selective agonists or in KO
mouse models (Wang et al., 2004; Smith, 2009). In the
anterior pituitary, the SST1-selective agonist CH-275
decreases GH secretion in wild-type, but not primary
somatotroph cultures derived from SST1-KO mice
(Kreienkamp et al., 1999), demonstrating the critical
role for SST1 in regulating pituitary GH. SST1 was
expressed in endothelial cells of normal human veins
and arteries, including atherosclerotic arteries. SST1-
selective agonists demonstrated consistent angio-
inhibitory effects in vitro (Bocci et al., 2007) and induced
vascular relaxation through cytoskeletal alterations
(Liapakis et al., 1996), making SST1-specific analogs
interesting for treatment of vascular diseases, including
intimal hyperplasia. Intriguingly, another study local-
ized SST1 mRNA and SST1 protein to vascular smooth
muscle cells, where it showed acute upregulation of
expression during vascular trauma coincidently with
smooth muscle cell proliferation, making this receptor
an interesting target to inhibit myointimal proliferation
(Khare et al., 1999). The presence of SST1 in intestinal
macrophages and mast cells, especially during inflam-
mation, has been described in mice (Perez et al., 2003;
Van Op den Bosch et al., 2007). Low SST1 expression
was also found in macrophages differentiated from
peripheral bone marrow cell–derived monocytes, where
it mediates together with SST2 anti-inflammatory
effects after activation by a multireceptor SRIF analog
(Armani et al., 2007). During liver inflammation, such
as in cirrhosis or hepatocellular carcinoma (HCC), all
five SST mRNAs were expressed, whereas expression
was not observed in normal human liver. The specific
SST1 agonist L-797,591 was the only SST agonist to
inhibit both liver cancer cell and hepatic stellate cell
migration, making SST1 agonists putatively interesting
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to treat liver cirrhosis or HCC (Reynaert et al., 2004).
Accordingly, SRIF also reduced production of collagens
and inflammatory cytokines by hepatic stellate cells,
although the specific receptor subtype was not identi-
fied. This putatively explains antifibrotic and immuno-
modulatory actions of SRIF in the liver (Lang et al.,
2005; Reynaert et al., 2005). SST1 was also found
uniquely expressed in stellate cells of pancreatic ade-
nocarcinoma, and its activation by pasireotide reduced
chemoprotective and prometastatic features of these
fibroblastic cells by reducing IL-6 and collagen-1 secre-
tion (Duluc et al., 2015; Moatassim-Billah et al., 2016).
SST1 is overexpressed in prostate cancer (Sinisi et al.,

1997; Kosari et al., 2008) andmediates antiproliferative
effects and inhibition of prostate-specific antigen re-
lease induced by the SST1-selective agonist BIM-23926
in prostate cancer cell lines (Pedraza-Arevalo et al.,
2017). In the thymus, SST1 mRNA is expressed on
isolated thymic epithelial cells, where SRIF inhibits
proliferation (Ferone et al., 1999). SST1 mRNA is not
expressed in fresh human or rat thymocytes (Sedqi et al.,
1996; Ferone et al., 2002), but rat thymocyte activation
with phytohemagglutinin or IL-1 selectively induced
SST1 (Sedqi et al., 1996), suggesting SST1 involvement
in thymocyte proliferation and differentiation.

G. Somatostatin Receptor 1 Ligands

The lack of available SRIF analogs with selectivity
for SST1 stimulated the search for such compounds. The
first to be identified is CH-275, which harbors a peptidic
scaffold with selected amino acid deletions (des-aa1,2,5-
SRIF) that in combination with DTrp at position 8,
and 4-(N-isopropyl)-aminomethylphenylalanine (IAmp)
at position 9, yields des-aa1,2,5-[DTrp8,IAmp9]-SRIF
(CH-275), a SRIF agonist with nanomolar affinity for
SST1, and that was 30-fold more selective for SST1

versus SST2/4/5 and 10-fold versus SST3, respectively
(Liapakis et al., 1996). Using integrated combinato-
rial chemistry with high-throughput receptor-binding
approaches, a SST1-selective nonpeptide compound
(L-797,591) (Fig. 6; Table 4) displaying agonistic activ-
ity with an IC50 of 3 nM was the first pharmacological
tool identified for selective SST1 in vitro and in vivo

studies (Rohrer et al., 1998). BIM-23926 is a synthetic
SST1-selective agonistic peptide (IC50 of 4 nM), reported
to decrease cell viability of human medullary thyroid
carcinomaTT cells, as well as to inhibit calcitonin release
and cAMP levels (Fig. 6; Table 4) (Zatelli et al., 2002).
SRA880 is the first reported nonpeptide SRIF SST1

competitive antagonist, with high affinity for both native
and recombinantly expressed SST1 from various spe-
cies (Fig. 6; Table 4) (rat, mouse, monkey, human), while
displaying low affinity for a range of other neurotrans-
mitter receptors, except the dopamine receptor D4
(Hoyer et al., 2004). The compound is bioavailable and
brain penetrant. Consistent with the inhibitory autor-
eceptor role of SST1, SRA880 administration increases
SRIF brain release and signaling, countering depressive-
like symptoms in mice (Nilsson et al., 2012). A series of
SST1-selective ergoline derivatives has been developed,
some of which show effective oral bioavailability and
brain penetration (Hurth et al., 2007; Troxler et al.,
2008). The only clinically approved SRIF analog showing
high affinity for SST1 is pasireotide, a nonselective
peptidic compound displaying an IC50 of 9.3 nM for
SST1, and IC50 values for SST2, SST3, and SST5 of 1,
1.5, and 0.16 nM, respectively (Schmid, 2008).

V. Somatostatin Receptor 2

A. Somatostatin Receptor 2 Structure

cDNAs coding human and mouse SST2 were isolated,
together with cDNAs coding for SST1, in early 1992
using a polymerase chain reaction–based approachwith
primers directed to regions conserved in all GPCRs
(Yamada et al., 1992a). In the same year, a cDNA
encoding for rat SST2 was identified by expres-
sion cloning from a rat brain cDNA library (Kluxen
et al., 1992). The gene coding human SST2 is local-
ized on chromosome 17q25.1 and consists of two exons.
Whereas exon 1 contains only 59UTR, the entire coding
region and 39UTR are located on exon 2. Genes encoding
for mouse and rat SST2 are localized on chromosomes
11 E2 and 10q32.1, respectively. Homology between
human and rodent SST2 is 94% (mouse) and 93% (rat) at
the amino acid level, respectively. In all three species,

Fig. 6. Structures of synthetic SST1 ligands. L-797,591, SST1 agonist; SRA880, SST1 antagonist.
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SST2 is a 369-amino-acid protein (Mr = 41,305 in
humans), displaying typical seven-transmembrane
segments and four putative N-glycosylation sites
(Asn-9, Asn-22, Asn-29, and Asn-32) (Fig. 7). In Western
blot experiments, the protein is detected as a character-
istic smear migrating between 70 and 80 kDa, in keeping
with the assumption that these Asn residues are exten-
sively glycosylated. In addition to this long receptor
species, a mouse SST2 splice variant codes for a short-
ened receptor with an alternative C-terminal tail
(termed SST2B) (Vanetti et al., 1992). This variant
arises due to removal of a part of the second exon that
codes for the C-terminal tail of the long (SST2A)
variant, and that also contains some 39UTR. Some of
the remaining 39UTR of SST2A then becomes the
coding region in SST2B mRNA; in contrast to SST2A,
the C-terminal sequence of SST2B is very poorly
conserved between species. Several functionally rele-
vant elements of the SST2A C terminus are lost due
to the alternative splicing event: 1) elimination of
phosphorylation sites that contribute to agonist-
dependent desensitization and internalization and
2) SST2A contains a C-terminal consensus motif for
binding PDZ domains (Zitzer et al., 1999), which is not
present in in SST2B. Whereas both spliced forms have
been identified in rodents (Vanetti et al., 1992),
human tissues exclusively contain the unspliced SST2A

variant. Consequently, we use the denomination SST2

for the long unspliced SST2A variant throughout this
review.

B. Somatostatin Receptor 2 Signaling Mechanisms

Signaling properties of SST2 have been investigated
in several heterologous expression systems, or in en-
dogenous SST2-expressing cells using SST2 agonists. As
physiologic actions of SRIF (e.g., on GH release) are
sensitive to PTX (Cronin et al., 1983), unsurprisingly,
SST2 also acts mostly through PTX-sensitive G proteins
of the inhibitory/olfactory family of Ga subunit (Gi/o)
type (Law et al., 1993), as reported in cultured mam-
malian cells heterologously expressing SST2, such as
CHO, human embryonic kidney (HEK)293 cells, or SV4-
transformed fibroblast-like derived monkey kidney
(COS-7) cells. Major effects of SST2/Gai/o signaling are
inhibition of adenylyl cyclase, inhibition of voltage-
gated calcium channels, and activation of Kir3.x (Fig. 8)
(Kreienkamp et al., 1997). The inability of SRIF-bound
SST2 to inhibit cAMP production in some cell lines (e.g.,
Law et al., 1993) was ascribed to lack of expression of an
appropriate G protein (Hershberger et al., 1994). All of
these effects are complementary for the inhibition of
excitable cells, such as neurons or hormone-secreting
cells. Thus, whereas hormone secretion by pituitary
cells is driven by Ca2+ influx through voltage-gated
Ca2+ channels, activation of potassium channels by
SRIF-activated SST2 hyperpolarizes the membrane
and prevents depolarization induced by hypothalamic
releasing hormones. In pituitary cells, SST2 activates
PLC [more specifically the PLC-b3 isozyme (Kim et al.,
2012), which is partially blocked by PTX, putatively
involving a Gaq/11 (Chen et al., 1997) and/or Gbg protein
(Kim et al., 2012)]. This results in inositol-1,4,5-
trisphosphate formation and Ca2+ release into the
cytoplasm from the endoplasmic reticulum, regulating

TABLE 4
Ligand-binding affinities of SST1-selective ligands

SST1 SST2 SST3 SST4 SST5

L-797/591a 1.4 1875 2240 170 3600
BIM-23926b 3.6 .1000 .1000 833 788
SRA880c 7.6 .1000 .1000 .1000 954
aData from Rohrer et al. (1998).
bData from Zatelli et al. (2002).
cData from Hoyer et al. (2004), Cammalleri et al. (2009).

Fig. 7. Structure of human SST2. The primary and secondary amino acid structure of the human SST2 (UniProtKB - P30874) is shown in a schematic
serpentine format. Glycosylation sites are colored in purple; the DRY motif is highlighted in green; the human SST motif is in light blue; potential
phosphorylation sites are in gray; identified GRK2/3 phosphorylation sites are in red; identified GRK2/3 or PKC phosphorylation sites are in dark
green; the PDZ ligand motif is in dark blue; the disulfide-forming cysteines are in pale blue; and the potential palmitoylation site is in orange. UMB-1 is
a rabbit monoclonal antibody, which detects the carboxyl-terminal tail of SST2 in a phosphorylation-independent manner.
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the MAPK/extracellular signal-regulated kinase (ERK)
pathway (Kim et al., 2012).
Besides these canonical G protein–mediated signal-

ing pathways, SST2 also activates tyrosine phosphatase
activity, associated with reduced serum-stimulated cell
proliferation (Buscail et al., 1994; Reardon et al., 1997).
This effect has been replicated in several cell types either
overexpressing the receptor, or expressing lower endoge-
nous levels of SST2 (Dent et al., 1997; Barbieri et al., 2008).
Activation of tyrosine phosphatases by SRIF is PTX-
sensitive and can be mimicked by addition of Gai/o

subunits purified from brain (Dent et al., 1997), implicat-
ing this G protein in the SST2-initiated signaling pathway.
The nonreceptor tyrosine protein phosphatases SHP-1
and SHP-2, respectively, have emerged asmajor effectors
(Lopez et al., 1997; Reardon et al., 1997), being copuri-
fied with SST2 (or SSTs in general) in heterologous cell
systems, and sequentially activated, dependent on G
protein (Gai3 and Gbg) and Src activity (Lopez et al., 1997;
Ferjoux et al., 2003). Through phosphatase activation,
SST2 inhibits tyrosine phosphorylation events such as
those following activation of tyrosine kinase receptors
(Bousquet et al., 1998; Hortala et al., 2003). This leads to
cell cycle arrest and subsequent inhibition of cell pro-
liferation, through upregulation of the cyclin-dependent
kinase inhibitor p27/Kip1 (Pagès et al., 1999) and the zinc
finger protein (Zac1) (Theodoropoulou et al., 2006), as

mainly demonstrated in heterologous cell systems (Pagès
et al., 1999; Grant et al., 2008). Furthermore, similar
results were obtained using SST2-preferring or selective
analogs in endogenously SST2-expressing cells [e.g., pitu-
itary tumors (Ferrante et al., 2006; Hubina et al., 2006;
Theodoropoulou et al., 2006; Horiguchi et al., 2009;
Peverelli et al., 2017), insulinoma (Aoki et al., 2014),
glioma (Barbieri et al., 2009), normal and tumoral
pancreatic acinar cells (Charland et al., 2001), or thyroid
cells (Medina et al., 1999)]. This involves regulation of
several signaling pathways, including Ras/Raf/ERK
(Dent et al., 1997; Lahlou et al., 2003), phosphatidyli-
nositol-4,5-bisphosphate 3-kinase (PI3K)/AKT serine/
threonine kinase 1 (AKT)/glycogen synthase kinase
3b/mechanistic target of rapamycin kinase (mTOR)
(Bousquet et al., 2006; Theodoropoulou et al., 2006;
Azar et al., 2008), p38 (Alderton et al., 2001), neuronal
NOS (Lopez et al., 2001), and JAK2 (Hortala et al., 2003).
Depending on phosphatase activity, SST2 activation
also triggers apoptosis in endogenous SST2-expressing
pituitary somatotroph tumor cells (Ben-Shlomo and
Melmed, 2010), and also in pancreatic cancer cells
engineered to express this receptor, where apoptosis
is further stimulated by treatment with death ligands
(Ben-Shlomo andMelmed, 2010). Finally, SST2-induced
dephosphorylation events can also lead to inhibition
of cell migration and invasion, through inhibition of

Fig. 8. SST2 signaling leading to inhibition of hormone secretion, cell proliferation and migration, and angiogenesis. By coupling to Gi proteins, SST2
inhibits adenylate cyclase and reduces cAMP accumulation, and reduces intracellular Ca2+ concentrations by activating GIRK channels, which results
in membrane hyperpolarization and subsequent reduction of Ca2+ influx through VOCC. This results in decreased hormone secretion. By coupling to a
pertussis toxin–independent G protein, SST2 activates PLC, triggering inositol-1,4,5-trisphosphate (IP3) production and subsequent Ca2+ release into
the cytoplasm from the endoplasmic reticulum. Major downstream effectors of SST2 are the tyrosine phosphatases SHP-1 and SHP-2 and the tyrosine
kinase Src, which subsequently inhibit the PI3K-mTOR, MAPK, JAK2, and neuronal NOS pathways, thereby decreasing cell growth and proliferation.
SST2-dependent inhibition of cell proliferation involves upregulation of the transcription factor ZAC1, triggering cell cycle inhibition.
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the small G protein Rac and of the subsequent ruffle
formation in endogenous SST2-expressing neuroblas-
toma cells (Pola et al., 2003). In addition, SST2-induced
dephosphorylation events can lead to restoration of cell-
to-cell (adherens and gap junctions) and cell-to-matrix
(hemidesmosomes) contacts in SST2-transfected pancre-
atic cancer cells (Benali et al., 2000; Lahlou et al., 2005;
Laval et al., 2014).

C. Somatostatin Receptor 2 Regulation

Similar to genes encoding the other SSTs, genes
coding SST2 from various species do not contain TATA
and CAAT boxes (Greenwood et al., 1995). A minimal
promoter fragment close to the transcription initiation
site was identified as a novel initiator element sufficient
to account for transcription from the SST2 promoter in
neuroblastoma cells (Pscherer et al., 1996). Interest-
ingly, a so-called enhancer box was identified in this
region, which serves as a binding site for the basic helix-
loop-helix transcription factor (SEF-2). Interaction of
SEF-2 with the enhancer box was identified as a major
driving force for activity of the promoter in several cell
lines (Pscherer et al., 1996). Transcriptional activity is
further enhanced by the binding of c-myc intron binding
protein 1 (MIBP1), both to SEF-2 and to a thymine-
cytosine–rich transcriptional enhancer element; the
expression pattern of MIBP1 matches that of SST2 in
the murine brain, suggesting that MIBP1 confers
expression tissue specificity at least in the CNS (Dorf-
linger et al., 1999). In addition, negative regulatory
elements have been identified in more distal regions of
the promoter of the mouse Sstr2 gene. Suppression of
transcriptional activity by this region may be overcome
by Smad3/Smad4, which plates the activity of the Sstr2
gene under control of a transforming growth factor
b–dependent signaling pathway (Puente et al., 2001).
Finally, and relevant for tumors that escape SST2-
mediated antiproliferative effect of SRIF and its analogs,
an alternative 59/upstream promoter was identified
that may be silenced by methylation (Torrisani et al.,
2008). High methylation levels in this region corre-
lated with reduced SST2 expression in tumor cells (Shen
et al., 2016).
Regulation of SST2 depends upon molecular mecha-

nisms, implying phosphorylation events at theC-terminal
tail followed by recruitment of b-arrestins and receptor
endocytosis. Combined biochemical and mutagenesis
approaches identified serine and threonine residues in
the C-terminal tail of the SST2 that are phosphorylated
upon SRIF and/or octreotide stimulation, namely, S341,
S343, S348, T353, and T354 in rat SST2-transfected CHO
and GH4C1 cells (Liu et al., 2009), and S341, S343, T353,
T354, T356, and T359 in HEK293 cells stably transfected
with rat or human SST2 (Nagel et al., 2011; Lehmann
et al., 2014b). Agonist-dependent phosphorylation of the
four threonine residues was also documented in rat
pituitary tumor cells (GH3) transiently transfected with

rat SST2, rat pancreatic insulinoma b-cells (INS1 cells),
which endogenously express SST2, and rat pancreas
in vivo (Poll et al., 2010). Although rat SST2 internaliza-
tion was partially inhibited by mutation of threonine
residues, none of the mutations resulted in a complete
block of receptor internalization (Liu et al., 2008). By
contrast,multisite phosphorylation of clusters of carboxyl-
terminal serine and threonine residues of the human
SST2 cytoplasmic tail is a critical event for receptor
endocytosis (Lehmann et al., 2014b). Accordingly, in a
SRIFoma, which synthesized and secreted SRIF and in
which SST2 are localized intracellularly, receptors are
phosphorylated, whereas in an ileal carcinoid tumor in
which SST2 are membrane-bound, receptors are found
nonphosphorylated (Liu et al., 2003). In human NET
samples, SST2 phosphorylation is observed only in
octreotide-treated patients and receptors are internal-
ized, whereas in untreated tumors SST2 are not phos-
phorylated and are located at the cell membrane (Waser
et al., 2012). Of note, unlike SRIF and octreotide,
pasireotide (formerly known as SOM230) stimulates
only phosphorylation of S341 and S343 residues of
human SST2, followed by a partial receptor internaliza-
tion (Lesche et al., 2009; Lehmann et al., 2014b). In cell
lines, G protein–coupled receptor kinase (GRK2) (Liu
et al., 2009) or GRK3 is involved in phosphorylation of
S341 and S343 residues (Nagel et al., 2011), whereas the
threonine residues (T353, T354, T356, and T359) are
phosphorylated by GRK2 and GRK3 (Poll et al., 2010). In
HEK293 cells stably expressing SST2, chemical protein
phosphatase inhibitors and small interfering RNA
knockdown screening lead to identification of protein
phosphatase 1b (PP1b) as the GPCR phosphatase that
catalyzes rapid dephosphorylation of residues T353,
T354, T356, and T359 (Poll et al., 2011).

SST2B terminates after residue 332 and therefore
does not contain the phosphorylation sites identified in
the C-terminal tail of SST2 (Cole and Schindler, 2000).
Accordingly, SST2B phosphorylation is not detectable
after agonist stimulation of colonic adenocarcinoma
cells, whereas SST2 is phosphorylated under the same
conditions (Holliday et al., 2007). SRIF causes rapid
desensitization of SST2, but not of SST2B, in this latter
cell type. However, both receptor subtypes desensitized
markedly in transfected CHO cell line subclone K1
(CHO-K1) cells (Cole and Schindler, 2000). Interest-
ingly, phosphorylation in the third ICL of SST2, a
sequence shared by the SST2B variant, also occurs
(Hipkin et al., 2000; Elberg et al., 2002), but does not play
a role in internalization and desensitization (Lehmann
et al., 2014b). Differences in receptor phosphorylation
might be physiologically relevant in the rodent brain and
the GIT, where different expression patterns of the two
SST2 subtypeshavebeendocumented (Cole andSchindler,
2000).

The relationship between SST2 phosphorylation and
b-arrestin binding, a major class of adaptor proteins
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involved in GPCR desensitization and internalization,
has been investigated in different cell lines. In HEK293
(Tulipano et al., 2004) and CHO cells (Liu et al., 2005),
or primary hippocampal neurons (Lelouvier et al.,
2008), cotransfected with b-arrestin enhanced green
fluorescent protein and the rat SST2, both b-arrestin-1
and b-arrestin-2 are recruited to the plasma membrane
after agonist stimulation, form stable complexes with
the receptor, and internalize together. b-arrestin-2
recruitment also occurs after agonist stimulation of
human SST2 in HEK293 cells (Lehmann et al., 2014b).
Together, these results suggest that the SST2 belongs to
the class B GPCR subgroup, because its activation
results in robust recruitment of both b-arrestin-1 and
-2 (Oakley et al., 2000).

D. Somatostatin Receptor 2 Trafficking

Studying SST trafficking has received increasing
attention because the fate of internalized receptors,
following agonist exposure, may vary from degradation
to rapid recycling to the plasma membrane, thereby
affecting responsiveness to endogenous ligands and
drugs of therapeutic interest. A striking SST2 property
is that in the vast majority of the cell types endoge-
nously expressing this subtype, it is almost exclusively
confined to the plasma membrane, such as in central
and myenteric neurons, neuroendocrine cells of the
gastric antrum (Gugger et al., 2004; Fischer et al.,
2008), anterior pituitary (Fischer et al., 2008; Peineau
et al., 2014), pancreatic islets, as well as central and
peripheral tumors (Reubi et al., 2000b). However, intra-
cytoplasmic SST2 localization was observed in CNS in
regions exhibiting dense SRIF innervation such as the
central nucleus of the amygdala (Dournaud et al., 1998).
Intracellular localization was also described in a rat
model of middle cerebral artery occlusion in cerebro-
cortical neurons adjacent to the infarct, which region-
ally correlates with transient SRIF depletion from
axonal terminals (Stumm et al., 2004). Subcellular
distribution of the receptor may be dependent on
surrounding SRIF concentrations, as suggested in
tumors of the nervous and neuroendocrine systems
(pheochromocytomas and neuroblastomas) producing
autocrine SRIF (Reubi et al., 2000b). Collectively, these
studies highlight that SRIF released under physiologic
or pathophysiological conditions regulates localization
and trafficking of SST2 consistent with results obtained
in cell lines (Csaba and Dournaud, 2001; Tulipano and
Schulz, 2007; Jacobs and Schulz, 2008; Treppiedi et al.,
2017). In hippocampal neuronal cells, SST2 trafficking
was analyzed in detail at different times after acute
intracerebral octreotide injections or in primary neuronal
culture exposed to SRIF ligands (Csaba et al., 2001, 2007;
Lelouvier et al., 2008; De Bundel et al., 2015). These
experiments demonstrated for the first time that GPCR
cargoes recycle through the trans-Golgi network (TGN)
after endocytosis. After activation and internalization,

endosomes bearing SST2 in dendrites (by far the major
pool of SST2) and cell bodies fuse and migrate to a
perinuclear compartment expressing trans-Golgimarkers
such as the integral protein of the TGN, TGN38, and
syntaxin-6, but not cis-golgi markers such as cis-Golgi
marker 130 (GM130). These results have been comfirmed
in vivo by electron microscopy approaches that showed
that SST2 cargoes were not targeted to degradative
departments; rather, TGN-enriched receptors recycle to
the plasma membrane (dendrites and cell bodies), where
they are observed in preagonist challenge equivalent
amounts. The recycling process, which depends on the
length and extension of dendritic arborization, is slow, 3–6
hours in vitro and 24–48 hours in vivo. Differences in
kinetics between in vivo and in vitro studies might be, at
least in part, due to the persistence of the intracerebrally
injected agonist, which cannot be removed or chased as
in in vitro settings, implying several internalization/
recycling cycles before total agonist clearance or degrada-
tion. Such trafficking of activated SST2 to the TGN was
also reported in myenteric neurons, in which an intact
TGN is necessary for receptor recycling (Zhao et al., 2013).
In both DRGs and dorsal horn neurons, octreotide-
activated SST2 in vivo also are observed to concentrate
in perinuclear regions that resemble the TGN before
recycling (24 hours) (Shi et al., 2014). The physiologic
significance of this peculiar recycling pathway is not fully
understood. Recycled receptormight undergo biochemical
modifications and/or association with scaffolding proteins
for proper delivery to the cell surface. An additional
intriguing hypothesis is that SST2 targeted to the TGN
could produce downstream cellular responses, such as
coupling to different G proteins, as demonstrated for
other GPCRs, the sphingosine 1-phosphate receptor
(Mullershausen et al., 2009), and the TSH receptor
(Calebiro et al., 2009).

Recently, studies have focused on factors involved in
regulation of intracellular SST2 trafficking. Modulating
recycling of a particular receptor can indeed impact its
physiologic fate and therefore offer a potential thera-
peutic value. Using pharmacological and cell biologic
approaches, it was demonstrated that leucyl-cysteinyl
aminopeptidase (LNPEP; formerly known as insulin-
regulated aminopeptidase) ligands accelerate recycling
of internalized SST2 in neurons in vitro or in vivo (De
Bundel et al., 2015). LNPEP, which shares common
regional and subcellular distribution with internalized
SST2, was shown to be involved in vesicular trafficking
(Wright andHarding, 2011). Importantly, becauseLNPEP
ligands increase the density of SST2 at the plasma
membrane, they also potentiate SRIF-inhibitory effects
on seizure activity (De Bundel et al., 2015). LNPEP
therefore represents a therapeutic target for treatment of
limbic seizures and possibly for other neurologic condi-
tions in which downregulation of GPCRs occurs. In
myenteric neurons, activated SST2 traffic to endothelin-
converting enzyme 1 (ECE-1)–containing vesicles and
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TGN (Zhao et al., 2013). This endosomal peptidase
degrades peptide ligands in intracellular organelles
and promotes receptor resensitization (Roosterman
et al., 2007). SST2 recycling (30 minutes) in myenteric
neurons is dependent upon endosomal acidification,
ECE-1 activity, and an ECE-1 cleavable ligand, which
is the case for SRIF-14, but not for SRIF-28 or analogs,
such as octreotide (Zhao et al., 2013). Hence, after
activation by ECE-1–resistant SRIF-28 and analogs,
SST2 remain within the TGN and are poorly recycled at
120 minutes. Assuming that SST2 signals in intracel-
lular organelles, this could explain, at least in part, the
long-lasting actions of SRIF analogs such as octreotide.
Of note, although ECE-1 might be present in the
hippocampus (Barnes et al., 1997), the kinetics of SST2

recycling were the same after activation by SRIF-14 or
octreotide in hippocampal neurons (De Bundel et al.,
2015), suggesting that the ECE-1 role on SST2 recycling
is dependent upon cell types. Filamin A (FLNA), a
scaffolding protein involved in intracellular trafficking
of several transmembrane proteins (Onoprishvili et al.,
2003; Noam et al., 2014), has been shown to interactwith
the SST2 in melanoma and pancreatic cell lines (Najib
et al., 2012). FLNAappears crucial for SST2 stabilization
and signaling at the plasma membrane (Peverelli et al.,
2014; Vitali et al., 2016). In addition, FLNA may protect
SST2 from degradation by facilitating targeting of the
receptor to a recycling pathway during long-term agonist
treatment of pancreatic tumor and GH-secreting tumor
cells (Peverelli et al., 2014; Vitali et al., 2016).

E. Somatostatin Receptor 2 Interacting Proteins

Interestingly, all SST subtypes (SST1–SST5; with the
exception of the short-splice variant SST2B) contain a
consensus motif for interaction with type I PDZ do-
mains at the intracellular C termini. This motif is
conserved throughout evolution, as the closest homologs
of SSTs in Drosophila, the Drostar1 and Drostar2
receptors for type C allatostatins, also contain a PDZ
ligand motif (Kreienkamp et al., 2002). In contrast,
closely related opioid receptors are devoid of such a
motif. In its simplest form, a type I PDZ ligand consists
of the C-terminal sequence –S/T–X–f–COOH, in which
f is a large hydrophobic residue (Phe in SST4; Ile or Leu
in SST1, 2, 3, 5; Val in many other typical PDZ ligand
motifs). Whereas such amotif is quite common, flanking
sequences add to the specificity of PDZ-type interac-
tions (Zeng et al., 2016), thus ensuring that not every
PDZ ligand can interact with any PDZ domain. SST2

was the first SST for which an interaction with a PDZ
domain–containing protein was reported; Zitzer et al.
(1999) identified members of the Shank protein family
as potential interactors through yeast two-hybrid screen-
ing (Zitzer et al., 1999). Shank proteins are important
scaffold proteins of the PSD. They exhibit a complex
domain structure, as the central PDZ domain is accom-
panied by a Ras association domain, a set of seven

ankyrin repeats, and a sterile alpha motif (SAM
domain) and a nuclear localization signals 1 domain.
In addition, a long proline-rich stretch is involved in
binding actin-binding proteins. In the PSD, Shank
proteins are considered as master scaffold proteins that
link receptor complexes to the actin-based cytoskeleton
(Kreienkamp, 2008). As SST2 does not appear to be a
postsynaptically enriched receptor, it appears likely
that interactions between Shank proteins and SST2

are relevant at other, nonsynaptic sites. In further
studies, PDZ domain–containing 1 (PDZ-K1) protein
was identified as interaction partner for all SST sub-
types, including SST2. As PDZ-K1 also interacts with a
PLC isoform, this work suggests that PDZ-K1 allows for
coupling of SST subtypes to PLC through ternary
complex formation. Finally, C-terminal PDZ ligand
motifs of a larger number of membrane proteins have
been shown to promote postendocytic recycling through
binding to the PDZ domain containing sorting nexin
family member 27 (Steinberg et al., 2013), and the PDZ
ligand of SST2 may also promote similar recycling.

Additionally, SST2 harbors two immunoreceptor
tyrosine-based inhibitionmotif (ITIM) sequences (immu-
noreceptor tyrosine–based inhibitory motif: I/V/L/S-x-Y-
x-x-L/V), present in the third ICL and C-terminal tail
(Ferjoux et al., 2003). Such ITIM consensus sequences
were initially found in inhibitory immunoreceptors (e.g.,
programmed cell death protein 1), triggering B cell
receptor inhibition of SHP-2 recruitment, and subse-
quent dephosphorylation of B cell receptor effector mole-
cules (Okazaki et al., 2001). Similarly, SRIF-induced
phosphorylation of SST2 tyrosine 228 and 312 residues,
present in each of the two SST2 ITIMs, triggers SHP-2
(but not SHP-1) direct recruitment to SST2, SHP-2
activation, and subsequent transduction of dephosphor-
ylation events also involving the kinase Src and SHP-1,
leading to cell proliferation inhibition (Ferjoux et al.,
2003).

The first SST2 ICL contains two juxtaposed binding
sites for the p85 regulatory subunit of PI3K and for the
actin-binding and scaffolding protein FLNA (Bousquet
et al., 2006; Najib et al., 2012). Depending on SST2

phosphorylation of tyrosine residues 66 and 71, present
in FLNA and p85 binding sites, respectively, FNLA or
p85 competitively binds to SST2 first ICL. In the
absence of SRIF, these tyrosine residues are phosphor-
ylated, enabling p85, but not FLNA, binding. This state
is permissive for growth factor–induced activation of
PI3K activity. In the presence of SRIF, SST2 tyrosine
residues 66 and 71 are dephosphorylated, enabling
FLNA, but not p85 binding, the dissociation of which
from SST2 triggers PI3K inactivation. One hypothesis is
that SHP-2 binding to SST2, induced by SRIF through
ITIMphosphorylation on SST2 third ICL andC-terminal
domain (Ferjoux et al., 2003), triggers dephosphorylation
of FLNA and p85 binding sites in SST2 first intracellular
domain. Alternatively, the scaffolding FLNA protein,
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once recruited onto SST2 in the presence of SRIF (Najib
et al., 2012), brings SST2 in proximity to the phosphatase
SHP-1, whose activity is critical to trigger SRIF-inhibitory
effects on cell proliferation, migration, or invasion. Both
rat and human SST2 form constitutive homodimers
(Pfeiffer et al., 2001; Lehmann et al., 2016). The dynamics
of ligand-induced traffickinghave also been studied for pig
SST2 (Durán-Prado et al., 2007). This receptor forms
constitutive homodimers/multimers in the absence of
ligand, which rapidly dissociate (11 seconds) upon SRIF
binding. Interestingly, in contrast to human SST2, pig
SST2 rapidly reassociates (110.5 seconds) during a sub-
sequent process that temporally overlaps with receptor
internalization (half-maximal 95.1 seconds) (Durán-
Prado et al., 2007). When coexpressed heterologously,
SST2 and SST3 form heterodimers with reduced SST3

activity (Pfeiffer et al., 2001). However, to what extent
SST2 forms dimers or oligomers with other GPCRs
in vivo is not known.

F. Somatostatin Receptor 2 Anatomic Framework

1. Central and Peripheral Nervous System. Two
independent laboratories using two different antibodies
directed toward the carboxy-terminal tail of the SST2

have demonstrated that this SST subtype is the most
abundant SST in the rodent CNS (Schindler et al.,
1997; Dournaud et al., 1996) in agreement with both
in situ hybridization experiments and autoradiograph-
ical studies using SST2-preferring ligands. Strong SST2

labeling is detected in the deep layers of the cerebral
cortex, CA1 field, and dentate gyrus of the hippocampus,
lateral septum, medial septum/diagonal band of Broca,
medial habenula, bed nucleus of the stria terminalis,
endopiriform nucleus, claustrum, amygdaloid complex,
locus coeruleus, and nucleus tractus solitarius. In the
hypothalamus, the highest densitiy of SST2 immunor-
eactivivity is located in the ARC and the medial tuberal
nucleus as well as in the lateroanterior nucleus and the
ventrocaudal part of the tuber cinereum (Csaba et al.,
2003). In the rat spinal cord, SST2 neurons are localized
in the superficial layers of the dorsal horn (Schindler
et al., 1997, 1998a; Schulz et al., 1998b,c; Segond von
Banchet et al., 1999) often closely apposed by SRIF-
immunoreactive terminals (Schulz et al., 1998b). In the
rat retina, several neuronal cell types express SST2. In
the outer layers, immunoreactivity is localized to cone
photoreceptors, horizontal cells, and rod and cone bi-
polar cells. In the inner layers, SST2 immunostaining is
present in numerous medium- to large-size amacrine
cells (Johnson et al., 1999). Regional distribution of
SST2 immunostaining in the human CNS is generally
congruent with that reported for the rat, although, in
contrast to rodents, human cerebellum displayed sig-
nificant SST2 immunostaining (Schindler et al., 1998b;
Csaba et al., 2005; Shi et al., 2014).
In the rat peripheral nervous system, medium-size

neurons distinct from those expressing SRIF display

SST2 in theDRG (Schulz et al., 1998b). In the human and
rat GIT, SST2 are localized in neurons of the myenteric
and submucosal plexuses, and in fibers distributed to the
muscle, mucosa, and vasculature (Sternini et al., 1997;
Reubi et al., 1999).

Immunohistochemical experiments have examined
localization of SST2B (Schulz et al., 1998a; Schindler
et al., 1999). In the rat brain, somatodendritic labeling
is evident in several regions that also exhibit SST2

immunostaining, including the olfactory bulb, cerebral
cortex, hippocampal formation, septal nuclei, and supe-
rior colliculi. In contrast to SST2, the Purkinje cell layer
of the cerebellum appears to be SST2B immunoreactive.
In the rat spinal cord, whereas the SST2 is confined to
the superficial layers, SST2B is located in neuronal
perikarya and proximal dendrites throughout the gray
matter of the spinal cord (Schulz et al., 1998a).

2. Pituitary. Using specific antibodies against SST2,
it appears that this receptor is largely distributed in the
adult rat and human pituitary (Fig. 9) (Mezey et al.,
1998; Peineau et al., 2014). Although all anterior pitui-
tary cell types express the SST2 protein, GH-expressing
cells almost completely colocalizewith the SST2,whereas
50% of gonadotrophs, 60% of corticotrophs, 30% of
thyrotrophs, and 10% of prolactin cells exhibit SST2

immunoreactivity (Peineau et al., 2014). Of note, some
discrepancies with distribution of the mRNA exist
because the SST2 mRNA was previously found in 40%
of somatotrophs, 36% of thyrotrophs, 26% of lactotrophs,
3% of corticotrophs, and 8% of gonadotrophs (Day et al.,
1995).

3. Peripheral Organs. Immunohistochemical stud-
ies also revealed the presence of the SST2 in striated
ducts of the parotid gland, in neuroendocrine and
enterochromaffin-like cells of the GI mucosa, in enteric
ganglia, in insulin- and glucagon-secreting cells of the
pancreas (Fig. 9), in the reticular zone of the adrenal
cortex, in glomeruli and tubules of the kidney, in
luteinized granulosa cells of the ovary, in basal parts
of testicular tubules, in granulocytopoietic cells of the
bonemarrow, in alveolarmacrophages of the lung, and in
germinal centers of lymph follicles (Fischer et al., 2008;
Lupp et al., 2011; Unger et al., 2012; Stollberg et al.,
2016). All in all, SST2 was the most frequently detected
SST subtype, and, in most cases, SST2 predominantly
immune-stained at the cell plasma membrane.

4. Tumors. As determined using the rabbit mAb
UMB-1, SST2 also represents the most prominent SST
subtype in tumor tissues, with only few exceptions, such
as pituitary adenomas (Fischer et al., 2008). In somato-
troph and thyrotroph pituitary adenomas, SST2 is
present at high abundance in .80% of tumor speci-
mens, alongwith a high presence of SST5. In contrast, in
gonadotroph, corticotroph, and nonfunctioning pitui-
tary adenomas where SST2 expression was low or even
absent, a preponderance of SST3 or SST5 has been noted
(Fischer et al., 2008; Lupp et al., 2011). In brain tumors,
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the prevalence of SST2 was highest. SST2 was present
in most of meningiomas (Schulz et al., 2000b; Fischer
et al., 2008), medulloblastomas (Guyotat et al., 2001;
Cervera et al., 2002; Remke et al., 2013), neuroblastomas
(Albers et al., 2000), and supratentorial primitive neuro-
ectodermal tumors of childhood (Fruhwald et al., 2004).
SST2 was also detected in oligodendrogliomas, but much
less frequently in astrocytomas (Cervera et al., 2002;
Kiviniemi et al., 2017). Furthermore, noticeable SST2

expression occurred in peripheral nerve sheath tumors,
especially in schwannomas (Mawrin et al., 2005).
SST2 was present in 43%–66% of medullary as well as

in papillary and follicular thyroid carcinomas (Papotti
et al., 2001; Druckenthaner et al., 2007; Mussig et al.,
2012; Pazaitou-Panayiotou et al., 2012; Atkinson et al.,
2013; Woelfl et al., 2014; Herac et al., 2016). SST2 was
also detected in a high percentage (.70%) of pheochro-
mocytomas and paragangliomas (Fischer et al., 2008;
Lupp et al., 2011; Saveanu et al., 2011; Elston et al.,
2015) as well as in 33% of both functioning and non-
functioning adrenocortical adenomas (Unger et al.,
2008). Very low levels of SST2 were also observed in
lymphomas (Dalm et al., 2004; Stollberg et al., 2016;
Ruuska et al., 2018). SST2 represents by far the most
prominent SST subtype detected in gastroentero-
pancreatic (GEP)-NETs, and, overall, it was identified
in .70% of cases at a high expression intensity
(Kulaksiz et al., 2002; Fischer et al., 2008; Corleto
et al., 2009; Srirajaskanthan et al., 2009; Zamora
et al., 2010; Lupp et al., 2011; Okuwaki et al., 2013;
Kaemmerer et al., 2015b; Mehta et al., 2015; Qian et al.,
2016; Wang et al., 2017). However, SST2 was detected
more frequently in gastrinomas (100%) and in carcinoid
tumors (86%) (Fig. 9) than in insulinomas (58%)
(Kulaksiz et al., 2002). SST2 expression was also found
to be higher in functioning than in nonfunctioning
tumors (Zamora et al., 2010; Song et al., 2016) and
more pronounced in gastroenteric than in pancreatic
neoplasms (Zamora et al., 2010). Negative correlation

between SST2 expression and tumor grading or pro-
liferation rate and a positive association with patient
outcomes have been shown (Corleto et al., 2009;
Srirajaskanthan et al., 2009; Zamora et al., 2010;
Okuwaki et al., 2013; Kaemmerer et al., 2015b; Mehta
et al., 2015; Qian et al., 2016; Song et al., 2016; Wang
et al., 2017). Furthermore, a positive correlation be-
tween SST2 expression and SST-based imaging was
demonstrated (Srirajaskanthan et al., 2009; Diakatou
et al., 2015; Kaemmerer et al., 2015b). SST2was detected
in 32%–56% of bronchopulmonary NETs. However, in
comparison with GEP-NETs, SST2 expression was less
pronounced. Lower SST2 expression in high-grade in
comparison with low-grade tumors and a positive corre-
lation with SST-based imaging were shown (Righi et al.,
2010; Kaemmerer et al., 2015a; Lapa et al., 2016). SST2

expression was also observed in NETs of other origins,
including thymus, breast, cervix, or prostate (Kajiwara
et al., 2009; Mizutani et al., 2012). Furthermore, SST2

was detected in 88%–100% of GI stromal tumors
(GIST), and, also in this tumor entity, an association
with favorable patient outcomes was demonstrated
(Palmieri et al., 2007; Arne et al., 2013; Zhao et al.,
2014). Depending on tumor grade and location, SST2

was observed in 45%–100% of colorectal carcinomas
(Qiu et al., 2006; Evangelou et al., 2012) and in 41%–

67% of HCCs (Blaker et al., 2004; Reynaert et al., 2004;
Verhoef et al., 2008); SST2 was expressed in 20%–79%
of breast cancers (Pilichowska et al., 2000; Orlando
et al., 2004; Kumar et al., 2005; Fischer et al., 2008;
Lupp et al., 2011; Frati et al., 2014), in 57% of cervical
carcinomas, in 39% of endometrial cancers (Schulz et al.,
2003), and in 30% of ovarian carcinomas (Hall et al.,
2002; Schulz et al., 2003). Furthermore, a moderate to
strong SST2 expression was observed in 13% of prostate
cancers in general and in 50% of prostate cancers with
endocrine differentiation (Matei et al., 2012; Hennigs
et al., 2014). SST2 was detected in 59% of Merkel cell
carcinomas (Gardair et al., 2015) and in melanomas

Fig. 9. SST2 expression pattern in normal human and neoplastic tissues. Immunohistochemistry (red-brown color), counterstaining with hematoxylin;
primary antibody: UMB-1; scale bar, 50 mm. Note that SST2 is predominantly expressed at the plasma membrane.
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(Ardjomand et al., 2003; Valsecchi et al., 2013). Finally,
SST2 expression in normal exocrine pancreatic tissue is
progressively lost during pancreatic ductal adenocarci-
noma progression (Buscail et al., 1996; Laklai et al.,
2009), which participates in tumor aggression, as dem-
onstrated in mouse models of pancreatic cancer com-
bined with SST2 KO mice (Chalabi-Dchar et al., 2015).
Accordingly, in vitro and in vivo re-expression of SST2 in
human pancreatic cancer cell lines through SST2 cDNA
transfection (Delesque et al., 1997; Guillermet et al.,
2003; Laval et al., 2014) and through in vivo SST2 gene
transfer inmousemodels (Vernejoul et al., 2002) and in a
first-in-man phase I clinical trial (Buscail et al., 2015),
respectively, demonstrated promising oncosuppressive
activity in advanced pancreatic cancer.

G. Somatostatin Receptor 2 Function

1. Endocrine System. SRIF was originally described
as an inhibitor of GH release, but it also inhibits
secretion of other pituitary hormones. SST2 is pre-
dominantly responsible for regulation of physiologic
secretion of GH and TSH (Ben-Shlomo and Melmed,
2010) indirectly mediated by opening of K+ channels.
The subsequent K+-derived membrane hyperpolariza-
tion and reduction of L- and N-type Ca2+ influx as well
as intracellular Ca2+ concentration are major mecha-
nisms by which SRIF, through the SST2 subtype,
acutely inhibits exocytosis of hormone-containing vesi-
cles (Ben-Shlomo andMelmed, 2010). SST2 also inhibits
exocytosis of hormone-containing vesicles derived from
pancreatica- andb-cells. In rodents secretion of glucagon
and in humans secretion of both glucagon and insulin are
regulated by SST2 (Singh et al., 2007; Strowski and
Blake, 2008; Kailey et al., 2012). In addition, the SST2

subtype activates Kir3.x, which leads to hyperpolariza-
tion and inhibits voltage-gated P/Q-type Ca2+ channels
(Kailey et al., 2012).
2. Central Nervous System.
a. Neuronal excitability and epilepsy. Another ma-

jor role of SST2 is inhibitory neuromodulation. Effects of
SST2 on neuronal excitability have been studied in
several CNS cell populations. Activation of SST2 in
medial septal GABAergic neurons results in decreased
discharge rate and consequent reduction of hippocam-
pal u rhythm power (Bassant et al., 2005). SST2 also
mediates hyperpolarization of dorsal horn neurons and
subsequent antinociceptive effects (Song et al., 2002;
Yin et al., 2009; Shi et al., 2014). In the ventrolateral
medulla, SST2 activation of presympathetic neurons
provokes robust sympathoinhibition with bradycardia
and hypotension (Burke et al., 2008). Rodent and sheep
gonadotropin-releasing hormone neurons are inhibited
by SST2, which results in decreased luteinizing hor-
mone secretion (Bhattarai et al., 2010; McCosh et al.,
2017). Activation of SST2 in olfactory bulb mitral cells
modulates dendrodendritic inhibition between mitral
and granule cells, which in turn results in increased g

oscillation power of mitral cells and increased odor
discrimination performances (Lepousez et al., 2010).
The role of SRIF in neuronal excitability has beenmostly
studied in the hippocampal formation. In CA1 pyramidal
neurons, SRIF has hyperpolarizing effects through acti-
vation of K+ channels (Moore et al., 1988; Schweitzer
et al., 1990, 1998; Tallent and Siggins, 1997).

Postsynaptic hyperpolarization of CA3 pyramidal
neurons by SRIF has also been demonstrated (Tallent
and Siggins, 1999). Presynaptic inhibition of glutamate
release by SRIF reduces excitatory synaptic input on
CA1 neurons (Kozhemyakin et al., 2013); thus, SRIF
decreases both post- and presynaptic hippocampal
pyramidal cell excitability (Tallent and Qiu, 2008). By
contrast, in the dentate gyrus, SRIF has no effect on
granule cell postsynaptic currents or firing properties.
SRIF, however, inhibits postsynaptic N-type Ca2+ chan-
nels in granule cells, resulting in inhibition of long-term
potentiation (Baratta et al., 2002), a form of synaptic
plasticity, critical in learning and memory, and also
plays an important role in epileptogenesis. Converging
evidence suggests that, of the five SSTs, SST2 exerts a
predominant role in transduction of SRIF actions in
the hippocampal formation (Csaba et al., 2004, 2005).
SRIF plays a prominent role in epilepsy in agreement
with its inhibitory neuromodulatory function, and
SST2 mediates most of antiepileptic actions of SRIF
in rats (Vezzani and Hoyer, 1999; Binaschi et al., 2003;
Baraban and Tallent, 2004; Cervia and Bagnoli, 2007;
Tallent and Qiu, 2008; Viollet et al., 2008), likely in
humans (Csaba et al., 2005), but not in mice (Moneta
et al., 2002).

b. Motor control. Striatal SST2 receptors are in-
volved in control of extrapyramidal motor systems, as
activation of SST2 receptors in rats increases locomotor
activity (Marazioti et al., 2008; Santis et al., 2009),
whereas disruption of the SST2 receptor gene in mice
impairs motor functions (Viollet et al., 2000; Allen et al.,
2003).

c. Feeding and drinking. In accordance with the
widespread distribution of SST2 in the hypothalamus,
the receptor also plays a role in drinking and feeding
behavior. Activation of SST2 increases food intake by
suppressing satiety (i.e., a mechanism delaying onset of
anothermeal after a completed one), but not satiation (a
mechanism causing meal termination) (Stengel et al.,
2015). Increased meal numbers mediated by SST2

activation likely involve lateral hypothalamic orexi-
nergic-A neurons projecting to the arcuate neuropeptide
Y neurons that express orexin receptors 1. SST2 actions
on orexinergic neurons, however, seem to be indirect
(Stengel et al., 2015). Activation of SST2 also increases
rapid-onset water consumption (Karasawa et al., 2014).
This dipsogenic function involves activation of the
angiotensin II receptor type 1 signaling system. SRIF
release in the hypothalamus follows a circadian rhythm,
with the highest release at the beginning of the dark
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phase in rats. Early nocturnal drinking and feeding in
rats are therefore physiologically regulated by SST2

signaling (Stengel et al., 2015).
d. Stress response. Stress responses are inhibited by

SRIF, and SST2 plays a major role in inhibition of acute
stress induced at several levels. First, stress-related
endocrine responses are inhibited by SST2 at both the
CNS and pituitary levels (Prevot et al., 2017; Stengel
and Taché, 2017). Second, stress-related sympathetic
activation is inhibited by SST2 at the level of brainstem
presympathetic neurons (Burke et al., 2008). Finally,
behavioral stress responses, such as suppression of food
intake and anxiety, are also inhibited by SST2 (Stengel
et al., 2015; Stengel and Taché, 2017). In addition to
anxiolytic effects, SST2 also mediates antidepressant
actions of SRIF (Engin et al., 2008; Engin and Treit,
2009; Fee et al., 2017; Prevot et al., 2017).
3. Retina. In the retina, SST2 inhibits adenylyl

cyclase, K+/Ca2+ conductances, as well as activates
guanylyl cyclase and NOS, and plays an important role
in positive control of dopamine and negative control of
glutamate release (Cervia et al., 2008). SST2 signaling
through these diverse intracellular pathways converges
into an important retinal neuroprotection (Casini et al.,
2005; Vasilaki and Thermos, 2009). Therefore, SRIF
administration is a promising therapeutic approach in
treating retinal diseases involving ischemia and excito-
toxicity, and a multicentric, phase II–III, randomized,
controlled clinical trial (EUROCONDOR-278040) is
underway to assess the efficacy of SRIF administration
in diabetic retinopathy (Hernandez and Simo, 2013;
Hernandez et al., 2014; Simo and Hernandez, 2014).

H. Somatostatin Receptor 2 Ligands

Early efforts to develop stable SRIF analogs with
potent inhibitory activity on GH release have led to the
synthesis of SST2-preferring peptide ligands, two of
which, octreotide and lanreotide, have later been ap-
proved for clinical use. Both exhibit potent (subnano-
molar) full agonistic properties at the SST2 and modest
activity (low nanomolar) at SST5. In clinical practice,
however, octreotide and lanreotide fully normalize GH
and IGF-1 in only ;50% of unselected acromegalic
patients (Carmichael et al., 2014), which has stimulated
the search for new SRIF analogs. This has led to recent
development of pasireotide, which exhibits affinity for
multiple SSTs. Pasireotide is particularly potent at the
SST5, but binds with modest affinity to SST2, where it
exhibits only partial agonistic activity (Bruns et al.,
2002; Lesche et al., 2009; Poll et al., 2010). BIM-23120 is
a highly selective SST2 peptide agonist often used to
study SST2 activity (Gruszka et al., 2012; Günther et al.,
2016). L-779,976 was the first selective nonpeptide
agonist (Fig. 10; Table 5) (Rohrer et al., 1998) with high
SST2 selectivity. However, further development of
L-779,976 was halted because of low oral bioavailabil-
ity. Abundant SST2 expression in human tumors has

stimulated a continued search for orally available
SST2-selective agonists such as L-054,264, RFE-007,
as well as novel b-methyltryptophan derivatives (Yang
et al., 1998; Palii et al., 2008; Banno et al., 2017).
Several peptide antagonists of SST2 have also been
identified, such as BIM23627 and BIM-23454. At high
concentrations these compounds exhibit some residual
agonist activity and are thus weak partial agonists
(Pöll et al., 2010). Among available SST2 peptide
antagonists, JR11 is currently the most potent and
selective one (Fig. 10; Table 5) (Cescato et al., 2008).

VI. Somatostatin Receptor 3

A. Somatostatin Receptor 3 Structure

The mouse SST3 was cloned as the third member of
the SST family (Yasuda et al., 1992), and cloning of the
human SST3 was reported shortly thereafter (Yamada
et al., 1992b). The gene encoding for human SST3 is
localized on chromosome 22q13.1 and spreads over eight
exons. However, the entire coding region is localized in
a single exon and encodes a protein of 418 amino acids
(Fig. 11). The SST3 protein sequence shares 46% homol-
ogy with SST2. Analysis of the sequence showed two
potential N-glycosylation sites located in the amino-
terminal domain at Asn17 and Asn30. The genes encoding
mouse and rat SST3 are localized on chromosome
15 E1 and 7q34, respectively; both encode a protein of
428 amino acids. In rat SST3, Asp

124 is essential for
binding of the endogenous peptide ligand SRIF-14
(Nehring et al., 1995). A unique feature of mouse and
rat SST3 is selective targeting to primary neuronal cilia
(Händel et al., 1999) dependent on the presence of a
conserved ciliary targeting motif within the third ICL
(243APSCQWVQAPACQ255). This sequence is identical in
mouse and rat and contains a dual (AX[A/S]XQ) ciliary
targeting motif found in GPCRs efficiently localized to
cilia (Berbari et al., 2008a; Jin et al., 2010; Geneva et al.,
2017). In contrast, the third ICL of the human SST3

contains only a single (AX[A/S]XQ) motif. Consequently,
the human SST3 is not selectively localized to primary
cilia but is predominantly observed at the plasma mem-
brane in many cell types. The calculated mol. wt. of the
nonglycosylated protein is approximately 46 kDa. How-
ever, in Western blots derived from human pituitary and
transfected cells, SST3 is detected as a broad smear of
approximately 70–80 kDa (Lupp et al., 2012). After
peptide N-glycosidase F (PNGase F) treatment, the mol.
wt. is reduced to approximately 48 kDa, and the receptor
protein appears as a sharp band (Lupp et al., 2012),
indicating that the native SST3 protein is indeed heavily
glycosylated. SST3 is unique among SST subtypes in that
it exhibits a very long carboxyl-terminal tail. In contrast to
all other SSTs, the SST3 carboxyl-terminal tail lacks a
potential palmitoylation site. Amino acid sequences of
both the third ICL and the carboxyl-terminal tail are not
conserved across species.
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B. Somatostatin Receptor 3 Signaling Mechanisms

SST3 is a Gi/o-coupled receptor. Agonist activation
results in increased incorporation of guanosine 59-O-
[gamma-thio]triphosphate (GTPgS) into membranes of
SST3-transfected cells (Lesche et al., 2009). Its major
effector systems are inhibition of adenylyl cyclase
(Yamada et al., 1992b; Lesche et al., 2009), activation
of Kir3.x currents (Günther et al., 2016), andmodulation
of VOCCs (Fig. 12) (Mergler et al., 2008). In transfected
cells, transient activation of ERK can be detected.
These effects are greatly diminished when cells are
preincubated with PTX, strongly indicating that Gi/o

proteins are major effectors of SST3. Exogenously
expressed human SST3 activates PLC, which is only
partly blocked by PTX, suggesting involvement of Gq

proteins. However, the physiologic relevance of PLC
activity is unknown (Siehler and Hoyer, 1999c). When
expressed in stable rat pituitary tumor cells (GC cells),
human SST3 exhibits constitutive ligand-independent
activity that inhibits basal cAMP/protein kinase A
(PKA) signaling and suppresses GH transcription through
glycogen synthase kinase 3B activation (Eigler et al.,
2014). Heterologously expressed SST3 also induces anti-
proliferative or proapoptic cell-specific effects (War et al.,
2015). SST3-induced apoptosis in CHO-K1 cells involves
induction of transformation-related protein 53 (p53) and
Bax (Sharma et al., 1996).

C. Somatostatin Receptor 3 Regulation

Human SST3 contains a very long carboxyl-terminal
tail of 102 amino acids, compared with only 66 and
56 residues in SST2 and SST5, respectively. Sequence
homology within the carboxyl-terminal region of the
mouse, rat, and human SST3 is rather low. Upon agonist
exposure, humanSST3 is phosphorylated at four carboxyl-
terminal hydroxyl amino acids, namely S337, T341, T348,
and S361 (Lehmann et al., 2016). Direct evidence for
agonist-induced phosphorylation of these residues has
been provided by generation of phosphosite-specific

antibodies. For rat SST3, S341, S346, S351, and T357
have been identified as major phosphoacceptor sites
using whole-cell phosphorylation assays (Roth et al.,
1997a). Interestingly, phosphorylation sites for the hu-
man and rat SST3 identified to date reside within the
proximal part of the SST3 carboxyl-terminal tail. Align-
ment of phosphorylation motifs identified in SST2 and
SST5 suggests that agonist-mediated phosphorylation of
these receptors occurs preferentially at a defined dis-
tance from theNPXXYmotif, whichmarks the end of the
seventh transmembrane region and the beginning of the
carboxyl-terminal tail. This observation is supported by
functional analysis of receptor mutants. Exchange of S/T
sites to A within the proximal part of the carboxyl-
terminal tail greatly diminished b-arrestin recruitment
and SST3 internalization (Lehmann et al., 2016). In
contrast, mutation of S/T residues within the distal part
of the carboxyl-terminal tail had no effect on receptor
trafficking. SRIF-induced phosphorylation is completely
blocked by the SST3-selective antagonist NVP-ACQ090
(Roth et al., 1997a; Lehmann et al., 2016). Phosphoryla-
tion occurs rapidly within seconds to minutes, whereas
SST3 dephosphorylation occurs more slowly. In trans-
fected HEK293 cells, agonist-induced phosphorylation is
primarily mediated by GRK2 and GRK3 (Lehmann et al.,
2016). The four identified phosphorylation sites do not
undergo protein kinase C- or PKA-mediated phosphory-
lation. Dephosphorylation of SST3 specifically requires
PP1a and PP1b (Lehmann et al., 2016).

Another unique feature of the SST3 is its rapid down-
regulation upon prolonged agonist exposure. This effect

Fig. 10. Structures of synthetic SST2 ligands. L-779,976 and BIM-23120, SST2 agonists; JR-11, SST2 antagonist.

TABLE 5
Ligand-binding affinities of SST2-selective ligands

SST1 SST2 SST3 SST4 SST5

L-779/976a 2760 0.05 729 310 4260
BIM-23120b .1000 0.34 412 .1000 213.5
DOTA-JR11c .1000 0.58 .1000 .1000 .1000
aData from Rohrer et al. (1998).
bData from Gruszka et al. (2012).
cData from Cescato et al. (2008).
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has been clearly documented for both human and rat
SST3 in transfected cells (Tulipano et al., 2004; Lesche
et al., 2009; Lehmann et al., 2016). Downregulation of
about 50% of cellular SST3 protein is observed between
6 and 12 hours of continued agonist exposure. Loss of
human and rat SST3 occurred similarly with SRIF,
octreotide, or pasireotide as ligands. In contrast, no such
downregulation was observed with human SST2 or SST5

under similar conditions (Tulipano et al., 2004; Lesche
et al., 2009). It is not known, however, whether endog-
enous SST3 undergoes such rapid downregulation. Such
studies are difficult to perform because human cell lines
expressing sufficient levels of endogenous SST3 allowing
immunochemical detection of receptor protein are not
available. Degradation of SST3 was blocked by the
lysosomal inhibitor chloroquine and the cell-permeable
proteasome inhibitor MG132 (Tulipano et al., 2004). For
rat SST3, agonist-induced ubiquitination occurs at in-
tracellular lysine residues. Mutation of all intracellular
lysine residues to arginine in aK-Rmutant of the human
SST3 prevents downregulation only during the first
6 hours of treatment. After 24 hours, downregulation of
the K-R mutant occurs to the same extent as for wild-
type SST3, suggesting that ubiquitination of SST3 facil-
itates, but is not an absolute requirement for degradation
(Lehmann et al., 2016).

D. Somatostatin Receptor 3 Trafficking

SST3 is regulated like a prototypical GPCR in that it
is internalized within minutes upon exposure to the
endogenous SRIF-14 ligand. The time course and extent
of receptor internalization are similar to that observed
for SST2. Internalization is preceded by recruitment of
b-arrestins to the activated SST3 (Kreuzer et al., 2001).

In fact, b-arrestin-2 is more efficiently recruited than
b-arrestin-1. Interestingly, SRIF-14 bound to internal-
ized SST3 is rapidly degraded, whereas octreotide is
recycled as an intact peptide (Roosterman et al., 2008).
Phosphorylation is a precondition for arrestin trans-
location and internalization. SST3 and arrestin form
transient complexes (Lehmann et al., 2016). Although
SST3 receptors are internalized via clathrin-coated pits
into early endosomes, arrestins dissociate from the
receptor and redistribute into the cytosol (Tulipano
et al., 2004; Lehmann et al., 2016). This is in contrast
to SST2, which forms stable complexes with arrestins
that cointernalize into early endosomes. After internal-
ization, only a proportion of SST3 recycles back to the
plasma membrane. Remaining intracellular receptors
are transferred to larger diameter vesicles (presumably
lysosomes) for degradation (Tulipano et al., 2004). This
action is also in contrast to SST2, which completely
recycles to the plasmamembrane within 60–90minutes
after agonist removal. Differential endosomal sorting of
SST3 and SST2 has been demonstrated using an
immunocytochemical pulse–chase assay that estimates
the degree to which internalized receptors remain
associated with transferrin-containing endocytic vesi-
cles. Transferrin is a well-established marker of early
and recycling endosomes that mediate rapid recycling.
After a 30-minute SRIF-14/transferrin pulse, a high
degree of colocalization of both SST3 and SST2 with
transferrin was observed. However, after an additional
20-minute pulse, only SST2—but not SST3—showed a
high degree of colocalization with endocytosed trans-
ferrin, suggesting that SST3 are predominantly sorted
to a population of endocytic vesicles distinct from those
that constitute the conserved recycling pathwaymarked

Fig. 11. Structure of human SST3. The primary and secondary amino acid structure of the human SST3 (UniProtKB - P32745) is shown in a schematic
serpentine format. Glycosylation sites are colored in purple; the DRY motif is highlighted in green; the human SST motif is in light blue; potential
phosphorylation sites are in gray; identified GRK2/3 phosphorylation sites are in red; the PDZ ligand motif is in dark blue; the cilia localization motif is
in dark red; and the disulfide-forming cysteines are in pale blue. UMB-5 is a rabbit monoclonal antibody, which detects the carboxyl-terminal tail of
SST3 in a phosphorylation-independent manner.
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by transferrin (Tulipano et al., 2004). Ras-related in brain
(Rab) proteins are markers for specific populations of
endosomes. For many GPCRs, Rab proteins are major
regulators of endosomal trafficking. Using real-time
imaging, it was demonstrated that SST3 traffics
through Rab4-, Rab11-, and Rab21-containing endo-
somes. Expression of inactive variants of these specific
Rab proteins inhibits passage of SST3 through differ-
ent endosomal compartments (Tower-Gilchrist et al.,
2011).

E. Somatostatin Receptor 3 Targeting

When expressed in HEK293 cells, mouse, rat, and
human SST3 demonstrate bona fide plasma membrane
localization. In contrast, SST1 is predominantly local-
ized to intracellular vesicular compartments. In fact,
transplantation of the rat SST3 N-terminal domain to
the rat SST1 is sufficient to facilitate plasmamembrane
localization of SST1, suggesting that the N-terminal
domain of SST3 contains a plasma membrane targeting
sequence (Ammon et al., 2002). However, when mouse
SST3 is expressed exogenously in polarized inner-
medullary–collecting duct cells or cultured hippocam-
pal neurons, the receptor protein is concentrated in

primary cilia (Berbari et al., 2008a). Primary cilia are
nonmotile plasma membrane appendages that serve
specialized sensory functions, such as light sensation in
photoreceptors or detection of odors in olfactory neu-
rons. Cilia are enriched in signaling proteins, such as G
proteins, adenylyl cyclases, ion channels, and arrestins.
Their function is defined by the presence of specific
signaling receptors. Importantly, disruption of ciliary
function has been associated with human ciliopathies,
such as Bardet–Biedl syndrome (BBS), Joubert syn-
drome, and Meckel syndrome, which have prominent
functional and structural CNS phenotypes (Berbari
et al., 2008b; Jin et al., 2010). In fact, SST3 was the
first signaling receptor identified in primary neuronal
cilia in mouse and rat brain (Händel et al., 1999) and is
therefore a prototypical ciliary GPCR. Thereafter,
additional GPCRs with selective targeting to primary
cilia were identified, such as 5-hydroxytryptamine re-
ceptor 6 and melanin-concentrating hormone receptor
1 (Ammon et al., 2002). In rodents, SST3 was also
identified in primary cilia in pancreatic islets and
adenohypophysis (Iwanaga et al., 2011). Expression of
SST3 in neuronal cilia in rodents appears after birth
when first cilia are formed and persists throughout the

Fig. 12. SST3 signaling leading to inhibition of hormone secretion, proliferation, and induction of apoptosis. By coupling to Gi proteins, SST3 inhibits
adenylate cyclase and reduces cAMP accumulation and reduces intracellular Ca2+ concentrations by activating GIRK channels, which results in
membrane hyperpolarization and subsequent reduction of Ca2+ influx through VOCC. This results in decreased hormone secretion. By coupling to
a pertussis toxin–independent G protein (probably Gq), SST3 activates PLC, triggering inositol-1,4,5-trisphosphate (IP3) production and subsequent
Ca2+ release into the cytoplasm from endoplasmic reticulum. SST3-dependent induction of apoptosis involves p53 and Bax.
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aged brain (Stani�c et al., 2009; Guadiana et al., 2016).
However, selective cilia targeting appears not to be con-
served across many species. The dual (AX[A/S]XQ) ciliary
targetingmotif in the third ICL (243APSCQWVQAPACQ255)
is identical in rat and mouse. This motif is not found in
any other SST subtype, and human SST3 contains only a
single ciliary targetingmotif (242APSCQRRRRSERR254).
This may explain why subcellular localization of the
human SST3 is not restricted to primary cilia in many
cell types.

F. Somatostatin Receptor 3 Interacting Proteins

The rodent SST3 is a prototypical ciliary GPCR. As
such, SST3 has been intensively used to identify
proteins that traffic cargo to cilia. The ciliary targeting
signal of rodent SST3 is directly recognized by BBS
proteins that form the BBSome complex required for
targeting of membrane proteins to cilia (Jin et al., 2010).
The BBSome is an octameric complex consisting of
seven highly conserved BBS proteins, BBS1, BBS2,
BBS4, BBS5, BBS7, BBS8, and BBS9, plus BBIP10.
BBS is an autosomal recessive disorder characterized
by retinal degeneration, polydactyly, kidney cysts, and
obesity, caused by mutations in any of 14 known genes
and whose etiology is associated with cilium dysfunc-
tion. In the absence of BBSome function, SST3 accumu-
lates at the plasma membrane (Jin et al., 2010). In the
naturally occurring tubby mutant mouse, which de-
velops retinitis pigmentosa, hearing loss, and obesity,
SST3 also fails to localize to cilia. Although it is not
known whether the tubby protein product binds directly
to SST3, it appears to be an accessory factor in ciliary
GPCR trafficking (Sun et al., 2012). Once embedded
into the ciliary plasma membrane, SST3 behaves as a
functional GPCR. Activation by SRIF facilitates trans-
location of b-arrestin-2 into cilia. b-Arrestin-2 recruit-
ment depends on SST3 phosphorylation and is required
for removal of activated SST3 receptors from the cili-
ary space (Green et al., 2015). Interestingly, when the
receptor fails to undergo BBSome- or arrestin-mediated
retrieval from the cilia back into the cell, SST3 concen-
trates into membranous buds at the tips of cilia before
release into extracellular vesicles via exocytosis (Nager
et al., 2017). For the humanSST3, the carboxyl-terminal
domain was shown to interact with the multiple PDZ-
domain protein 1 (MUPP1). MUPP1 is a tight junction
scaffold protein in epithelial cells, and, as a result of
the interaction with MUPP1, SST3 is targeted to
tight junctions in human keratinocytes. Interaction
with MUPP1 enables the receptor to regulate trans-
epithelial permeability in a PTX-sensitive manner,
suggesting that human SST3 can activate G proteins
locally at tight junctions (Liew et al., 2009). Both
rat and human SST3 form constitutive homodimers
(Pfeiffer et al., 2001; Lehmann et al., 2016). When
coexpressed, rat SST2 and SST3 can form heterodimers
with reduced SST3 activity (Pfeiffer et al., 2001).

However, to what extent SST3 can form dimers or
oligomers with other GPCRs in vivo is not known.

G. Somatostatin Receptor 3 Anatomic Framework

Cellular and subcellular localizations of human SST3

have been studied in detail using rabbit mAb UMB-5,
which is directed against the distal part of its carboxyl-
terminal tail (398QLLPQEASTGEKSSTMRISYL418) (Fig.
13). In normal human tissues, SST3 is present at the
plasma membrane of distinct cell populations in the
anterior pituitary, pancreatic islets, enteric ganglion cells
of theGIT, the zona fasciculata and zona reticularis of the
adrenal cortex, as well as the adrenal medulla, glomeruli
and tubules of the kidney, luteinized granulosa cells of
the ovary, and immune cells (Lupp et al., 2012). In-
terestingly, nonfunctioning pituitary adenomas (mostly
of gonadotroph lineage) express high levels of SST3,
whereas expression of SST2 and SST5 is very low or
absent (Lupp et al., 2012; Lee et al., 2015). InmostACTH-
producing adenomas, SST3 andSST5—but not SST2—are
present. In contrast, rodent SST3 receptors are selectively
targeted to primary cilia in pancreatic islets and anterior
pituitary and to primary neuronal cilia in many brain
regions, including cerebral cortex, hippocampus, hypo-
thalamus, and amygdala (Händel et al., 1999; Iwanaga
et al., 2011). Another brain region with high SST3 mRNA
expression is the cerebellum, where SST3 is expressed on
Bergmann glial cells (Händel et al., 1999).

SST3 is also present in different human tumor types.
It is consistently observed with high intensity of expres-
sion, especially in pituitary adenomas. In GH-producing
pituitary adenomas, noticeable amounts of SST5 and
SST3 are also expressed, besides high levels of SST2

(Lupp et al., 2012; Casar-Borota et al., 2013), whereas in
most of ACTH-producing adenomas only SST5 and SST3,
but not SST2, were detected (Lupp et al., 2011, 2012). In
contrast, in gonadotropic and nonfunctioning pituitary
tumors, high levels of SST3were observed, whereas SST2

and SST5 expression was low or even absent (Lupp et al.,
2012; Gabalec et al., 2015; Lee et al., 2015). SST3 is
expressed in about 30%–50% of pheochromocytomas and
paragangliomas (Elston et al., 2015). In addition, SST3

was found most prominently expressed in thymomas
(Ferone et al., 2000). Although SST2 is clearly the most
prominent receptor expressed in gastroenteropancreatic
neuroendocrine neoplasms, SST3 was also detected in
52%–90% of cases (Lupp et al., 2012; Kaemmerer et al.,
2015b; Qian et al., 2016). However, and in contrast to
SST2, strong SST3 expression was only noted in 5%–29%
of cases (Kaemmerer et al., 2015b; Qian et al., 2016;
Song et al., 2016). Low SST3 expression levels occur
also in bronchopulmonary neuroendocrine neoplasms
(Kaemmerer et al., 2015a). Likewise, in about 50% of
tumors with neuroendocrine differentiation derived
from breast, cervix, or prostate, weak to moderate
SST3 expression was observed (Mizutani et al., 2012).

792 Günther et al.



SST3 was also detected in 56% of GIST tumors (Zhao
et al., 2014).

H. Somatostatin Receptor 3 Function

At the cellular level, activation of SST3 inhibits
hormone release. Inhibition of GH release has been
observed in GC cells (Eigler et al., 2014). SST3 agonists
inhibit insulin release from INS-1 cells (Mergler et al.,
2008). At the systemic level, highly selective SST3

antagonists such as MK-1421 or MK-4256 facilitate
glucose-stimulated insulin secretion from pancreatic
b-cells and block glucose excursion in wild-type, but
not SST3 KO mice (Pasternak et al., 2012; Shah et al.,
2015; He et al., 2016). This suggests that SST3 antag-
onism represents a new potential mechanism for treat-
ing type 2 diabetes mellitus. SST3 expressed in primary
neuronal cilia in rodent brain is critical for object
recognition memory. SST3 KO mice are severely im-
paired in discriminating novel objects, whereas they
retain normal memory for object location. Similarly,
systemic injection of the SST3 antagonist NVP-ACQ090
disrupts recall of familiar objects in wild-type mice
(Einstein et al., 2010). In addition, the anticonvulsant
effects of CST-14 in rodents can be blocked by the
selective SST3 antagonist SST3-ODN-8, suggesting that
this activity is mediated in part via the SST3 (Aourz
et al., 2014).

I. Somatostatin Receptor 3 Ligands

SRIF-14 is a full agonist at the SST3, mediating
strong G protein signaling, full phosphorylation, and
internalization of the receptor (Fig. 14) (Lehmann et al.,
2016). Compared with SRIF-14, octreotide and pasireo-
tide behave as full agonists with regard to G protein
signaling and as partial agonists with regard to receptor
phosphorylation and internalization (Lehmann et al.,
2016). L-796,778 was the first selective nonpeptide
SST3 agonist with a moderate affinity (Rohrer et al.,

1998); however, compared with SRIF-14, it behaves as a
weak partial agonist onGprotein signaling and does not
induce noticeable receptor phosphorylation or internal-
ization (Fig. 14; Table 6) (Lehmann et al., 2016). The
first selective SST3 antagonist discovered, SST3-ODN-
8, was successfully used to label endogenous SST3 in
human tissues using autoradiographic binding studies
(Fig. 14; Table 6) (Reubi et al., 2000a). Great progress
has been made in development of two structurally
distinct classes of selective nonpeptide SST3 antago-
nists based on tetrahydro-b-carboline and decahydroi-
soquinoline derivatives (Poitout et al., 2001; Troxler
et al., 2010; He et al., 2016). The decahydroisoquinoline
derivative ACQ090 is a full neutral antagonist that
blocks phosphorylation and internalization of SST3

completely (Fig. 14; Table 6) (Lehmann et al., 2016).
Tetrahydro-b-carboline derivatives such as MK-1421 or
MK-4256 are highly selective for SST3. They were
shown to facilitate glucose-stimulated insulin secretion
from pancreatic b-cells and block glucose excursion in
rodents in vivo (Pasternak et al., 2012; Shah et al., 2015;
He et al., 2016). MK-4256 has been evaluated as a
potential candidate for treatment of type 2 diabetes
mellitus (Fig. 14; Table 6) (He et al., 2012, 2016; Shah
et al., 2015). However, development was discontinued
due to adverse cardiovascular effects related to human
ether-a-go-go–related gene off-target side effects (He
et al., 2014). Attempts to eliminate this off-target action
have led to discovery of (4-phenyl-1H-imidazol-2-yl)-
methanamines as potent and selective SST3 agonists
(Li et al., 2014; Lai et al., 2015).

VII. Somatostatin Receptor 4

A. Somatostatin Receptor 4 Structure

cDNAs coding for rat and human SST4 were cloned in
1992 and 1993, respectively, and the rat tissue distri-
bution of the mRNA suggested a brain-specific receptor

Fig. 13. SST3 expression pattern in human pituitary adenomas, human pancreatic islets, and rat neuronal cilia. Immunohistochemistry (red-brown
color), counterstaining with hematoxylin; primary antibody: UMB-5; scale bar, 50 mm. SST3 displays both membranous and cytoplasmic expression.
NFPA, clinically nonfunctioning pituitary adenoma.
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subtype (Bruno et al., 1992; Demchyshyn et al., 1993;
Rohrer et al., 1993). The gene encoding human SST4 is
localized on chromosome 20p11.2 in a single exon.
Genes encoding mouse and rat SST4 are localized on
chromosomes 2 G3 and 3q41, respectively. Human SST4

and rat SST4 are proteins of 388 and 384 amino acids,
respectively, and show 88% sequence identity. Both
human and rodent SST4 feature one site for N-linked
glycosylation in the N-terminal domain and a putative
palmitoylation motif in the C-terminal tail. The calcu-
lated mol. wt. is approximately 42 kDa. However, in
Western blots derived from rat brain, SST4 protein is
detected as a broad smear of 60–70 kDa (Schreff et al.,
2000). After PNGase F digestion, themol. wt. is reduced
to approximately 45 kDa and the receptor protein
appears as a sharp band (Schreff et al., 2000), indicating
that the native SST4 is indeed glycosylated. SST4 shares
a conserved sequence (351YANSCANPILY361) (Fig. 15)
in transmembrane region 7 (mammalian SST signa-
ture) and a consensus motif (X-[S/T]-X-F) in its C
terminus with all the other mammalian SST subtypes
(UniProtKB accession: P31391). The X-S/T-X-F motif
(the hydrophobic amino acid F is phenylalanine in
SST4) is regarded as a potential PDZ domain binding
site and might be important for interaction with
scaffolding proteins (Christenn et al., 2007). Crystal
structure of the agonist-bound SST4 is not yet available,
and studies on ligand binding and receptor activation
have been sparse. A homology model of SST4 has been
generated using the active state b2-adrenergic receptor
crystal structure, and a number of reported ligands
have been docked to the model-built structure. This
molecular prediction analysis suggested two partially
overlapping binding modes (Liu et al., 2012).

B. Somatostatin Receptor 4 Signaling Mechanisms

SST4 is coupled to heterotrimeric Gi/o protein–mediated
adenylate cyclase inhibition (Fig. 16) (Demchyshyn et al.,
1993; Patel et al., 1994). In cortical neurons, SST4has been
linked to activation ofM currents (Qiu et al., 2008). Native
SST4 modulates Kir3.x, VOCC, and transient receptor
potential cation channel subfamilyVmember 1 in ratDRG
neurons (Gorham et al., 2014b; Schuelert et al., 2015). In
rat retinal ganglion cells, SST4 also modulates VOCC

(Farrell et al., 2010, 2014). In transfected cells, agonist-
stimulated SST4 activates phospholipase A2, leading to
production of arachidonic acid as a second messenger,
the MAPK signaling cascade (Bito et al., 1994; Smalley
et al., 1999), and a NHE1 (Smalley et al., 1998). In CHO
cells expressing human recombinant SST4, SRIF stimu-
lates basal proliferation through a mechanism involving
prolonged activation of mitogen-activated protein ki-
nases 1/2 (ERK1/2) and phosphorylation of signal trans-
ducer and activator of transcription 3 (STAT3) (Sellers
et al., 1999). This event is transduced byGi/o proteins and
is dependent on PI3K activity. However, SST4 exerts
more complex functions in regulating cell proliferation.
For example, SST4 causes prolonged activation of p38
MAPK, which in turn results in the induction of the cell
cycle inhibitor p21 (cip1/Waf1) and growth arrest, when
cells were simultaneously exposed to somatostatin and
basic FGF (Alderton et al., 2001). When expressed in
malignant pleural mesothelioma cells, human SST4

activates SHP-1 and SHP-2. Downstream signaling
through SHP-2 is required for cytostatic effects of SST4

observed in these cells (Yamamoto et al., 2014). In trans-
fected CHO cells, SST4 causes PI3K-dependent activation
of NHE1 and increases extracellular acidification rate
(Smalley et al., 1999). In contrast, SST4 inhibits the
ubiquitous NHE1 in transfected rat fibroblasts (Lin
et al., 2003).

C. Somatostatin Receptor 4 Regulation

The 59 promoter region of the human gene (Petersenn
et al., 2002b) bears little homology between the human
and the rat 59 flanking regions (Xu et al., 1995b). A
minimal 2209-bp 59 flanking region contains elements
that support human promoter activity in different cell

Fig. 14. Structures of synthetic SST3 ligands. L-796,776, SST3 agonist; ACQ090, sst3-ODN-8, and MK-4256, SST3 antagonists.

TABLE 6
Ligand-binding affinities of SST3-selective ligands

SST1 SST2 SST3 SST4 SST5

L-796/778a 1255 .10,000 24 8650 1200
sst3-ODN-8b .10,000 .10,000 4.1 .10,000 .10,000
ACQ090c 5.68 5.31 8.13 6.81 5.93
MK-4256d 2362 4025 0.66 384 533
aData from Rohrer et al. (1998).
bData from Reubi et al. (2000a).
cData from Troxler et al. (2010).
dData from He et al. (2012).
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types in vitro, including rat pituitary cells. Elements
located between 2459 and 2984 bp enhance promoter
activity, although putative binding sites for tissue-specific

transcription factors were not identified in these regions.
Pathophysiological factors affecting SRIF and SST1-5

expression in endothelial cells include hypoxia, which

Fig. 15. Structure of human SST4. The primary and secondary amino acid structure of the human SST4 (UniProtKB - P31391) is shown in a schematic
serpentine format. The glycosylation site is colored in purple; the DRY motif is highlighted in green; the human SST motif is in light blue; potential
phosphorylation sites are in gray; the PDZ ligand motif is in dark blue; the disulfide-forming cysteines are in pale blue; and the potential
palmitoylation site is in orange.

Fig. 16. SST4 signaling leading to inhibition of hormone secretion, proliferation, and migration. By coupling to Gi proteins, SST4 inhibits adenylate cyclase
and reduces cAMP accumulation, and reduces intracellular Ca2+ concentrations by activating GIRK and M channels, which results in membrane
hyperpolarization and subsequent reduction of Ca2+ and Na+ influx through VOCC and TRPV1. In addition, SST4 inhibits the NHE1 activity, resulting in a
decrease of extracellular acidification rate. Another major effector of SST4 is the tyrosine phosphatase SHP-2, which mediates antiproliferative effects.
SST4 also mediates a prolonged ERK activation and subsequent signal transducer and activator of transcription 3 phosphorylation, which is Gi/Go and
PI3K dependent. Activation of SST4 can induce cell cycle arrest by upregulation of the cyclin-dependent kinase inhibitor p21 (cip1/WAF1).
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induces SST4mRNAexpression in human umbilical vein
endothelial cells (Dal Monte et al., 2011). In brain
endothelial cells, proinflammatory cytokines and lipo-
polysaccharide upregulate expression of SST4 as well as
SST2 (Basivireddy et al., 2013). Substantial differences
between rat and the human SST4 have been reported in
desensitization after prolonged SRIF treatment. In
transfected CHO cells expressing human SST4, both
activation of NHE1 and stimulation of ERK phosphory-
lation were susceptible to a marked desensitization in
response to SRIF (Smalley et al., 1998, 1999; Engström
et al., 2006).

D. Somatostatin Receptor 4 Trafficking

As to the fate of the receptor upon SRIF-14 binding,
low levels of internalized human SST4 were detected in
transfected cells. The use of radiolabeled ligand sug-
gested rapid dissociation of the complex and rapid
recycling of the ligand to the extracellular medium
and of the receptor to the plasma membrane, respec-
tively. These observations may suggest that sustained
desensitization of human SST4 is not entirely depen-
dent on receptor sequestration (Smalley et al., 2001). In
contrast, rat SST4 is not susceptible to rapid desensiti-
zation and does not undergo internalization at all, as
shown in transfected cells and in brain tissue after
in vivo treatment of rats with SRIF (Kreienkamp
et al., 1998; Schreff et al., 2000). Although a number of
potential phosphate acceptor sites are present, rat SST4

is also not subject to agonist-induced phosphorylation
and does not recruit b-arrestins to the plasma mem-
brane when activated (Tulipano et al., 2004). Site-
directed mutagenesis allowed for identification of a
single amino acid residue (Thr331) in rat SST4, which
confers resistance to agonist-induced internalization
(Kreienkamp et al., 1998).

E. Somatostatin Receptor 4 Interacting Proteins

Direct interaction between SST4 and the scaffolding
PSD-95 has been shown in transfected HEK293 cells
and in hippocampal neurons (Christenn et al., 2007).
This interaction is mediated by binding of a PDZ
domain of PSD-95 to a PDZ-domain ligand motif in the
C-terminal tail of SST4. PSD-95 is not involved in
regulating receptor signaling in transfected cells. More-
over, as PSD-95 and SST4 partially colocalize in hippo-
campal neurons in the dendritic domain, the scaffold
protein may be involved in targeting SST4, mainly
localized in the somatodendritic postsynaptic domain
in brain. In addition, an interaction between SST4 and
themembrane glycoprotein dipeptidyl peptidase-4/clus-
ter of differentiation 26 (CD26) occurs in malignant
pleural mesothelioma cells. CD26 is a 110-kDa type II
membrane glycoprotein with known dipeptidyl pepti-
dase IV activity in its extracellular domain. SST4 and
CD26 are highly coexpressed and interact through their
cytoplasmic domains inmalignant pleuralmesothelioma

cells. The SST4–CD26 interaction reduces cytostatic
effects of SST4 agonists (Yamamoto et al., 2014). Their
efficacy was enhanced by suppression of CD26 as well as
by treatment of cells with anti-CD26 mAbs. Upon
treatment with anti-CD26 mAbs, SST4 aggregated pref-
erentially in lipid rafts. Interestingly, SHP-2 also clus-
tered in lipid rafts along with SST4, which in turn
facilitated SST4-mediated cytostatic and antitumor ef-
fects. Moreover, in transfected HEK293 cells, human
SST4 exists as constitutive homodimers and as constitu-
tive heterodimers when coexpressed with human SST5

(Somvanshi et al., 2009). However, in a different cellular
background (CHO-K1 cells), cotransfection of these two
receptors did not result in heterodimerization under
otherwise identical conditions (Rocheville et al., 2000b).
Nevertheless, to what extent the SST4–SST5 interaction
may be physiologically relevant is not known.

F. Somatostatin Receptor 4 Anatomic Framework

The SST4 is localized in diverse rat brain areas, and
there is substantial consistency between mRNA and
SST4-like immunoreactivity distribution in the rat
(Fehlmann et al., 2000; Schreff et al., 2000; Schulz
et al., 2000a; Stumm et al., 2004). High levels of SST4

are present throughout the rat forebrain, whereas the
signal progressively decreased toward caudal brain
regions. SST4 is abundantly expressed in the olfactory
bulb and in other olfactory structures. SST4 is found
throughout layers I–VI of the neocortex, in the hippo-
campus formation, the hilar region of the dentate gyrus,
the amygdala, and the hypothalamus. SST4 immunore-
activity is distributed along neuronal processes in the
striatum, nucleus accumbens, and globus pallidus. In
addition, approximately 50% of DRG showed SST4-like
immunoreactivity (Bär et al., 2004). SST4 is also
abundantly present in retinal ganglion cells (Farrell
et al., 2010). At the cellular and subcellular level of
adult rat CNS, SST4 is preferentially distributed to
somatodendritic neuronal domains. In the neocortex,
hippocampus, and striatum, SST4 is almost exclusively
confined to dendrites and symmetric synapses. In the
hippocampus, targeting to asymmetric, excitatory syn-
apses was observed. Colocalization studies of SRIF and
SST4 provided evidence of close apposition of SRIF-
containing axons and their terminals with dendrites
containing SST4, suggesting that SST4mainly functions
postsynaptically (Schreff et al., 2000). In the periphery,
SST4 is expressed in the lung, heart, and placenta and is
undetectable in pancreatic islets (Fehlmann et al., 2000;
Ludvigsen et al., 2015). Given that highly specific rabbit
mAbs are not yet available, the cellular expression of
human SST4 is less well characterized. Using polyclonal
antibodies, SST4 receptors have been found in cells of
the bronchial glands, the exocrine pancreas, in the GIT
(stomach and duodenum), in kidney tubules, and in the
parathyroid gland (Taniyama et al., 2005). Lack of SST4

binding sites and immunoreactivity in hypophyseal
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tissue suggests that SST4 does not play a major role in
SRIF-mediated neuroendocrine control of the human
anterior pituitary (Panetta and Patel, 1995; Reubi et al.,
2001). SST4 immunoreactivity in human brain was
restricted to the gray matter in cerebral cortex areas.
In the sensory and motor cortex, staining of the large
motor neurons was not detected. Immunopositive pyra-
midal cells were found in cortical layers III–VI, in
agreement with results of SST4-like immunoreactivity
in rat neocortex layers III–V, most likely representing
targets of local SRIFergic neurons in the cerebral
cortex. SST4 protein was found in the hippocampal
formation, with immunostaining of cell bodies and
processes in the polymorphic layer of the dentate gyrus
and in the thalamus, where it localized particularly in
fibers. SST4 immunoreactivity was also observed in the
cerebellar cortex and the medulla (Selmer et al., 2000).
In summary, data on SST4 distribution in selected
human brain areas correlate well with the distribution
in rat brain. Comparison between SST4 immunoreac-
tivity and SST4 mRNA distribution by in situ hybrid-
ization (Schindler et al., 1995; Thoss et al., 1996b; Piwko
et al., 1997) in human brain showed some discrepancies
in thalamus, cerebral cortex, and cerebellum expression
patterns (Selmer et al., 2000). According to receptor
autoradiography using selective ligands, SST4 cannot
be frequently found in human tumors (Reubi et al.,
2001). Finally, two studies reported divergent results on
the expression of SST4 in human insulinomas. In the
first study, immunoreactivity analysis suggested that
SST4 was the most frequent receptor expressed in both
benign and malignant insulinomas (Portela-Gomes
et al., 2007). In the second study, the mRNA expression
analysis and binding assays suggested that SST4

expression was limited to approximately 20% of tumors
(Bertherat et al., 2003).

G. Somatostatin Receptor 4 Function

SST4 is expressed in areas involved in learning and
memory processes. In mice, pharmacological studies
suggest that activation of hippocampal SST4 leads to
impaired spatial learning and enhanced cued mem-
ory. This effect suggests a switch from formation of
hippocampus-based memory to striatum-based mem-
ory (Gastambide et al., 2010). In addition, behavioral
studies using selective ligands showed that activation of
SST4 in the striatum increases rat locomotor activity via
glutamatergic systems (Raynor et al., 1993a; Santis
et al., 2009). Finally, activation of SST4 in the CNS plays
a role in modulation of behavioral responses to acute
stress and of behavioral and neuroendocrine changes
induced by mild chronic stress in mice, suggesting
involvement of SST4 in anxiety and depression-like
behavior (Scheich et al., 2016, 2017). Experimental data
suggest SST4 as a therapeutic target in Alzheimer’s
disease. Administration of the SST4 agonist NNC26-
9100 was found to reduce soluble amyloid-b peptide

oligomers in the brain by enhancing metalloproteinase-
mediated amyloid degradation in two different mouse
models. This effect correlated with improved learning
(Sandoval et al., 2012, 2013). Interestingly, SST4 expres-
sion levels are drastically reduced in the temporal cortex
of female Alzheimer’s disease patients (Gahete et al.,
2010b). SRIF is also highly expressed in brain areas
associated with seizures. Activation of SST4 suppressed
epileptiform activity in mouse hippocampal slices and
exerts anticonvulsant effects in vivo. Moreover, SST4 KO
mice showed increased susceptibility to limbic seizures
(Qiu et al., 2008) but other studies suggested excitatory and
proconvulsant effects of SST4 activation (Moneta et al.,
2002). In a rat model for limbic seizures, intrahippo-
campal administration of a SST4-selective agonist has
marked anticonvulsant effects, similar to administra-
tion of SST2 and SST3 agonists (Aourz et al., 2011). SST4

is currently being evaluated as a therapeutic target for
development of anti-inflammatory and/or analgesic
drugs without endocrine side effects (Sándor et al.,
2006; Elekes et al., 2008; Helyes et al., 2009; Schuelert
et al., 2015). Mice lacking SST4 exhibit increased in-
flammatory and nociceptive responses, suggesting im-
paired defense mechanisms (Helyes et al., 2009; Van Op
den Bosch et al., 2009). Peripheral administration of
selective SST4 agonists reduced formalin-induced acute
nociception and mechanical allodynia in arthritic and
neuropathic pain models and exhibited multiple anti-
inflammatory effects in rodents (Sándor et al., 2006;
Schuelert et al., 2015). DRG neurons are most likely a
primary target of SST4 agonists. SST4 activation reduces
membrane excitability in DRG neurons by activating
Kir3.x and inhibiting VOCC channels, and both mech-
anisms are presumed to contribute to analgesic effects
(Gorham et al., 2014a). SST4-selective agonists reduced
acute and chronic airway inflammation as well as
bronchial hyper-reactivity in the mouse, and inhibited
carbachol-induced bronchoconstriction (Elekes et al.,
2008).

H. Somatostatin Receptor 4 Ligands

Compared with other SST subtypes, SST4 displays
somewhat lower affinity for the common endogenous
ligand SRIF-14. Among multi-SST ligands, the cyclic
heptapeptide veldoreotide (COR005) (previously called
somatoprim, DG3173) is unique in that it binds to
SST4 in addition to SST2 and SST5 (Shimon et al.,
2004; Plöckinger et al., 2012). Veldoreotide is a potent
suppressor of GH secretion from human pituitary
adenomas, which is attributed to its affinity for SST2

and SST5. Interestingly, despite nanomolar affinity for
SST5, veldoreotide has minimal effects on insulin
secretion from endocrine pancreas in vivo. In phase II
clinical trials for the treatment of acromegaly, veldor-
eotide proved to be effective when administered by s.c.
bolus or s.c. infusion (ClinicalTrials.govNCT02235987and
NCT02217800). TT-232 is a stable cyclic heptapeptide
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with partial activity at SST4 that also binds to SST1

(Crider and Witt, 2007). Compound J-2156, a nonpeptide
agonist displaying high selectivity and high affinity for
SST4 (Fig. 17; Table 7), was derived by solid-phase
synthesis of a series of 1-naphthalenesulfonylamino-
peptidomimetics (Engström et al., 2005). Both TT-232
and J-2156 exhibited anti-inflammatory and antinocicep-
tive effects after i.p. administration in rodents (Crider and
Witt, 2007). NNC26-9100 is the lead compound of another
structurally distinct class of highly selective SST4 agonists
(Liu et al., 1998). L-803,087 is a nonpeptidic agonist with
high affinity and selectivity for SST4 (Fig. 17; Table 7)
(Rohrer et al., 1998). Unexpectedly for peptide GPCRs,
only SST4 agonists have been identified, and antagonists
are not yet available. SST4 agonists able to penetrate the
blood brain barrier would be of great interest.

VIII. Somatostatin Receptor 5

A. Somatostatin Receptor 5 Structure

Cloning of human SST5, the last subtype of the SST
family to be cloned (Yamada et al., 1993; Panetta et al.,
1994), was preceded by that of rat SST5 (O’Carroll et al.,
1992), which was initially termed rat SSTR4, due to the
temporal proximity with the cloning of the receptor
currently known as rat SST4 (Xu et al., 1993). After an
initial period of confusion, the current nomenclature
was agreed upon (Hoyer et al., 1995a), and subsequent
studies led to detailed characterization of SST5. The
human SSTR5 gene is localized on chromosome
16p13.3, and its coding sequence spans a single exon,
encoding a protein of 364 amino acids (Panetta et al.,
1994; Takeda et al., 1995), whereas the rat Sstr5
receptor gene encodes a protein of 363 amino acids
(O’Carroll et al., 1992). Genes encoding mouse and rat
SST5 are localized on chromosomes 17 A3.3 and 10q12,
respectively. Mouse SST5 was also shown to encode a
protein whose length appears to vary from 362 amino
acids (Moldovan et al., 1998; Gordon et al., 1999) to
363 residues (Lublin et al., 1997; Feuerbach et al.,
2000), and up to 385 amino acids (Baumeister et al.,
1998), differences attributed to cloning procedures or
mouse strain. Initial comparative analysis had revealed
that the sequence of SST5 is evolutionarily well con-
served, with human SST5 showing 80% homology with

the amino acid sequence of rat and mouse SST5

(O’Carroll et al., 1992; Lublin et al., 1997). Neverthe-
less, compared with other SSTs, human SST5 seems to
display lower levels of identity and similarity with SST5

from other species, particularly at the carboxyl-
terminal tail, as well as with other human SSTs
[ranging from 42% to 52% compared with SST1, SST2,
SST3, and SST4 (O’Carroll et al., 1992; Panetta et al.,
1994; Møller et al., 2003)], which portrays SST5 as the
least conserved subtype among SSTs. Original cloning
revealed two potential N-glycosylation sites in human
SST5, located at Asn-13 and Asn-26 in the amino-
terminal segment, and a third Asn-187 in the second
ICL (Fig. 18) (Yamada et al., 1993; Panetta et al., 1994).
Likewise, the 385-amino-acid mouse SST5 described by
Baumeister et al. (1998) contains three equivalent
putative N-glycosylation sites at residues 36, 46, and
208. The estimated molecular mass of the 364-residue
human SST5 is 39 kDa, whereas immunodetection of
SST5 from transfected baby hamster kidney cells in
Western blot showed several bands ranging from 52 to
66 kDa. Deglycosylation with PNGase F rendered a
single band with an estimated 40-kDa mass, thus
confirming the glycoprotein nature of the receptor
(Helboe et al., 1997). Human SST5 contains a cysteine
residue at position 320 as a presumed palmitoylation
anchor, the mammalian SST signature motif in trans-
membrane region 7 (294YANSCANPVLY304), and two
cysteine residues at residues 112 in the first extracel-
lular loop (ECL) and 186 in the second ECL, predicted to
enable a disulfide bridge (Reisine and Bell, 1995).
Studies on structural determinants of human SST5

function using mutational analysis suggested that
ECL 2 is key to form the receptor ligand-binding pocket
(Greenwood et al., 1997).

In contrast to other SSTs, a number of studies have
identified single-nucleotide polymorphisms in the hu-
man SST5 gene that may imply potential pathophysio-
logical functions in pancreatic NETs and other cancers
(Li et al., 2011; Zhou et al., 2011, 2012), bipolar affective
disorder (Nyegaard et al., 2002), acromegaly (Lania
et al., 2008; Ciganoka et al., 2011), prostate cancer
(Hormaechea-Agulla et al., 2017), and in the regulation
of circulating IGF-1 and IGFBP3 in prostate and breast
cancer (Gu et al., 2010). However, only a single SST5

Fig. 17. Structures of synthetic SST4 ligands. J-2156 and L-803,087, SST4 agonists.
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mutation associated with acromegaly has been de-
scribed in a single patient (Ballare et al., 2001).
The human SSTR5 gene as well as rodent orthologs

uniquely undergoes noncanonical splicing to truncated
variants that possess less than the typical seven TMDs
that characterize all GPCRs (Cordoba-Chacon et al.,
2011). In particular, two truncated human SST5 recep-
tors exist, termed SST5TMD4 and SST5TMD5, which
display distinct tissue distribution, subcellular locali-
zation, response to ligands, and signaling capacities
as compared with canonical full-length SST5 (Cordoba-
Chacon et al., 2011). Themost studied variant, SST5TMD4,
is scarcely present in normal tissues but abundantly
expressed in a number of tumors, including pitui-
tary adenomas (Durán-Prado et al., 2009, 2010;
Gatto et al., 2013a; Luque et al., 2015), breast cancer

(Durán-Prado et al., 2012b; Gahete et al., 2016), thyroid
cancer (Puig-Domingo et al., 2014), medullary thyroid
carcinoma (Mole et al., 2015), NETs (Sampedro-Nunez
et al., 2016), and prostate cancer (Hormaechea-Agulla
et al., 2017). In all those tumor types, SST5TMD4
expression is associated with features of enhanced
tumor aggressiveness that vary depending on the type
of tumor: increased cell survival/proliferation, migra-
tion, invasion, angiogenesis, decreased apoptosis, poor
response to octreotide/lanreotide, etc. Similar, albeit not
identical, truncated SST5 receptor variants have also
been cloned and characterized in pig (Durán-Prado
et al., 2012a) and rodents (Cordoba-Chacon et al., 2010).
Truncated SST5 receptor variants share a number of
features, as follows: 1) preferential intracellular distri-
bution (rather than the predominant plasmamembrane
localization of full-length SST5); 2) functional capacity
to selectively respond to ligands (e.g., SRIF for
SST5TMD5; CST for SST5TMD4), by modulating dis-
tinct signaling pathways (cAMP, Ca2+, etc.); and 3)
ability to physically interact with full-length SST2

and/or SST5, to retain them in intracellular compart-
ments, and, eventually, disrupt their normal function.
As a result, it has been proposed that SST5TMD4 and

TABLE 7
Ligand-binding affinities of SST4-selective ligands

SST1 SST2 SST3 SST4 SST5

L-803,087a 199 4720 1280 0.7 3880
J-2156b 350 .5000 1300 0.8 460
aData from Rohrer et al. (1998).
bData from Engström et al. (2005).

Fig. 18. Structure of human SST5. The primary and secondary amino acid structure of the human SST5 (UniProtKB - P35346) as well as its truncated
variants SST5TMD4 and SST5TMD5 are shown in a schematic serpentine format. Glycosylation sites are colored in purple; the DRY motif is
highlighted in green; the human SST motif is in light blue; potential phosphorylation sites are in gray; identified GRK2/3 phosphorylation site is in red;
constitutive phosphorylation site is in black; the PDZ ligand motif is in dark blue; the disulfide-forming cysteines are in pale blue; and the potential
palmitoylation site is in orange. UMB-4 is a rabbit monoclonal antibody, which detects the carboxyl-terminal tail of SST5 in a phosphorylation-
independent manner.
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other truncated variants may act as functional
dominant-negative partners for their respective full-
length SST2 and SST5 receptor counterparts (Cordoba-
Chacon et al., 2011).

B. Somatostatin Receptor 5 Signaling Mechanisms

SST5 signals through a wide array of mechanisms,
which include prototypical Gai-dependent inhibition of
adenylyl cyclase common to all SSTs, regulation of
other crucial enzymes like PTPs andMAPK, as well as
modulation of free cytosolic calcium and potassium con-
centrations (Fig. 19) (Møller et al., 2003; Peverelli et al.,
2009, 2013; van der Hoek et al., 2010; Theodoropoulou
andStalla, 2013).Original cloning studies showed that both
human and rat SST5 inhibited forskolin-stimulated cAMP
accumulation throughaGai protein–dependentmechanism
(Yamada et al., 1993; Panetta et al., 1994). These functions
were confirmed in subsequent studies, mainly using SST5-
transfected cells and/or selective ligands, which revealed
that SST5 activates additional pathways in a context (i.e.,
ligand, cell environment)- and species-dependent manner
(Siehler and Hoyer, 1999b,c; Møller et al., 2003; van der
Hoek et al., 2010; Theodoropoulou and Stalla, 2013). Thus,
SST5 activates PLC activity, thereby increasing cytosolic
Ca2+ levels by release from intracellular stores (Wilkinson
et al., 1997a,b; Siehler and Hoyer, 1999c). However, SST5

also blocks VOCCs, thereby decreasing Ca2+ cell entry and
cytosolic levels (Tallent et al., 1996), likely by hyperpola-
rizing the cell through K+ influx via activation of Kir3.x
(Kreienkamp et al., 1997; Smith et al., 2001). Using

wild-type and mutant SST5, the main signaling path-
ways activated by this receptor have been delineated, as
follows: 1) SST5 couples to individual Gai1–3 and GaoA,B;
2) Gao mediates antisecretory and antimitogenic effects
of SST5 in human pituitary somatotrophs; 3) the DRY
motif is crucial for SST5 coupling with downstream
effectors, whereas the BBXXB motif within the third
ICL is dispensable for cAMP inhibition but essential for
SST5 actions to reduce intracellular calcium levels and
inhibit ERK1/2 activation, as well as for b-arrestin/re-
ceptor interaction and receptor internalization; and 4)
residues 328–347 within the C terminus may play an
inhibitory role in receptor internalization (Ballare et al.,
2001; Peverelli et al., 2008, 2009, 2013). In fact, earlier
mutational analysis indicated that Cys320 and, by and
large, the C-tail of SST5 are essential for functional
effector coupling (e.g., to adenylyl cyclase) and agonist-
induced receptor desensitization and internalization
(Hukovic et al., 1998).

SST5 inhibits ERK1/2 by a dephosphorylation cascade,
including inhibition of guanylate cyclase and inhibition
of cGMP-dependent protein kinase G (Cordelier et al.,
1997). It also exerts antiproliferative effects by activating
neuronal NOS via p60src kinase (Cordelier et al., 2006).
SST5 activates stress-activated protein kinase or c-Jun
N-terminal kinase via Ga12 proteins (Komatsuzaki
et al., 2001). In addition, it activates and upregulates
N-methyl-D-aspartate receptor function by a mecha-
nism involving calmodulin-dependent kinase II, PLC,
protein kinase C, and tyrosine kinases in hippocampal

Fig. 19. SST5 signaling leading to inhibition of hormone secretion and proliferation. By coupling to Gi proteins, SST5 inhibits adenylate cyclase and
reduces cAMP accumulation, and reduces intracellular Ca2+ concentrations by activating GIRK channels, which results in membrane
hyperpolarization and subsequent reduction of Ca2+ influx through VOCC. This results in decreased hormone secretion. By coupling to a pertussis
toxin–independent G protein, SST5 activates PLC, triggering inositol-1,4,5-trisphosphate (IP3) production and subsequent Ca2+ release into the
cytoplasm from endoplasmic reticulum. Major downstream effectors of SST5 are the tyrosine phosphatases SHP-1 and SHP-2, which subsequently
inhibit mTOR pathway, thereby decreasing cell growth and proliferation. In addition, SST5 inhibits NHE1 activity, resulting in a decrease of
extracellular acidification rate.
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noradrenergic nerve endings (Pittaluga et al., 2005).
In rat retinal ganglion cells, SST5mediates suppression
of 2-amino-3-(5-methyl-3-oxo-2,3-dihydro-1,2-oxazol-
4-yl)propanoic acid (AMPA) responses by acting through
a signaling cascade involving Gi/o/cAMP-PKA/ryanodine/
Ca2+/CAM/calcineurin/PP1 (Deng et al., 2016).
SST5 displays constitutive activity, resulting in tonic

inhibition of cAMP and ERK1/2 signaling and thus
reducing hormone secretion (Ben-Shlomo et al., 2007,
2009b; Ben-Shlomo and Melmed, 2010). Finally, it has
been shown that very low concentrations of SRIF
actually stimulate GH release from pig and nonhuman
primate somatotrophs mediated via SST5 and involving
adenylyl cyclase, cAMP/PKA, and intracellular Ca2+

pathways (Luque et al., 2006; Cordoba-Chacon et al.,
2012b). These actionsmay also be related to the presence
of truncated SST5 receptor variants, which activate a
wide array of signaling routes andmolecular effectors, in
a cell-, species-, and tumor-dependent manner, including
cAMP, intracellular Ca2+, mitogen-activated protein
kinases (ERK/c-Jun N-terminal kinase), AKT, cyclin
D3, actin-related protein 2/3, MYC/myc-associated fac-
tor X, Wingless/int-1, and retinoblastoma protein
signaling components (Durán-Prado et al., 2009,
2012a,b; Cordoba-Chacon et al., 2010; Hormaechea-
Agulla et al., 2017).

C. Somatostatin Receptor 5 Regulation

1. Regulation of Somatostatin Receptor 5 Gene
Expression. The mouse Sstr5 gene contains two
introns in the 59-flanking region, which would enable
the potential use of alternative gene promoters (Gordon
et al., 1999; Baumeister and Meyerhof, 2000a; Olias
et al., 2004). In humans, cell-specific expression was
initially assigned to the first 900 bp of the SSTR5 gene
(Greenwood et al., 1994; Baumeister and Meyerhof,
2000a), but a subsequent study identified a 6.1-kb intron
in the 59-UTR that unveiled a new upstream promoter,
which can drive tissue-specific activation of the gene
in pituitary in a Pit1-independent manner, but not in
other tissues (e.g., small intestine, lung, or placenta)
(Petersenn et al., 2002a). Similar to the mouse Sstr5
gene promoter, the human SSTR5 promoter lacks
consensus sites for TATA or CAAT boxes, YY1, or a
comparable initiator sequence, but contains relevant
regulatory elements, including an essential GC-rich
region containing SP1 binding sites, located proximal
upstream of the transcription start site, two thyroid
hormone response elements (between 21741 and 21269
and 2317 and 2101), and a cAMP-responsive element
(between 2101 and transcription start site). Indeed,
reporter assays confirmed that forskolin and thyroid
hormones enhance and SRIF inhibits promoter activity,
which was not altered by other treatments, including
IGF-1, estrogens, glucocorticoids, and phorbol 12-myristate
13-acetate (Greenwood et al., 1994; Petersenn et al., 2002a).
Additional putative binding sites were identified for

basic and tissue-specific transcription factors [e.g., nu-
clear factor 1, SP1, octamer-binding transcription factor
1, AP-1, AP-2, pituitary-specific positive transcription
factor 1, Krox, pancreas-specific transcription factor 1,
MyoD] and for hormone-dependent regulation [e.g., the
cAMP-responsive element and tetracycline-responsive
promoter element mentioned above, retinoic acid re-
ceptor, estrogen receptor, glucocorticoid receptor sites,
etc.], as well as two CpG islands (Greenwood et al., 1994;
Petersenn et al., 2002a).

Expression of the SSTR5 receptor gene is under
multifactorial regulation that includes the following:
1) homologous control by SRIF and its analogs; 2)
heterologous regulation by key stimulatory hypotha-
lamic hormones, such as GHRH and ghrelin, which
commonly inhibit SSTR5 receptor expression (Luque
et al., 2004; Cordoba-Chacon et al., 2012a); and 3)
endocrine–metabolic control by hormones from the
major regulatory axes, such as sex steroids (17b-estradiol,
testosterone), thyroid hormones, and glucocorticoids
(reviewed in Baumeister and Meyerhof, 2000a; Olias
et al., 2004; Ben-Shlomo and Melmed, 2010).

2. Ligand-Dependent Regulation of Somatostatin
Receptor 5. The SST5 carboxyl-terminal tail contains
only two potential phosphorylation sites at residues
T333 and T347 (compared with the seven putative
phosphate–acceptor sites in SST2), which seem to un-
dergo markedly divergent dynamics: whereas T347 is
constitutively phosphorylated even in the absence of
ligand, T333 is phosphorylated by GRK2 immediately
after agonist binding, as shown with phosphosite-
specific antibodies (Petrich et al., 2013; Schulz et al.,
2014), and as supported by mutagenesis studies, which
also point to T333 as an essential residue for SST5

receptor internalization (Peverelli et al., 2008). This
latter study also suggested that the third ICL of SST5 is
key for b-arrestin binding and receptor internalization
upon ligand exposure, whereas the 36 terminal residues
of the carboxyl-terminal tail may contribute to inhibit
receptor internalization. Actually, regulation of SST5

by agonist-induced phosphorylation is tightly coupled
to internalization and trafficking, for b-arrestin is
recruited immediately after agonist-induced T333 phos-
phorylation and the receptor is subsequently internal-
ized, in contrast to SST2, the SST5–b-arrestin complex
is quickly disrupted, and SST5 traffics to early endo-
somes without b-arrestin (Petrich et al., 2013; Schulz
et al., 2014). As a likely consequence of these distinct
dynamics, the proportion of SST5 internalized after
30 minutes of SRIF exposure is considerably lower than
that observed for the SST2 receptor (30%–40% versus
80%–90%, respectively) (Petrich et al., 2013; Schulz
et al., 2014). Nevertheless, it is important to emphasize
that the dynamics of SST5 phosphorylation (and also its
trafficking) are ligand- and context-dependent. Although
SRIF-14 induces rapid dose-dependent SST5 phosphor-
ylation, octreotide did not cause this effect. In addition,
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the SST5-selective agonist L-817,818 or the multirecep-
tor ligand pasireotide induced SST5 phosphorylation
to a lesser extent than the natural ligand SRIF-14,
which was only paralleled by the SST5-selective
agonist BIM-23268 (Shimon et al., 1997b; Petrich
et al., 2013; Schulz et al., 2014). Additional mechanisms
influencing agonist-dependent SST5 phosphorylation
remain to be elucidated.
The reverse process of SST5 dephosphorylation at

T333 is driven by PP1g and depends on sequences in the
carboxy-terminal tail, and is more rapid for SST5 than
for SST2 (Petrich et al., 2013; Lehmann et al., 2014a;
Schulz et al., 2014). In contrast, mechanisms that
operate constitutive phosphorylation of T347 at SST5

and its physiologic relevance in vivo, if any, are still to
be elucidated (Schulz et al., 2014). Likewise, possible
ubiquitin-mediated degradation of SST5 remains to be
elucidated, although recent results showed a relation-
ship between the abundance and functionality of
ubiquitin-specific peptidase 8 and the degree of SST5

expression at both mRNA and protein levels, which
could bear clinical relevance for treating corticotroph
adenomas (Hayashi et al., 2016).

D. Somatostatin Receptor 5 Trafficking

Trafficking of SST5 is intimately related to both
ligand-dependent regulation of the receptor and in-
teraction with specific proteins, which may include
heterodimerization with other plasma membrane re-
ceptors. Thus, specific features of SST5 that reside
within its sequence, phosphorylation/dephosphoryla-
tion kinetics, and interaction with b-arrestin and PDZ
proteins are determinants for particular trafficking
dynamics of this receptor. Little is known regarding
the pathway of SST5 from its synthesis in the endoplas-
mic reticulum to the plasma membrane (i.e., export
pathway), whereas trafficking involved in ligand-
induced internalization and recycling has been studied
in more detail (Fig. 20) (Jacobs and Schulz, 2008; Csaba
et al., 2012; Schulz et al., 2014). Earlier studies explored
the process of human and rat SST5 internalization and
trafficking using different cell models (Hukovic et al.,
1996, 1998; Roosterman et al., 1997; Roth et al., 1997b;
Stroh et al., 2000b). In COS-7 cells, detailedmicroscopic
and functional examination of SRIF-driven SST5 traf-
ficking revealed that ligand exposure induced rapid
(minutes) internalization of SST5, which involved traf-
ficking to endosomal compartments, and was followed
by a subsequent process of ligand–receptor dissociation
and receptor recycling to the cell surface, accompanied
by recruitment of receptors residing in an intracellular
pool to the plasma membrane (Stroh et al., 2000b).
Subsequent studies have dissected the contribution of
specific protein regions and amino acid residues in SST5

trafficking, by demonstrating, for example, the impor-
tance of the third ICL (particularly phosphorylation of
S242) and the carboxyl-terminal tail for agonist-induced

internalization of SST5, which seems to be species and
cell context dependent (Hukovic et al., 1998; Jacobs and
Schulz, 2008; Peverelli et al., 2008; Csaba et al., 2012). In
fact, SST5-trafficking dynamics are also heavily ligand-
dependent, a feature of critical importance froma clinical
standpoint. Trafficking does not solely depend on ligand-
binding affinity for SST5, but on alternative properties
that may entail, among others, distinct agonist–receptor
binding sites, specific processes of phosphorylation, and
subsequent activation of downstream interactions with
b-arrestin, PDZ, and other interacting proteins (Cescato
et al., 2006, 2012; Ginj et al., 2008; Jacobs and Schulz,
2008; Peverelli et al., 2008; Lesche et al., 2009; Petrich
et al., 2013; Lehmann et al., 2014a; Schulz et al., 2014).

E. Somatostatin Receptor 5 Interacting Proteins

Like the other SSTs, SST5 contains a potential
C-terminal class I PDZ ligandmotif. Human and rodent
SST5 interact with the PDZ domain protein interacting
specifically with Tc10 (PIST, a Golgi-associated protein
also known as Golgi-associated PDZ and coiled-coil
motif–containing protein) and with sodium/hydrogen
exchanger regulatory factor (NHERF)3/PDZ-K1 (PDZ
protein expressed in kidney 1), a scaffold protein (Wente
et al., 2005a,b; Csaba et al., 2012; Bauch et al., 2014).
Analysis of SST5–PIST interaction in HEK293, AtT20,
and MIN6 cells suggested that PIST may accompany
SST5 to the Golgi/TGN, and also, that it may contribute
to recycling to the plasma membrane (Wente et al.,
2005a,b; Csaba et al., 2012).More recent work identified
additional PDZ domain proteins interacting withmouse
SST5, such as sorting nexin family member 27 and
NHERF1, and further delineated the function of PIST,
which seems to retain SST5 at the Golgi/TGN compart-
ment. In contrast, NHERF1 could release the receptors
from this area and thereby facilitate access to the cell
surface (Bauch et al., 2014). PDZ-K1/NHERF3 appears
to regulate specific interaction and functional activation
of PLCb3 by SST5 and other SSTs in response to SRIF
by forming a ternary complex with PLCb3 and SSTs
(Kim et al., 2012). Thus, although the PDZmotif of SST5

does not seem to be indispensable for agonist-induced
internalization of the receptor or for recycling to the
plasma membrane, it may limit lysosomal degradation
(and hence increase receptor stability) and enable addi-
tional signaling capabilities through selective PDZ
domain–driven interactions (Wente et al., 2005a,b;
Csaba et al., 2012; Kim et al., 2012; Bauch et al., 2014).

SST5 displays the ability to interact with other
receptors from the SST family, forming homodimer-
s/homomers or heterodimers/heteromers. Evidence in
support of the existence and functional relevance of
SST5 homodimers as well as heteromers with SST1 and
SST2 has been derived in cell models, and these have
delineated some molecular determinants and mecha-
nisms involved in these interactions (Rocheville et al.,
2000b; Durán-Prado et al., 2008; Grant et al., 2008;
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Kumar, 2011). However, although it has been suggested
that SST2–SST5 interaction could elicit relevant func-
tional consequences in the response to SRIF analogs in
acromegaly, the precise biologic and physiologic impor-
tance of these mechanisms in vivo is still a matter of
debate (Grant et al., 2008). Interestingly, the truncated
human SST5TMD4 variant disrupts normal SST2

homodimerization, whereas it does not interfere with
homodimerization of its full-length SST5 counterpart.
Consequently, SST5TMD4 only, and distinctly, reduced
functional responses of SST2 to SRIF, but not that of
canonical SST5, which conveys key functional conse-
quences, as the variant may disrupt the inhibitory
capacity of SST2 (Durán-Prado et al., 2012b). Indeed, a

comparable situation occurs for truncated pig SST5

variants (Durán-Prado et al., 2012a). Heterodimeriza-
tion of SST5 with a GPCR from a different family, the
dopamine receptor D2 (D2 receptor), has also been
reported (Rocheville et al., 2000a), and its potential
pharmacological consequences in CNS are being explored
(Szafran et al., 2012; Szafran-Pilch et al., 2017). SST5

formation of heteromers seems to be promiscuous as it has
also shown to interact with the ghrelin receptorGHS-R1a,
in a context enabling a fine, coordinated regulation of
glucose-stimulated insulin secretion by SRIF and ghrelin
(Park et al., 2012). In fact, SST5 may even interact
physically and functionally with another receptor class,
the tyrosine kinase receptors (Kumar, 2011).

Fig. 20. Differential trafficking of somatostatin receptors. Agonist activation of SSTs triggers activation of the associated heterotrimeric
G protein that in turn stimulates a second messenger system. Quenching of this signal involves phosphorylation of the receptor by GRKs.
Phosphorylation by GRKs increases the affinity for arrestins, which uncouple the receptor from the G protein and target the receptor to clathrin-
coated pits for internalization. Return to its resting state requires dissociation or degradation of the agonist, dephosphorylation, and dissociation
of arrestin. For SST5, the catalytic PP1g subunit was identified to catalyze S/T dephosphorylation at the plasma membrane within seconds to
minutes after agonist removal. SST5 forms unstable complexes with arrestins that are rapidly disrupted. After dephosphorylation, SST5 is either
resensitized at the plasma membrane or recycled back through an endosomal pathway. For SST2, the catalytic PP1b subunit was identified to
catalyze S/T dephosphorylation. SST2 forms stable complexes with arrestins that cointernalize into the same endocytic vesicles. This
dephosphorylation process is initiated at the plasmamembrane and continues along the endosomal pathway. PP1b-mediated dephosphorylation promotes
dissociation of arrestins and, hence, facilitates quenching of arrestin-dependent signaling. Subsequently, SST2 is recycled back through an endosomal
pathway to the plasma membrane. For SST3, the catalytic PP1a/b subunits were identified to catalyze S/T dephosphorylation at the plasma membrane
within seconds to minutes after agonist removal. SST3 forms unstable complexes with arrestins that are rapidly disrupted. After dephosphorylation, SST3
is either subject to lysosomal degradation or recycled back to the plasma membrane through an endosomal pathway.
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F. Somatostatin Receptor 5 Anatomic Framework

By using rabbit mAb UMB-4, SST5 was detected both
at the plasma membrane and in the cytoplasm of
distinct cell populations of different normal human
tissues such as GH- and ACTH-producing cells of the
anterior pituitary, acinar cells, and striated ducts of
the parotid glands, C cells of the thyroid, neuroendo-
crine- and enterochromaffin-like cells of the GI mucosa,
insulin- and glucagon-secreting cells of the pancreas,
cells in the reticular zone of the adrenal cortex and in
adrenal medulla, glomerular endothelial cells and
tubules of the kidney, luteinized granulosa cells of the
ovary, luminal parts of testicular tubuli, lymphocytes in
the germinal centers of lymph follicles, alveolar macro-
phages of the lung, singular cells scattered throughout
the stroma of various organs, and single cells observed
occasionally in the liver, most probably also represent-
ing macrophages (Fig. 21) (Lupp et al., 2011; Unger
et al., 2012; Stollberg et al., 2016). Very limited
expression of SST5 was detected in the brain of rodents,
particularly in specific nuclei in the basal forebrain
(Stroh et al., 1999).
Regarding neoplastic tissues, SST5 was observed at a

high intensity of expression in all somatotroph and in
most of corticotroph adenomas, whereas in gonadotroph
and nonfunctioning pituitary adenomas SST5 expres-
sion was low (Fig. 21) (Lupp et al., 2011; Gabalec et al.,
2015; Lee et al., 2015). Furthermore, the receptor was
detected in 38%–57% of medullary and in most of
(.75%) papillary and follicular thyroid carcinomas
(Pazaitou-Panayiotou et al., 2012; Atkinson et al.,
2013; Woelfl et al., 2014; Herac et al., 2016). To a
variable extent SST5 was additionally detected in
pheochromocytomas and paragangliomas (Lupp et al.,
2011; Elston et al., 2015) and in functioning and non-
functioning adrenocortical adenomas (Pisarek et al.,
2011). Presence of SST5 was also noticed in lymphomas
(Stollberg et al., 2016; Ruuska et al., 2018). Most notably

and after SST2, SST5 represents the secondmost common
SST subtype expressed in gastroenteropancreatic neuro-
endocrine neoplasms. SST5 was detected in 62%–93% of
tumors overall (Lupp et al., 2011; Kaemmerer et al.,
2015b; Qian et al., 2016; Song et al., 2016; Wang et al.,
2017), with less frequent expression in pancreatic than in
GI tumors, and higher expression rates in functioning
than in nonfunctioning tumors (Song et al., 2016).
Additionally, tumor grade correlates negatively with
receptor abundance (Song et al., 2016; Wang et al.,
2017), and, hence, a positive association with patient
outcomes has been demonstrated for SST5 (Song et al.,
2016; Wang et al., 2017). However, SST5 overexpression
is also associated with vascular and nerve invasion and
thus enhanced aggressiveness (Herrera-Martinez et al.,
2017a). In some studies a positive correlation between
SST5 expression and SST-based imaging was shown
(Diakatou et al., 2015). Furthermore, SST5was detected in
31%–45% of bronchopulmonary neoplasms (Kaemmerer
et al., 2015a; Lapa et al., 2016) and occasionally also in
other tumors with neuroendocrine differentiation
(Mizutani et al., 2012). SST5 was observed in 15%–

47% of GIST, and SST2 and/or SST5 immunoreactivity
was associated with increased recurrence-free survival
(Arne et al., 2013; Zhao et al., 2014). SST5 was detected
in 39%–70% of colorectal cancers, and expression was
higher in well to moderately differentiated tumors
than in poorly differentiated ones, with a positive
correlation with favorable patient outcomes (Qiu
et al., 2006; Evangelou et al., 2012). SST5 was also
detected in most breast, cervical, ovarian, and prostate
carcinomas (Lupp et al., 2011), as well as in 45% of
Merkel cell tumors (Gardair et al., 2015).

G. Somatostatin Receptor 5 Function

The main physiologic functions of SST5 relate to
control of pituitary and pancreatic endocrine secretions
(Møller et al., 2003; Olias et al., 2004). SST5 abundance

Fig. 21. SST5 expression pattern in human normal and neoplastic tissues. Immunohistochemistry (red-brown color), counterstaining with
hematoxylin; primary antibody: UMB-4; scale bar, 50 mm. SST5 displays a predominant membranous expression.
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in pituitary explains its relevant role in the SRIF-
mediated inhibition of GH secretion from somatotrophs,
and its capacity to inhibit ACTH from corticotrophs and
TSH from thyrotrophs (Kumar et al., 1997; Ren et al.,
2003; Ben-Shlomo and Melmed, 2010). SST5 constitu-
tive activity may also contribute to these actions (Ben-
Shlomo and Melmed, 2010). Conversely, SST5 does not
seem to participate relevantly in the physiologic control
of prolactin release, although it can inhibit its secretion
in prolactinomas; likewise, there is no evidence that
SST5 contributes to regulate gonadotroph function
(Møller et al., 2003; Olias et al., 2004; Ben-Shlomo and
Melmed, 2010).
In the human endocrine pancreas, SST5 plays an

important role in conveying the inhibitory actions of
SRIF on glucose-stimulated insulin release, although
there is also evidence for a role of SST2 (Zambre et al.,
1999; Braun, 2014). Conversely, in rodent b-cells, SST5

is the most abundant and the predominant inhibi-
tory receptor for glucose-induced insulin secretion,
and also appears to be involved in b-cell development
(Strowski et al., 2003; Strowski and Blake, 2008; Braun,
2014). Indeed, altered glucose and insulin regulation is
themost prominent phenotype of SST5KOmice, which are
otherwise devoid of overt pathologic symptoms (Strowski
et al., 2003; Ramirez et al., 2004; Wang et al., 2005). SST5

may also contribute to inhibit glucagon secretion from
a-cells, primarily controlled by SST2 (Braun, 2014).
Presence and functional roles of SST5 in the CNS are

relatively limited compared with other SSTs. In the
brain, SST5 activation may inhibit stress-related stim-
ulation of hypothalamic CRF and pituitary ACTH
release (Stengel and Taché, 2017). SST5 may contribute
to regulate sympathetic responses; likewise, SST5 may
mediate gastric emptying through activation of vagal
cholinergic pathways (possibly with the contribution of

other receptors), as supported by its high expression in
the dorsal motor nucleus of the vagus nerve (Martinez
et al., 2000; Stengel et al., 2013; Stengel and Taché,
2017). Evidence for SST5 functions outside its endocrine
and CNS actions is limited. SST5 is present in the rat
retina, where its activation protects from AMPA–
induced neurotoxicity (Kiagiadaki et al., 2010). SST5 is
also present in cochlea, but its role and relevance are not
yet known (Radojevic and Bodmer, 2014). In the re-
productive tract, SST5 is present in Sertoli cells, where
its expression is developmentally regulated (Riaz et al.,
2013). In the vascular system, SST5 is present in smooth
muscle cells of the human and mouse aorta, where it is
coexpressed with truncated SST5TMD4 and SST2 and
GHS-R1a to mediate protective actions of CST (Durán-
Prado et al., 2013). The presence of SST5, either as
mRNA or protein, has been described in a wide range of
disorders, especially in tumors, where its precise role
and potential value remain to be established (Møller
et al., 2003; Barbieri et al., 2013). Of particular interest
is the presence of SST5 in pituitary adenomas and
NETs, for they already represent a valuable pharmaco-
logical target for SRIF analog treatment (van der Hoek
et al., 2010; Veenstra et al., 2013).

H. Somatostatin Receptor 5 Ligands

Although pasireotide also exhibits affinity to SST1,
SST2, and SST3, it binds with superior affinity to SST5.
It also exhibits potent agonistic activity at SST5 and
most likely mediates most of its pharmacological ac-
tions via SST5 (Petrich et al., 2013). The peptide agonist
BIM-23268 displays moderate affinity to all SSTs
(Fig. 22; Table 8); however, it appears to be unique
among SST5 agonists in that it exhibits full agonistic
activity (Shimon et al., 1997a; Petrich et al., 2013).

Fig. 22. Structures of synthetic SST5 ligands. L-817,818 and BIM-23268, SST5 agonists; S5A1, SST5 antagonist.
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Another peptide agonist is BIM-23206, which displays
about 50-fold selectivity for SST5 over SST2 (Ren et al.,
2003). L-817,818 is a moderate selective nonpeptidyl
agonist (Fig. 22; Table 8) (Rohrer et al., 1998). However,
it displays only partial agonistic activity at SST5

(Petrich et al., 2013). A series of benzoxazole piperidines
was identified as high-affinity SST5 antagonists with
virtual absence of binding to other SSTs (Martin et al.,
2009). More recently, several SST5-selective antago-
nists such as S5A1 were evaluated as potential treat-
ments for diabetes mellitus (Fig. 22). S5A1 displays a
subnanomolar affinity for SST5 (Table 8) (Farb et al.,
2017).

IX. Multireceptor Somatotropin-Release
Inhibitory Factor Analogs

A. Evolution of Concepts

The rationale for desired characteristics of therapeu-
tically useful SRIF analogs has evolved as knowledge of
receptor subtypes and their interactions has become
available. Following the discovery of SRIF as the
hypothalamic factor responsible for suppression of GH
secretion (Brazeau et al., 1973), it became apparent that
it was involved in multiple additional physiologic
functions (Reichlin, 1983a,b). Due to the rapid degra-
dation and clearance of the native SRIF peptide, efforts
were focused on creating analogs with increased meta-
bolic stability that would be useful for treating condi-
tions of excess GH secretion, most notably acromegaly.
As the structure of native SSTwasmodified, differences

were observed in the ratio of GH-suppressing activity
versus other actions, in particular the suppression of
insulin, which was considered a potential problem for
therapeutic application (Grant et al., 1976; Brown et al.,
1977; Meyers et al., 1977; Coy et al., 1978). Through
screening in rodents, analogs were identified with
potent GH-suppressing activity with acceptably low
insulin-suppressing activity (Bauer et al., 1982;
Heiman et al., 1987), including the two SRIF analogs
still most widely used clinically for treatment of acro-
megaly and NETs, octreotide (Sandostatin) and lanreo-
tide (Somatuline) (Fig. 23; Table 9).

The reason that the GH and insulin-suppressing
activities could be dissociated by structural modifica-
tion of SRIF was later explained with the identification
of five distinct SSTs (Reisine and Bell, 1995). With the
realization that there were multiple receptor subtypes,
the concept emerged that different subtypes controlled
different, specific biologic activities, and that functional
selectivity might be achieved by analogs with prefer-
ence or, ideally, selectivity for one specific receptor
subtype. The task then became determining which
receptor subtype controlled which specific function.
This was approached by creating libraries of SRIF
analogs that were fully characterized for their prefer-
ences or selectivity for the different receptor subtypes.
By screening panels of analogs with varying selectiv-
ities in different biologic models, it was hoped that the
receptor subtype responsible for a particular biologic
action could be identified, and could thus become the
basis for therapeutically useful compounds targeting a
specific function.

One of the first questions to be addressed by this
approach was the involvement of the SSTs in suppress-
ing GH secretion in humans. Although the two earlier
discovered analogs, octreotide and lanreotide, are the
most widely used medical therapy for acromegaly, they
do not normalize GH and IGF-1 levels in a significant
percentage of patients with acromegaly. A recent meta-
analysis of clinical studies with sustained release
octreotide and lanreotide indicated normalization of

TABLE 8
Ligand-binding affinities of SST5-selective ligands

SST1 SST2 SST3 SST4 SST5

L-817/818a 3.3 52 64 82 0.4
BIM-23268b 18.4 15.1 61.6 16.3 0.37
S5A1c .5190 .10,000 .10,000 — 4.87
aData from Rohrer et al. (1998).
bData from Shimon et al. (1997a).
cData from Farb et al. (2017).

Fig. 23. Structures of SRIF ligands currently used in clinical practice.
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GH and IGF-1 in 56% and 55%, respectively, of treated
patients with acromegaly (Carmichael et al., 2014);
however, most of the included studies did not use the
current normalization criteria of GH ,1% and did not
consider composite GH and IGF-1 normalization
(Gadelha et al., 2017). The PRIMARYS study, which
assessed treatment-naive, unselected acromegaly pa-
tients, found that only 30% of patients were fully
controlled by these clinically approved somatostatin
receptor ligands (Caron et al., 2014).
With characterization of their interaction with the five

SSTs, both lanreotide and octreotide were found to have
potent subnanomolar affinity for the SST2 subtype, with
moderate affinity for SST5 (Table 9). Lanreotide and
octreotide also have moderate affinity for SST5 receptors,
but that does not translate functionally (Siehler et al.,
1998; Siehler and Hoyer, 1999a,b). Not surprisingly,
studies using subtype-selective analogs confirmed that
the SST2 subtype was indeed responsible for suppression
of GH in the rat, the species used for biologic optimization
of lanreotide and octreotide (Raynor et al., 1993b; Briard
et al., 1997). In contrast, however, when ligand panels
were tested in cultures of human fetal pituitaries, it was
found that activation of both SST2, as well as the SST5

subtype, induced suppression of GH secretion, and that
activation of either of the two receptors was equally
efficacious (Shimon et al., 1997a). Furthermore, when the
two receptors were activated together, GH-suppressing
activity was significantly enhanced, well beyond that
observed with the clinically used SST2-selective analogs,
lanreotide and octreotide (Shimon et al., 1997b). Consid-
ering that native SRIF potently interacts with all five
receptor subtypes, it is reasonable to assume that the
enhanced suppression of GH induced by dual receptor
activation is the normalmechanismemployedbySRIF in
the physiologic control of GH. These observations also
suggest that the lack of potent SST5 activity in the
clinically used analogs may be the reason for the lack of
full control of GH and IGF-1 in a significant number of
patients with acromegaly.
The need for greater SST5 activation for a more

complete suppression of GH was confirmed in studies
of cultures of pituitary adenoma cells from patients with
acromegaly classified as only partially responsive to
SRIF analog therapy (Jaquet et al., 2000). In keeping
with clinical experience, the SST2-preferring analog,

octreotide, induced only a partial suppression of GH in
the cultured adenoma cells. Treatment with more
potent SST2- or SST5-selective analogs produced some-
what greater suppression. However, combined SST2-
and SST5-selective analog treatment to activate both
receptor subtypes produced greatly enhanced suppres-
sion of GH, thus supporting the concept that greater
activity at SST5 is required to normalize GH in a greater
percentage of acromegaly patients than is achievedwith
lanreotide and octreotide (Jaquet et al., 2000).

Based on these observations, the first multisubtype-
selective analog, BIM-23244, was produced with 2�
greater activity at SST2, and 20� greater activity at
SST5, as compared with octreotide and lanreotide
(Saveanu et al., 2001). To test the feasibility of biselective
receptor activity in a single compound, GH-secreting
tumors were collected from 10 patients with acromegaly
that were clinically classified as either fully or only
partially responsive to current SRIF analog therapy.
Cultured adenoma cells from the fully responsive patients
responded equally to treatment with either octreotide or
the SST2+5 biselective analog, BIM23244; however, octreo-
tide produced only a partial response in cells from partially
responsive patients, whereas BIM-23244 produced a
greatly enhanced response, similar to that observed in
the adenoma cells from fully responsive patients (Saveanu
et al., 2001). These results substantiate the benefit from
dual activation of both receptor subtypes and validate the
concept that both activities can be presented in a single
compound and retain the enhanced biologic action.

These observations opened the possibility of receptor
subtype interactions in other tissues and biologic
functions. Studies of gene receptor expression had
already demonstrated that various tissues contained
multiple SSTs, and that expression of these subtypes
could change depending on the physiologic conditions or
as a result of pathology (Bruno et al., 1993; Patel et al.,
1996; Reubi et al., 1997; Kimura et al., 2001). An
example of the latter is the shift in SRIF suppression
of prolactin secretion from SST2-mediated in normal
human pituitary cells to SST5-mediated in cells from
human prolactinomas (Saveanu et al., 2001). In addi-
tion, the expression of SSTs can change temporally
during the course of a specific physiologic or pathologic
process. Khare et al. (1999) demonstrated that, follow-
ing damage to the endothelial lining of the aorta, the
pattern of SSTs expressed changed over the subsequent
days as the various stages of repair occurred. Observa-
tions such as these raised the possibility that
multireceptor-interacting ligands could not only pro-
duce enhanced actions, but by targeting selected com-
binations of receptor subtypes, might also provide
selectivity for specific physiologic or pathologic states.

B. Potential Mechanisms

The mechanism by which SRIF action is enhanced by
activating a combination of receptors remains uncertain.

TABLE 9
Ligand-binding affinities for approved and investigational SRIF ligands

SST1 SST2 SST3 SST4 SST5

Octreotidea .1000 0.4 4.4 .1000 5.6
Lanreotideb 2129 0.75 98 1826 5.2
Pasireotidec 9.3 1 1.5 .100 0.16
Veldoreotided .1000 3 .100 7 6
aData from Reisine and Bell (1995), Patel (1999).
bData from Shimon et al. (1997b), Zatelli et al. (2001).
cData from Bruns et al. (2002).
dData from Afargan et al. (2001).
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The simplest possibilities would be activation of two
separate transduction pathways that have a common
biologic endpoint, or greater activation of a single trans-
duction pathway shared by two or more receptors.
However, another possibility with a growing body of
evidence is that various receptors can physically interact
to form homo- or heterodimers, with resulting changes in
activity. This phenomenon was first reported to occur for
members of the opioid receptor family, which are struc-
turally related to SSTs. Jordan and Devi (1999) reported
that heterodimers formed by the k and d opioid receptors
resulted in unique ligand-binding properties and, when
activated, a potentiation of signal transduction. Forma-
tion of both homo- and heterodimers has subsequently
been reported to occur among the SSTs as well, including
SST2 and SST5. Dimerization of receptors with resulting
alterations in ligand interactions suggests a unique
opportunity to develop analogs that recognize only the
specific homodimer of one receptor or the heterodimer of
multiple receptor types, to achieve the highest level of
functional specificity and efficacy.
The approach of using subtype-selective analogs to

determine which SSTs are involved in a particular
biologic action has continued using different models.
In some cases, single-receptor subtypes do appear to be
the dominant mechanism. Examples include suppres-
sion of insulin mediated by SST5 on human b-cells
(Zambre et al., 1999), glucagon by SST2 on a-cells
(Strowski et al., 2000), and vessel out-sprouting by
SST1 from cultured human placental vein explants, a
model of angiogenesis (Bocci et al., 2007). As direct
suppression of insulin is mediated by SST5, the early
observation that certain analogs could suppress GH
while having minimal effect on insulin explains the
modest amount of SST5 activity of the analogs selected
for clinical use, lanreotide and octreotide.
As studies continued examining combinations of re-

ceptor subtype activation for potential enhancement, it
was observed that receptor subtype interactions can
also be antagonistic. Testing the effect of SST2 and
5 activation on proliferation of thyroid medullary
carcinoma cells, it was observed that SST2-selective
analogs induce dose-related inhibition of proliferation,
whereas SST5-selective analogs cause an increase
(Zatelli et al., 2001). When combined, increasing con-
centrations of the SST5-selctive analog prevents the
suppression of proliferation by the SST2-selective ana-
log, in a dose-related manner, such that at equimolar
concentrations the effect of both is neutralized. In this
instance, coactivation of SST2 and 5 results in an
antagonistic interaction, as opposed to the enhanced
biologic effect observed by coactivation of these same
receptors on GH secretion. These results indicate that
the biologic consequence of receptor subtype interac-
tion is not only a function of the receptors involved, but
also the specific cell type or tissue in which they are
expressed.

A partial explanation of the antagonistic effects of
certain SSTs may be the inactivation of one or both
receptors as a result of conformational changes follow-
ing heterodimerization. In studies examining expres-
sion and function of SST2 and SST3 receptors expressed
individually, Pfeiffer et al. (2001) demonstrated homo-
dimerization of both subtypes and induction of specific
transduction mechanisms when activated. When coex-
pressed, however, heterodimerization between the two
subtypeswas observedwith the consequence of retained
activation and signal transduction with SST2-selective
ligands, but a complete loss of activation and signaling
with SST3-selective ligands. These results clearly illus-
trate the exponential increase in complexity in moving
from the initial targeting of individual receptor sub-
types to affect a specific function to the targeting of
various subtype combinations.

Although complex, the concept of targeting the in-
teraction between multiple receptor subtypes remains
attractive for enhanced efficacy; however, due to the
widespread distribution of SSTs in different tissues, the
original concern still remains that a metabolically stable
compound able to activate multiple receptor subtypes
could induce unwanted side effects. As an example,
although the previously described biselective analog,
BIM-23244, with selective, potent interaction with both
SST2 and 5, yields superior GH suppression, and poten-
tially greater therapeutic benefit for a wider range of
patients suffering from acromegaly, the direct suppres-
sion of insulin by SST5 raises the potential for unwanted
pancreatic side effects. To examine the consequence of
activating SST2 versus SST5, a study was conducted in
healthy volunteers in which a SRIF analog with potent,
selective SST2 activity was compared with a potent SST5

analog. Infusion of the SST2 analog resulted in a dose-
related decrease in glucagon and insulin, but without
effect on glucose levels. In addition, administration of an
amino acid challenge during the SST2 analog infusion
resulted in an appropriate insulin response, again
maintaining normal glycemic control. Infusion of the
SST5 analog, however, resulted in a dramatic suppres-
sion of insulin secretion, with resulting hyperglycemia,
and failure of the b-cells to respond to the amino acid
challenge. As a result of this potentially severe side effect
mediated by SST5, BIM-23244 was not further devel-
oped, and design of subsequent analogs aimed formodest
interaction with SST5. These results illustrate that the
original concern of potential side effects when activating
multiple receptors is a legitimate consideration.

C. Pasireotide

A different concept from teasing out the involvement
of specific SSTs in specific functions with the idea of
creating subtype-specific, and therefore function-
specific analogs, was to create clinically useful receptor
ligands that are metabolically stable, but mimic the
ability of native SRIF to interact with all five receptor
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subtypes. A theoretical advantage of this approach is
that, assuming the activities are correctly proportioned,
it should be possible to take advantage of receptor
subtype interactions to produce different or enhanced
responses from those achieved by activation of a single
receptor subtype. The risk is that receptors mediating
unwanted effects could also be activated. This approach
was exemplified by development of the pan-receptor–
specific ligand, pasireotide (also known as Signifor), a
cyclohexapeptide with reasonably high affinity for
SST1, 2, and 3, no interaction with SST4, but exception-
ally high, subnanomolar affinity for SST5 (Table 9)
(Bruns et al., 2002). In studies in rats, pasireotide
produced comparable suppression of GH secretion as
octreotide, but with much greater duration owing to a
significantly greater circulating t1/2. In long-term in-
fusion studies, pasireotide was considerably more effec-
tive in lowering IGF-1 than octreotide (Bruns et al.,
2002). Because IGF-1 production is regulated by both
GH-dependent and independent mechanisms, the en-
hanced action of pasireotide may be the result of
interaction with receptor subtypes other than SST2,
which is the primary mediator of octreotide action.
In a clinical trial directly comparing sustained release

formulations of pasireotide and octreotide in a large
cohort of randomly allocated, medically naive patients
with acromegaly, pasireotide was found to control GH
and IGF-1 in a greater percentage (31.3% pasireotide
treatment versus 19.2% octreotide treatment) of subjects
(Colao et al., 2014). Furthermore, in patients resistant to
octreotide or lanreotide treatment, sustained-release
pasireotide was found to achieve control in 15%–20% of
subjects, depending on dosage (Gadelha et al., 2014).
These results may be explained by the study of Gatto
et al. (2017), in which pasireotide was compared with
octreotide for their ability to suppress GH secretion from
in vitro cultures of tumor cells fromacromegalic patients.
Overall, the two were equivalent; however, pasireotide
was found to be more effective than octreotide in a
subgroup of the cultures from tumors with a compara-
tively lower expression of SST2 and SST2/SST5 ratio
(Gatto et al., 2017). In keeping with the high activity of
pasireotide at SST5, however, a significantly higher
percentage of patients experienced hyperglycemia-
related adverse events in the two clinical studies with
pasireotide treatment as compared with octreotide or
lanreotide treatment (Colao et al., 2014; Gadelha et al.,
2014). The potential of pasireotide has also been in-
vestigated in Cushing’s disease.

D. Dopastatin

Extending further the concept of multireceptor SRIF
ligands is the creation of compounds that interact with
SSTs as well as receptors outside the SST family. This
concept originally derived from clinical studies indicat-
ing that combined treatment of acromegalic patients
with both SRIF and dopamine analogs resulted in

greater control of GH and IGF-1 than the use of either
agent alone (Fløgstad et al., 1994; Minniti et al., 1997;
Marzullo et al., 1999; Li et al., 2000). This generated the
idea to create chimeric compounds that contain struc-
tural elements of both SRIF and dopamine, and that
retain the ability to bind to receptors of both. In initial
studies in primary cultures of human GH-secreting
adenoma cells, it was observed that whereas both pure
SRIF and pure dopamine analogs were able to induce
dose-related suppression of GH secretion, the combina-
tion of the two individual agents produced no greater
suppression of GH than the SRIF analog alone. How-
ever, when both activities were combined in a single,
chimeric compound, able to interact with both the SST2

and D2 receptor, significantly enhanced potency as well
as efficacy is observed (Saveanu et al., 2002; Jaquet
et al., 2005). The mechanism for this enhanced activity
remains unknown; however, one possible explanation is
the reported demonstration of heterodimer formation
between both SST2 and 5, and D2 receptor (Rocheville
et al., 2000a).

Further refinement of the ratio of activities in the
chimeric compound resulted in the production of BIM-
23A760, which binds to SST2 (0.03 nM), SST5 (42 nM),
and D2 receptor (16 nM) (Jaquet et al., 2005). The
modest affinity at SST5 is intentional to avoid potential
pancreatic effects, as previously discussed. The lack of
glycemic side effects was confirmed in normal cynomol-
gous monkeys in which administration of BIM-23A760
produced potent, dose-related suppression of GH and
IGF-1, but had no effect on either insulin secretion or
circulating glucose. In addition to suppression of secre-
tion, BIM-23A760 has been demonstrated to have
potent antiproliferative effects, producing dose-related
suppression of cultured primary human nonfunctioning
pituitary adenoma cells (Florio et al., 2008) and soma-
totropinoma cells (Ibáñez-Costa et al., 2017a). Further-
more, complete arrest of spontaneously developing,
aggressive, nonfunctioning pituitary adenomas was
observed in vivo in proopiomelanocortin KO mice, an
effect not observed with pure SRIF or dopamine analogs,
either alone or in combination. These results suggest
that chimeric compounds, such as BIM-23A760, may be
effective in controlling pituitary diseases of hypersecre-
tion, as well as impacting the growth of the underlying
causative tumor.

Clinical development of BIM-23A760 was initiated
and produced a clean safety profile in phase I and a
significant demonstration of efficacy in a phase IIa,
single-dose study in acromegalic subjects. Unfortu-
nately, with repeated administration in humans, a
long-acting, highly potent dopaminergic metabolite
was produced that gradually accumulated and dimin-
ished the action of the parent compound, BIM-23A760.
Subsequently, after further structure–activity studies,
a second generation chimera, BIM-23B065, was pro-
duced with significantly greater potency and efficacy
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than BIM-23A760, as demonstrated by suppression
of GH secretion from primary cultures of human
GH-secreting adenoma cells from patients classified as
both fully and only partially responsive to the currently
used SRIF analogs, octreotide and lanreotide, and
without formation of an interfering metabolite. BIM-
23B065 is currently in early development.
From the initial discovery of SRIF and its receptor

subtypes, the rationale for therapeutically useful ana-
logs has evolved from targeting a single-receptor sub-
type to control a specific function and to limit potential
side effects, to targeting specific combinations of recep-
tors to induce enhanced effects for a specific function.
Although progress has been made in terms of elucidat-
ing specific, disease-related combinations of receptors
that act together, the initial concern of inducing side
effects through activation of receptors in nontargeted
tissues has been demonstrated to be a legitimate consid-
eration. Future analogs that can specifically interact
with targets, such as the unique binding pockets of homo-
and heterodimers formed from the SST subtypes, as well
as other receptor families, may yet achieve the full
potency, selectivity, and safety potential envisioned for
SRIF analogs.

X. Somatotropin-Release Inhibitory Factor
Analogs in Current Clinical Practice

Hypothalamic SRIF traverses the hypothalamic–
pituitary portal vessels to impinge on anterior pitui-
tary cells that express multiple SSTs. SRIF analogs
show target selectivity for receptor subtype and
functional selectivity in regulating GH, ACTH, and
TSH secretion (Shimon et al., 1997b). Somatotroph
cells predominantly express SST2 . SST5. SST2

signals to suppress GH secretion and may also regu-
late somatotroph tumor growth, whereas SST5 pre-
dominantly suppresses corticotroph ACTH release
(Table 1). Studies with human GH-secreting tumor
cell cultures showed a similar receptor profile and

functional response to SRIF analogs (Shimon et al.,
1997a). TSH-secreting pituitary adenomas (TSHomas)
express SST2 and SST5 (Gatto et al., 2012). Sub-
sequent studies revealed that anterior pituitary SSTs
may also signal in a ligand-independent action (Ben-
Shlomo et al., 2005; Vlotides et al., 2006). Thus,
constitutive SST signaling may regulate ambient
pituitary hormone secretion to maintain tonic hor-
mone control in the absence of SRIF. These observations
have supported the development of therapeutic mole-
cules targeting different SSTs. SRIF analogs with higher
affinity for SST2 are more efficacious for control of GH
hypersecretion in acromegaly or TSH hypersecretion from
thyrotropinomas (Melmed, 2003). In contrast, pasireotide,
which exhibits an affinity-binding profile more similar to
natural SRIF-14 (Weckbecker et al., 2002; Ben-Shlomo
et al., 2009a), is particularly suitable for suppressing
ACTH in patients with pituitary-dependent Cushing
disease.

A. Treatment

1. Acromegaly. The SST2 subtype is preferentially
expressed on somatotroph cell surfaces and regulates
GH secretion by suppressing intracellular cAMP levels
(Greenman and Melmed, 1994a,b; Shimon et al.,
1997b). SRIF analog formulations with high SST2

affinity employed for treating acromegaly, namely
octreotide and lanreotide, have proven safe and effec-
tive for long-term acromegaly management (Table 10).
Octreotide, an octapeptide, inhibits GH secretion with a
potency 45 times greater than endogenous SRIF, with
minimal suppression of insulin release (Lamberts,
1988). As the molecule is relatively resistant to enzy-
matic degradation, the in vivo t1/2 is prolonged (up to
2 hours) after s.c. injection. Lanreotide is a structurally
related eight-amino-acid cyclic peptide (Castinetti
et al., 2009). Responsiveness to both compounds corre-
lates with GH-secreting adenoma SST2 expression
(Casarini et al., 2009). Rebound GH hypersecretion that
occurs after SRIF infusion is not apparent after

TABLE 10
Approved and investigational SRIF analogs blocking GH secretion

Data adapted from Melmed (2016).

Agent Description Regulatory Status

Lanreotide autogel Long-acting lanreotide Available
Administered via deep s.c. injection every 4–6 wk

Octreotide LAR Long-acting octreotide Available
Administered via i.m. injection every 4 wk

Pasireotide LAR Long-acting pasireotide Available
Administered via i.m. injection every 4 wk

Octreotide capsules Octreotide encapsulated with transient permeability
enhancer

Completed phase 3

Administered orally twice daily
CAM2029 Octreotide bound in liquid crystal matrix In phase II

Administered via s.c. injection at a frequency not yet
determined but likely to be every 4 wk

Veldoreotide (COR-005) SRIF analog highly selective for GH suppression In phase II
Administered via i.m. injection at a frequency not yet

determined but likely to be every 4 wk
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administration of either peptide, offering unique advan-
tages for safe, long-term acromegaly therapy (Lamberts
et al., 1996). Pasireotide exhibits a preferential high
affinity to SST5 (39-fold higher than octreotide), and
also binds to SST1, SST2, and SST3. Octreotide and
pasireotide similarly inhibited free cytosolic calcium
andGH release in vitro, in human somatotropinoma cell
cultures, where they also comparably reduced GH
mRNA levels and cell viability (Ibanez-Costa et al.,
2016). Indeed, using cultures derived from 33 in vitro
human pituitary tumors in a head-to-head study,
octreotide and pasireotide exhibited equivalent antise-
cretory efficacy in suppressing GH (Gatto et al., 2017).
a. Effects on biochemical control. Both lanreotide

and octreotide exhibit similar clinical efficacy and side-
effect profiles (Murray and Melmed, 2008). When de-
fining disease outcomes, it is apparent that up to 40% of
patients receiving SRIF analogs exhibit discordant GH
and IGF-1 levels. Measuring IGF-1 levels, rather than
GH levels, during an oral glucose tolerance test appears
to more rigorously reflect disease control (Carmichael
et al., 2009). Injectable depot SRIF analog formulations
are safe and long-acting and enable maximal biochem-
ical control. Drug levels peak 28 days after injection
of sustained release i.m. microsphere preparation of
octreotide long-acting release (LAR) (20–30 mg)
(Fløgstad et al., 1997; Lancranjan et al., 1999), with
concomitant GH levels suppressed for up to 49 days. In
an open-label study, 70% of 151 patients responsive to
octreotide showed GH levels suppressed to ,2.5 ng/ml
(Lancranjan et al., 1999). Similarly, GH ,2 ng/ml and
normal IGF-1 levels were achieved in 70% of 36 patients
followed for up to 18 years (Maiza et al., 2007). The
water-soluble lanreotide autogel (60, 90, or 120 mg)
administered by deep s.c. injection every 28–42 days
suppressed GH to ,2.5 ng/ml in 130 patients at 1 year
(Neggers et al., 2015). In a randomized 12-month study,
358 patients received pasireotide LAR (40 mg) or
octreotide LAR (20 mg), and biochemical control was
achieved in 31% and 19% of subjects, respectively (Colao
et al., 2014). Among those resistant to maximal doses of
octreotide or lanreotide, 15% and 20% of resistant
patients subsequently achieved control when placed
on 40 or 60 mg pasireotide, respectively (Gadelha et al.,
2014). Control of GH and IGF-1 levels is more favorable
in patients with GH-secreting microadenomas (Ezzat
et al., 1992). Octreotide, lanreotide, and pasireotide fall
short of maximal treatment goals (i.e., normalized GH
and IGF-1) in a large subset of patients. Despite
medication adherence rates approaching 90% (Gurel
et al., 2017), a global meta-analysis showed ;55%
control rates for both GH and IGF-1 with SRIF analogs
(Carmichael et al., 2014).
b. Effects on disease comorbidities. SRIF analogs

used as first-line therapy administered prior to surgery
in selected patients may ameliorate preoperative mor-
bidity, including heart failure or respiratory ormetabolic

disorders, thus enabling safer anesthesia (Colao et al.,
2004). Furthermore, preoperative treatment may en-
hance the success of postoperative outcomes by shrinking
large tumor masses prior to debulking procedures
(Carlsen et al., 2008; Shen et al., 2010; Giustina et al.,
2014; Katznelson et al., 2014). A subset of patients with
minimally or noninvasive macroadenomas is most likely
to benefit from preoperative therapy (Jacob and Bevan,
2014). In a meta-analysis of 64 reports, SRIF analogs
were shown to significantly reduce GH-secreting pitu-
itary tumor size (Giustina et al., 2012). Moreover, a
meta-analysis showed a modestly beneficial effect of
preoperative SRIF analogs on postoperative biochem-
ical control (Pita-Gutierrez et al., 2013), but subse-
quent longer-term follow-up has not borne out these
results (Fougner et al., 2014). Up to 60%–80% of patients
harboring microadenomas, macroadenomas, and locally
invasive tumors experience a reduction of pituitary
adenoma size (Bevan, 2005; Freda et al., 2005;
Giustina et al., 2012), with tumor shrinkage seen by
6 months of therapy initiation (Colao et al., 2016). The
magnitude of shrinkage is variable, but some patients
respondwith.50% decrease in tumormass. Given these
observations, the use of preoperative SRIF analogs to
improve surgical outcomes has been debated. Although
studies have shown that postoperative biochemical
control is in fact improved by presurgical SRIF analog
treatment (Carlsen et al., 2008; Nunes et al., 2015), the
overall evidence is dampened by the short follow-up
duration and insufficient prospective evidence.

The beneficial impact of SRIF analogs on acromegaly
comorbidities is variable, especially for cardiovascular
dysfunction, and is determined by age, disease dura-
tion, and degree of biochemical disease control. Clinical
benefits of SRIF analogs are achieved both by amelio-
rating deleterious effects of chronic GH and IGF-1
exposure, as well as likely reversal of fluid retention
and swelling. For example, GH-induced epithelial so-
dium channel–dependent sodium transport actively
leads to volume expansion and soft-tissue swelling,
effects largely reversed by SRIF analogs (Kamenický
et al., 2014). Hypertension, likely arising from chronic
vascular damage, is usually not reversible by SRIF
analogs. However, with biochemical control, doses of
antihypertensive drugs required to normalize blood
pressure may be decreased (Annamalai et al., 2013).
Structural cardiac abnormalities, including myocardial
hypertrophy and heart failure, are improved with bio-
chemical control, especially in younger patients and in
those with a shorter disease duration (Annamalai et al.,
2013). Features of obstructive sleep apnea are usually
improved with SRIF analog therapy (Annamalai et al.,
2013), but the disorder may persist despite satisfac-
tory biochemical control. Although joint pain and ar-
thropathy are markedly improved symptomatically by
SRIF analogs, structural joint damage and associated
arthritis are usually irreversible, despite achievement of
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biochemical control. Headache is particularly responsive
to short-acting SRIF analog therapy (Williams et al.,
1987; Musolino et al., 1990; Levy et al., 2003; Marina
et al., 2015).
As GH is a potent antagonist of insulin action,

uncontrolled acromegaly is associated with insulin re-
sistance, hyperglycemia, and eventually diabetes. SRIF
analogs exert a dual effect on glucose control. As SST5 is
expressed on the pancreatic b-cells, SRIF analogs with
higher SST5 affinity (pasireotide . octreotide and lan-
reotide) suppress insulin secretion, leading to hypergly-
cemia and diabetes. By contrast, the potent GH
suppression achieved by SST2-preferential SRIF analogs
(octreotide and lanreotide) leads to enhanced insulin
sensitivity and lowering (or normalizing) blood glucose
levels.
c. Side effects. As SST2 and SST5 are ubiquitously

expressed, especially in the GIT, it is not surprising that
several off-target side effects are experienced. Transient
abdominal pain, bloating, nausea, and diarrhea are
commonly encountered. Asymptomatic gallstones,
likely due to suppressed CCK and decreased gallblad-
der contractility, occur in about 20% of patients.
Prolonged QT intervals have been associated with
bradycardia, although distinguishing disease-related
from drug-related heart conduction effects may be
difficult. Elevated fasting glucose and glycated hemo-
globin levels are rarely encountered (Mazziotti et al.,
2009). Pasireotide leads to reversible insulinopenia,
hyperglycemia, and diabetes in 30% or more of patients
(Gadelha et al., 2014; Silverstein, 2016).
2. Cushing Disease. Pituitary-dependent Cushing

disease is caused by a corticotroph cell adenoma
hypersecreting ACTH thus leading to adrenal cortisol
overproduction (Biller et al., 2008). As corticotroph cells
abundantly express SST5, pasireotide may suppress
ACTH and features of hypercortisolemia in a subset of
patients (Silverstein, 2016). In vitro, pasireotide in-
hibits basal and induced ACTH release from ACTH-
secreting pituitary adenomas (Hofland et al., 2005;
Batista et al., 2006). A double-blind, randomized phase
III trial in 162 Cushing disease patients treated with
pasireotide 600–900 mg twice daily showed that median
urinary-free cortisol (UFC) levels were suppressed by
50%, whereas ;24% exhibited normalized UFC levels
for 6 months. Patients with mildly elevated UFC levels
are most likely to respond (Colao et al., 2012). Most
patients not controlled within 8 weeks did not achieve
control by study end. Of 75 patients with a demonstra-
ble pituitary mass receiving 900 mg pasireotide, 44%
exhibited decreased mean pituitary tumor size. Blood
pressure, weight, and quality of life improved, and
triglyceride and low-density lipoprotein levels were
reduced. Blood glucose and glycated hemoglobin levels
increased in 118 of 162 patients, despite suppression
of cortisol levels (Colao et al., 2012). As Cushing dis-
ease hypercortisolism is associatedwith insulin resistance

and heart failure, monitoring of blood sugar and electro-
cardiograms for corrected QT interval prolongation and
bradycardia is important.

3. Thyroid-Stimulating Hormone-Secreting Pituitary
Adenomas. Central hyperthyroidism is caused by a
TSHoma, a rare disease occurring both in children and
adults. TSHomas typically have strong SST2 and often
SST5 expression and show a good response to first-
generation SRIF analogs, with about 10% of cases
showing resistance (Beck-Peccoz et al., 2013). There is
a single case in which cure was achieved (Fliers et al.,
2012). Pasireotide has also been used successfully in
TSHoma (van Eersel et al., 2017).

4. Neuroendocrine Tumors. Carcinoid, GI, and pan-
creatic NETs express cell surface SST2 (Öberg and
Lamberts, 2016). These tumors exhibit significant
morbidity and mortality, and at diagnosis fewer than
50% are surgically resectable (Kim et al., 2010). These
tumors secrete 5-hydroxytryptamine or peptide hor-
mones with significant clinical sequelae, including GI,
bronchial, and cardiac dysfunction. Accordingly, SRIF
analog therapy is aimed at decreasing or stabilizing
tumor mass, as well as ameliorating adverse symptoms
due to circulating hormones. Overall, survival of NET
patients has improved about threefold since the in-
troduction of SRIF analog therapy (Anthony et al., 1996;
Yao et al., 2008).

In randomized double-blind trials, octreotide LAR
and lanreotide autogel were shown to significantly
ameliorate diarrhea or flushing in up to 80% of patients
with carcinoid syndrome (Rubin et al., 1999; Modlin
et al., 2006). In the placebo-controlled PROMID trial,
when 85 patients with metastatic midgut NET received
octreotide LAR, median time to tumor progression was
extended from 6 to 14.3 months (Rinke et al., 2009).
Furthermore, the disease was stabilized in two-thirds of
patients receiving the SRIF analog therapy. In a
96-week trial by the Controlled Study of Lanreotide
Antiproliferative Response in NET (CLARINET) of
204 patients randomized to receive placebo or lanreo-
tide autogel (120 mg), prolonged disease-free survival
was demonstrated (Caplin et al., 2014). Interestingly,
combination treatment of octreotide with everolimus, a
mechanistic target of rapamycin kinase inhibitor,
exhibited additive efficacy benefit, i.e., tumor volume
reduction, in 75% of patients versus 45% for those
receiving placebo plus octreotide (Pavel et al., 2011).
Based on these results, SRIF analogs appear to offer
both symptomatic improvement as well as direct anti-
tumor effects in patients harboring NET.

B. Factors Influencing Somatotropin-Release
Inhibitory Factor Analog Resistance

SRIF analog therapeutic efficacy rates vary depend-
ing on individual patient and tumor characteristics
(Melmed, 2016). Understanding mechanisms driving
SRIF analog responsiveness and resistance has enabled
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a personalized approach to acromegaly classification
and management (Table 11) (Cuevas-Ramos et al.,
2015). Retrospective studies have suggested predictors
of acromegaly therapeutic responses, as well asmarkers
of aggressive disease resistant to SRIF analogs that also
correlate with adverse long-term outcomes. Increasing
age, levels of GH and IGF-1, and tumor size are adverse
determinants of SRIF analog responsiveness. As ther-
apy is required to be open-ended, treatment duration is
an important determinant of therapeutic sensitivity
and control rates improve over years of treatment (Ayuk
et al., 2002; Maiza et al., 2007).
In general, SST2 tumor expression correlates with

SRIF analog responsiveness. Several studies have
correlated efficacy in GH-secreting adenomas with
SST2 immunostaining (Takei et al., 2007; Fougner
et al., 2008b; Casarini et al., 2009; Casar-Borota et al.,
2013; Gatto et al., 2013b). Choice of rabbit mAbs (Lupp
et al., 2011; Chinezu et al., 2014; Iacovazzo et al., 2016)
to assess patterns and distribution of membrane stain-
ing is also associated with SRIF analog responsiveness
(Iacovazzo et al., 2016). In acromegaly patients re-
sistant to octreotide, tumors lacking SST5 immunore-
activity were resistant to pasireotide, whereas those
with SST5 staining using the rabbit mAb UMB-4 had
superior biochemical response (Iacovazzo et al., 2016).
Cell culture responses to octreotide and pasireotide
correlated with SST2 and SST5 expression, and lower
SST2 expression was associated with superior pasireo-
tide effects (Gatto et al., 2017). However, in other in vitro
studies on unselected pituitary tumor cell culture,
responses to octreotide and pasireotide did not show an
evident correspondence with the SST1–SST5 profile
(Ibanez-Costa et al., 2016). Nevertheless, tumors immu-
nopositive for SST2 expression aremore likely to respond
to octreotide and lanreotide (Brzana et al., 2013), and
those with a higher SST2 to SST5 ratio show improved
outcomes (Casar-Borota et al., 2013). SST mutation has
only been described in a single patient with acromegaly,
in which there was a missense (Arg240Trp) variant in
the SSTR5 gene. The patient displayed resistance to

octreotide (Ballare et al., 2001). The cytoskeletal actin-
binding scaffolding protein filamin A regulates SST2

trafficking and stability (Treppiedi et al., 2017). Lack of
filamin A is associated with reduced cell surface expres-
sion of SST2 in neuroendocrine cell lines (Najib et al.,
2012), although this was not the case in somatotroph
cells that could be associated with SRIF analog resis-
tance (Peverelli et al., 2014; Treppiedi et al., 2017).

Disrupted receptor recycling also alters SST signal-
ing on the cell surface. Although GH-secreting adenoma
SST2 expression may be less abundant following pre-
treatment with SRIF analogs (Casar-Borota et al.,
2013), this does not appear to result in drug resistance
in acromegaly and TSH-secreting adenomas, whereas
tachyphylaxis has been observed in patients with NETs
(Toumpanakis and Caplin, 2013).

Tumors with large, dense GH granules diffusely
distributed throughout the cytosol are typically more
responsive to SRIF analogs than are those containing
small, uniform GH granules (Melmed et al., 1983).
Sparsely GH granulated somatotrophinomas express
less SST2 and more SST5 and are more resistant to
SRIF analogs than those that are densely granulated
(Fougner et al., 2012; Kato et al., 2012; Brzana et al.,
2013; Larkin et al., 2013). They are larger and more
invasive and occur in younger patients (Mayr et al.,
2013). Low E-cadherin expression also correlates with
sparsely granulated adenomas and SRIF analog re-
sistance (Fougner et al., 2010). On magnetic resonance
imaging, T2-weighted hyperintense GH-cell adenomas
are frequently sparsely granulated and associated with
a poor response to SRIF analogs (Hagiwara et al., 2003;
Puig-Domingo et al., 2010; Heck et al., 2016a,b).
Hypointense adenomas are smaller and less invasive
than hyper- and isointense adenomas, but interestingly
exhibit higher IGF-1 levels (Potorac et al., 2015).

Molecular markers, including low aryl hydrocarbon
receptor-interacting protein (AIP) expression (Jaffrain-
Rea et al., 2013; Ritvonen et al., 2017), high b-arrestin
expression (Gatto et al., 2013a), and presence of somatic
mutation of the Gsp oncogene (Efstathiadou et al.,
2015), have been associated with poor response to SRIF
analogs, thus contributing to more adverse outcomes.

Octreotide stimulatesZac1mRNA expression, whereas
Zac1 knockdown renders cells unresponsive to SRIF
analogs (Theodoropoulou et al., 2006). SRIF analogs
upregulate AIP expression, and Aip mRNA correlates
with Zac1 expression (Chahal et al., 2012), establishing a
novel pathway (Gadelha et al., 2013). As reduced AIP
expression may be associated with reduced Gia2 levels
(Tuominen et al., 2015;Ritvonen et al., 2017), SRIFanalog
resistancemay be encountered inAIPmutation–positive
patients (Leontiou et al., 2008; Daly et al., 2010; Oriola
et al., 2012). Two truncated SST5 variants, SST5TMD4
with four TMD and sst5TMD5 with five TMD (Durán-
Prado et al., 2010), may inhibit SST2 functions.
SST5TMD4 correlates inversely with GH and IGF-1

TABLE 11
Markers of somatostatin receptor ligand responsiveness in GH-secreting

pituitary adenomas
Data adapted from Cuevas-Ramos et al. (2015).

GH Granulation Dense vs. Sparse Using CAM5.2
Cytokeratin Immunostaining

SST2, SST5 Positive vs. negative expression
SST2:SST5 High vs. low ratio of average SST2 to SST5
SST5TMD4 Low vs. high expression
AIP Lack vs. presence of mutation or high vs. low

protein expression
b-arrestin Low vs. high score based on intensity and

expression pattern
Filamin A High vs. low score based on intensity and

expression pattern
Gsp Presence vs. absence of mutation
E-cadherin High vs. low score based on intensity and

expression pattern

Nomenclature of Somatostatin Receptors 813



reductions in response to octreotide LAR therapy
(Durán-Prado et al., 2010; Luque et al., 2015).
Somatic guanine nucleotide–binding protein Gs

subunit a gene mutations, occurring in about 20%–

30% of somatotrophinomas, result in smaller, less
invasive, and more densely granulated tumors, are
more often seen in older patients, and respond more
favorably to SRIF analogs (Landis et al., 1990; Barlier
et al., 1998; Larkin et al., 2013). Guanine nucleotide–
binding protein Gs subunit a gene-positive patients
have an approximately 10% greater reduction in GH
levels in response to octreotide (Efstathiadou et al.,
2015). In contrast, low levels of rapidly accelerated
fibrosarcoma kinase inhibitory protein correlated
with reduced octreotide responsiveness (Fougner
et al., 2008a).
About 20% of patients with Cushing disease achieve

biochemical normalization with pasireotide (Colao
et al., 2012). Corticotroph adenomas express high levels
of SST5, followed by SST2 (Batista et al., 2006; de Bruin
et al., 2009; Tateno et al., 2009; Lupp et al., 2011; van
der Pas et al., 2013). As glucocorticoids may suppress
SST2 expression (de Bruin et al., 2009), corticotrophi-
nomas are usually resistant to octreotide or lanreotide.
Although NETs usually express SST2, insulinomas
have reduced expression of SST2 compared with other
NETs (Hofland and Lamberts, 2003). SST2 is expressed
in 90% of GI NETs, except insulinomas, where 50% of
tumors express the receptor (Toumpanakis and Caplin,
2013). Tachyphylaxis has been described at variable
time intervals after commencement of treatment, with
reports ranging from 3 to 27 months (Toumpanakis and
Caplin, 2013).
Assessment of clinical, imaging, biochemical, and

histopathologicalmarkers therefore offers a personalized
approach to predict biochemical outcomes with SRIF
analogs (Puig Domingo, 2015; Melmed, 2016). Accord-
ingly, rigorous phenotypic classification of acromegaly

biomarkers for disease staging has been applied to
further refine treatment approaches (Cuevas-Ramos
et al., 2015; Giustina et al., 2016).

C. Somatotropin-Release Inhibitory Factor–
Based Radiopharmaceuticals

1. Radiolabeled Agonists. Based on the metaboli-
cally stabilized synthetic octapeptide octreotide [D-Phe-
Cys-Phe-D-Nal-Lys-Thr-Cys-Thr(ol)], which displays
high affinity for SST2 and moderate affinity for SST5

and SST3, Krenning et al. (1989) synthetized the 123I-
radioiodinated Tyr3 analog of octreotide ([123I]Tyr3-
SMS 201-995, [123I]Tyr3-octreotide, [123I]TOC) (Fig. 24;
Tables 12 and 13) and exploited this targeted radioligand
for the first successful noninvasive single-photon emis-
sion computed tomography (SPECT) imaging of SST
receptor–rich tumors in humans. This initial study on
10 patients is considered as pioneering work in the field
of SST imaging, and also as general proof-of-concept for
the usefulness of peptide receptor imaging (PRI) and as a
starting point for development of radiolabeled ligands for
targeted PRRT.With the aim to overcome the unsuitable
biodistribution of this first tracer, which was caused by
high lipophilicity, predominant hepatobiliary excretion,
and thus undesirably high abdominal background activity,
the same group successfully developed 2 years later in
collaboration with a group at Sandoz Research Institute a
new derivative, [111In]diethylenetriaminepentaaceticacid-
D-Phe1-octreotide ([111In]DTPA-D-Phe1-octreotide), named
[111In]pentetreotide (Bakker et al., 1991a,b) (Fig. 24).
Subsequently, the favorable properties of this agent (e.g.,
ease of preparation, appropriate t1/2, and absence of
major accumulation in the upper abdominal region due
to its renal clearance) were demonstrated in a compara-
tive evaluation in humans (Krenning et al., 1992). For the
first time, these studies introduced radiometals into the
concept of PRI and PRRT, which significantly simplified
the preparation of SST-targeted radiopharmaceuticals by

Fig. 24. Structures of SST ligands used for scintigraphy. [123I]Tyr3-octroeotide, the very first compound for SST-targeted scintigraphy. Conjugation of
DTPA to octreotide and labeling with indium-111 resulted in Octreoscan (Mallinckrodt), the first approved SST agent for SPECT imaging. Advanced
Accelerator Application recently received market authorization for 68Ga-labeled DOTA-TOC (SomatoKit TOC) by the European Medicines Agency and
for 68Ga-DOTA-TATE (Netspot) by the FDA. It is expected that [177Lu]DOTATATE will soon be approved by FDA and European Medicines Agency as
first agent for peptide receptor radiotherapy.
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exploiting fast and simple complexation procedures using
chelator-conjugated peptide precursors, e.g., DTPA conju-
gated to the N-terminal D-Phe1-amino acid of the peptide
as in [111In]pentetreotide. Data on [111In]pentetreotide
imaging in more than 1000 patients were published in
1993 (Krenning et al., 1993), and this is still the most
frequently cited paper from the European Journal of
Nuclear Medicine. Because the sensitivity and specificity
of [111In]pentetreotide SPECT in patients with GEP-
NETs were higher than those obtained with the classic
imaging modalities computer tomography or magnetic

resonance imaging, [111In]pentetreotide (OctreoScan;
Mallinckrodt, Staines-Upon-Thames, U.K.) was approved
by the Food and Drug Administration (FDA) in 1994 as
the first peptide-based imaging radiopharmaceutical on
the basis of a dataset obtained in 350 European patients.

After having established a noninvasive imaging
methodology for NETs, the next logical step was the
development of a treatment option, similar to the
imaging and treatment of thyroid cancer with 123I- and
131I-iodide, respectively. Despite promising initial re-
sults after treatment of patients with very high doses of

TABLE 12
Ligand-binding affinities of SRIF-based radiochemicals

SST1 SST2 SST3 SST4 SST5 Regulatory Status

Agonists with Predominant SST2 Affinity
DTPA-octreotidea .10,000 12 6 2 376 6 84 .1000 299 6 50
DOTA-lanreotidea .10,000 26 6 3.4 771 6 229 .10,000 73 6 12
In-DTPA-OCa .10,000 22 6 3.6 182 6 13 .1000 237 6 52 FDA approved
DOTA-TOCa .10,000 14 6 2.6 880 6 324 .1000 393 6 84
Y-DOTA-TOCa .10,000 11 6 1.7 389 6 135 .10,000 114 6 29 Phase II studies
DOTA-OCa .10,000 14 6 3 27 6 9 .1000 103 6 39
Y-DOTA-OCa .10,000 20 6 2 27 6 8 .10,000 57 6 22
Ga-DOTA-TOCa .10,000 2.5 6 0.5 613 6 140 .1000 73 6 21 EMA approved
Ga-DOTA-OCa .10,000 7.3 6 1.9 120 6 45 .1000 60 6 14
DTPA-TATEa .10,000 3.9 6 1 .10,000 .1000 .1000
In-DTPA-TATEa .10,000 1.3 6 0.2 .10,000 433 6 16 .1000
DOTA-TATEa .10,000 1.5 6 0.4 .1000 453 6 176 547 6 160
Y-DOTA-TATEa .10,000 1.6 6 0.4 .1000 523 6 239 187 6 50
In-DOTA-TOCb .10,000 4.6 6 0.2 120 6 26 230 6 82 130 6 17
Ga-DOTA-TATEa .10,000 0.2 6 0.04 .1000 300 6 140 377 6 18 FDA approved
Lu-DOTATATEc .1000 2.0 6 0.8 162 6 16 .1000 .1000 Phase III completed
I-Gluc-TOCd — 2.2 6 0.7 357 6 22 — 64 6 24
I-Gluc-TTEd — 2.0 6 0.5 .1000 — 521 6 269
I-Gluc-S-TATEd — 2.0 6 0.7 398 6 19 — 310 6 156
I-Gal-S-TATEd — 2.0 6 0.8 491 6 63 — 413 6 167
Gluc-Lys(FP)-TATEe .10,000 2.8 6 0.4 .1000 437 6 84 123 6 8.8

Agonists with Pansomatostatin-Like Binding Profile
Ga-DOTA-NOCf .10,000 1.9 6 0.4 40.0 6 5.8 260 6 74 7.2 6 1.6 Phase II studies
In-DOTA-NOCg .1000 3.3 6 0.3 26 6 1.9 .1000 10.4 6 1.6
In-DOTA-BOCg .10,000 3.1 6 0.3 12 6 1.0 455 6 65 6 6 1.8
NOC-ATEb .1000 3.6 6 1.6 302 6 137 260 6 95 16.7 6 9.9
BOC-ATEb .1000 0.8 6 0.4 33 6 5.5 80 6 20 3.6 6 1.5
In-DOTA-NOC-ATEb .10,000 2 6 0.35 13 6 4 160 6 3.8 4.3 6 0.5
Lu-DOTA-NOC-ATEd — 3.6 6 0.3 31 6 2 — 15 6 1
In-DOTA-BOC-ATEb .1000 1.4 6 0.37 5.5 6 0.8 135 6 32 3.9 6 0.2
Lu-DOTA-BOC-ATEd — 2.4 6 0.3 11 6 1 — 8.3 6 0.4
KE108h 0.96 6 0.15 0.4 6 0.04 0.44 6 0.06 0.6 6 0.03 0.26 6 0.04
KE121h 1.6 6 0.7 0.5 6 0.2 0.3 6 0.1 0.4 6 0.2 0.2 6 0.1
Y-DOTA-K121h (Y-KE88) 2 6 0.8 4.3 6 0.8 0.7 6 0.2 0.5 6 0.2 0.7 6 0.2
Ga-DOTA-K121h (Ga-KE88) 3.5 6 1.6 1.8 6 1.6 0.8 6 0.3 1.8 6 0.5 0.9 6 0.2
Y-DOTAGA-KE121h (Y-KE87) 6.7 6 2.1 2.7 6 2.4 0.6 6 0.1 1.6 6 0.6 1.3 6 0.4

Antagonists
In-DOTA-BASSi .1000 9.4 6 0.4 .1000 380 6 57 .1000 Pilot study
In-DOTA-JR11j .1000 3.8 6 0.7 .1000 .1000 .1000 Pilot study
Ga-DOTA-JR11j (Ga-OPS201) .1000 29 6 2.7 .1000 .1000 .1000 Pilot study
Ga-NODAGA-JR11j (Ga-OPS202) .1000 1.2 6 0.2 .1000 .1000 .1000 Phase I/II study
Lu-DOTA-JR11j (Lu-OPS201) .1000 0.73 6 0.15 .1000 .1000 .1000
sst3-ODN-8d — .1000 6.7 6 2.6 .1000
DOTA-sst3-ODN-8g .1000 .1000 5.2 6 1.3 .1000 .1000
In-DOTA-sst3-ODN-8g .1000 .1000 15 6 5.2 .1000 .1000

EMA, European Medicines Agency.
aData from Reubi et al. (2000a).
bData from Ginj et al. (2005).
cData from Schottelius et al. (2015).
dData from Cescato et al. (2006).
eData from Wester et al. (2003).
fData from Antunes et al. (2007).
gData from Ginj et al. (2006a).
hData from Ginj et al. (2008).
iData from Ginj et al. (2006b).
jData from Fani et al. (2012).
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[111In]pentetreotide (Valkemaet al., 2002) (up to 2.7Ci in
total) by means of the Auger and conversion electrons
emitted by 111In, it became apparent that more effi-
cient b-emitters, such as 90Y-yttrium (t1/2 = 64.1 hours,

Ebmax= 2.28MeV), might be better suited for SST-
targeted PRRT (Otte et al., 1997; Paganelli et al., 1999;
Waldherr et al., 2001; Barone et al., 2005; Baum et al.,
2012). These developments were based on the successful

TABLE 13
Amino acid sequences of SRIF-based radiochemicals

Amino acids: first letter capitalized: L-amino acid; first letter in lowercase: D-amino acid.

Ligand Chelator/Prosthetic Group AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10

Peptide Agonists with Predominantly SST2 Affinity
Octreotide — phe Cys Phe trp Lys Thr Cys Thr-ol
Tyr3-octreotide (TOC) phe Cys Tyr trp Lys Thr Cys Thr-ol
RC160 (Vapreotide) phe Cys Tyr trp Lys Val Cys Trp-NH2
Lanreotide (BIM-23014) 2-nal Cys Tyr trp Lys Val Cys Thr-NH2

Radiopeptide Agonists and Precursors with Predominantly SST2 Affinity
DTPA-octreotide DTPA phe Cys Phe trp Lys Thr Cys Thr-ol
DOTA-lanreotide DOTA 2-nal Cys Tyr trp Lys Val Cys Thr-NH2
In-DTPA-OC In-DTPA phe Cys Phe trp Lys Thr Cys Thr-ol
DOTA-TOC DOTA phe Cys Tyr trp Lys Thr Cys Thr-ol
Y-DOTA-TOC Y-DOTA phe Cys Tyr trp Lys Thr Cys Thr-ol
DOTA-OC DOTA phe Cys Phe trp Lys Thr Cys Thr-ol
Y-DOTA-OC Y-DOTA phe Cys Phe trp Lys Thr Cys Thr-ol
Ga-DOTA-TOC Ga-DOTA phe Cys Tyr trp Lys Thr Cys Thr-ol
Ga-DOTA-OC Ga-DOTA phe Cys Phe trp Lys Thr Cys Thr-ol
DTPA-TATE DTPA phe Cys Tyr trp Lys Thr Cys Thr
In-DTPA-TATE In-DTPA phe Cys Tyr trp Lys Thr Cys Thr
DOTA-TATE DOTA phe Cys Tyr trp Lys Thr Cys Thr
Y-DOTA-TATE Y-DOTA phe Cys Tyr trp Lys Thr Cys Thr
In-DOTA-TOC In-DOTA phe Cys Tyr trp Lys Thr Cys Thr-ol
Ga-DOTA-TATE Ga-DOTA phe Cys Tyr trp Lys Thr Cys Thr
Lu-DOTATATE Lu-DOTA phe Cys Tyr trp Lys Thr Cys Thr
I-Gluc-TOC Glucosyl phe Cys 3-I-Tyr trp Lys Thr Cys Thr-ol
I-Gluc-TATE Glucosyl phe Cys 3-I-Tyr trp Lys Thr Cys Thr
I-Gluc-S-TATE Glucosyl-S- phe Cys 3-I-Tyr trp Lys Thr Cys Thr
I-Gal-S-TATE Galactosyl-S- phe Cys 3-I-Tyr trp Lys Thr Cys Thr
Gluc-Lys(FP)-TATE Glucosyl-

Lys(fluoropropionyl)
phe Cys 3-I-Tyr trp Lys Thr Cys Thr

Agonists toward Pansomatostatin-Like Binding Profile
Ga-DOTA-NOC Ga-DOTA phe Cys 1-Nal trp Lys Thr Cys Thr-ol
In-DOTA-NOC In-DOTA phe Cys 1-Nal trp Lys Thr Cys Thr-ol
In-DOTA-BOC In-DOTA phe Cys BzThi trp Lys Thr Cys Thr-ol
NOC-ATE phe Cys 1-Nal trp Lys Thr Cys Thr
BOC-ATE phe Cys BzThi trp Lys Thr Cys Thr-ol
In-DOTA-NOC-ATE In-DOTA phe Cys 1-Nal trp Lys Thr Cys Thr
Lu-DOTA-NOC-ATE Lu-DOTA phe Cys 1-Nal trp Lys Thr Cys Thr
In-DOTA-BOC-ATE In-DOTA phe Cys BzThi trp Lys Thr Cys Thr-ol
Lu-DOTA-BOC-ATE Lu-DOTA phe Cys BzThi trp Lys Thr Cys Thr-ol
KE108 Y-DOTA Tyr dab Arg Phe Phe trp Lys Thr Phe
KE121 dab Arg Phe Phe trp Lys Thr Phe
Y-DOTA-K121 (Y-KE88) Y-DOTA dab Arg Phe Phe trp Lys Thr Phe
Ga-DOTA-K121 (Ga-

KE88)
Y-DOTA dab Arg Phe Phe trp Lys Thr Phe

Y-DOTAGA-KE121 (Y-
KE87)

Y-DOTA dab Arg Phe Phe trp Lys Thr Phe

Antagonists
In-DOTA-BASS In-DOTA pNO2

2Phe cys Tyr trp Lys Thr Cys tyr-NH2
In-DOTA-JR11 In-DOTA Cpa cys Aph(Hor) Aph(Cbm) Lys Thr Cys tyr-NH2
Ga-DOTA-JR11 (Ga-

OPS201)
Ga-DOTA Cpa cys Aph(Hor) Aph(Cbm) Lys Thr Cys tyr-NH2

Ga-NODAGA-JR11 (Ga-
OPS202)

Ga-NODAGA Cpa cys Aph(Hor) Aph(Cbm) Lys Thr Cys tyr-NH2

Lu-DOTA-JR11 (Lu-
OPS201)

Lu-DOTA Cpa cys Aph(Hor) Aph(Cbm) Lys Thr Cys tyr-NH2

sst3-ODN-8 NH2CO cys Phe Tyr DAgl8(Me,2-
naphthoyl)

Lys Thr Phe Cys

DOTA-sst3-ODN-8 DOTA NH2CO cys Phe Tyr DAgl8(Me,2-
naphthoyl)

Lys Thr Phe Cys

DOTA-TOC DOTA D-Phe Cys Phe D-Trp Lys Thr Cys Thr(ol)

AgI, a-Aminoglycyl; Aph(Cbm), 4-aminocarbamoylphenylalanine; Aph(Hor), 4-amino-L-hydroorotylphenylalanine; BOC, [BzThi3]-octreotide; BOC-ATE, [BzThi3]-
octreotate; BzThi, 3-benzothienylalanine; Cpa, 4-Cl-phenylalanine; Dab, a,g-diaminobutyryl; DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; DOTAGA,
1-(1-carboxy-3-carboxy-propyl)-4,7,10(carboxymethyl)-1,4,7,10-tetraazacyclo-dodecane; DTPA, diethylenetriaminepentaacetic acid; Gal-S, galactosyl-mercaptopropionyl; Gluc,
glucosyl; Gluc-S, glucosyl-mercaptopropionyl; Gluc-Lys(FP), Na-glucosyl-N«-(2-fluoropropionyl)Lys; 1-Nal, 1-naphthylalanine; NOC, [1-Nal3]-octreotide; TATE, [Tyr3,Thr8]-
octreotide; TOC, [Tyr3]-octreotide.
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evaluation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid (DOTA) as chelator for therapeutic
radiometals with improved thermodynamic and kinetic
stability, suitable for all commonly used M(III) radio-
metals, such as 90Y and 177Lu for PRRT, 111In for PRI
with SPECT, and 68Ga for PRI with positron emisson
tomography (PET), to mention only a few (Albert et al.,
1998). Shortly after the introduction of 90Y-labeled SST
ligands for peptide receptor therapy, it became apparent
that methods to reduce the renal tracer uptake and thus
to protect the kidneys were needed. Hammond et al.
(1993) were the first who introduced the concept of
coinfusion of Lys/Arg solutions to reduce the renal
uptake of [111In]Octreoscan by .55%. Despite this
nephron protection, some patients suffered from renal
failure after 90Y-DOTA-D-Tyr3-octreotide (DOTATOC)
treatment. To overcome these limitations, 90Y was
substituted by 177Lu [t1/2 = 6.71 days, Ebmax= 497 keV,
Eg = 113 keV (6.4%), and 208 keV (11%)], a b2 emitter
with shorter penetration depth and coemission of low
energy photons, thus allowing therapy monitoring by
means of SPECT. Consequently, Lu-labeled SST ligands,
e.g., [177Lu]DOTA-Tyr3-octreotate ([177Lu]DOTATATE),
became the PRRT agent of choice (Fig. 25).
Concomitantly, and with the aim to increase the SST

affinity, to modify the SST-binding profile, and to
increase the tumor uptake of radiolabeled SST-
binding peptides after administration of doses typically
in the range of 15–30 nmol for imaging and 100–
300 nmol for PRRT, various independent structural
modifications of octreotide were introduced during the
last 20 years, three of which should bementioned in this
work: 1) Tyr3, introduced into octreotide by Krenning
et al. (1989) to be able to label the peptide with radio-
iodine, was found to significantly improve binding
affinity and thus replaced D-Phe3 in a variety of sub-
sequent octreotide analogs; 2) Thr8(ol), originally in-
troduced to increase the in vivo stability of octreotide,
was substituted by Thr8, leading to Tyr3-octreotate
(TATE); and 3) substitution of Tyr3 by 1-naphthylalanin,
resulting inDOTA-D-Nal3-octreotide (DOTANOC) ligands
(i.e., [68Ga]DOTANOC) with somewhat increased lipophi-
licity but high affinity to SST2, SST3, and SST5 (see
below). Until today, the above-mentioned three DOTA-
conjugated peptides, DOTATOC, DOTATATE, and
DOTANOC, are the most often clinically used SST
ligands for imaging (e.g., 68Ga-labeled DOTATOC,
DOTATATE, and DOTANOC) and therapy (e.g., 177Lu-
labeled DOTATOC and DOTATATE) (Antunes et al.,
2007; Schottelius et al., 2015).
The first clinical studies with [177Lu]DOTATATE

started in 2000 in Rotterdam and formed the basis of
a multinational neuroendocrine tumors therapy phase
III trial named NETTER-1 (Strosberg et al., 2017) at
41 global sites. NETTER-1 demonstrated that [177Lu]
DOTATATEsignificantly improvedprogression-free sur-
vival (compared with octreotide injection, Sandostatin

LAR; 60 mg; Novartis, Basel, Switzerland) in patients
with advanced midgut NETs.

Additional eight-amino-acid–containing peptide ago-
nists such as lanreotide and vapreotide have been
developed but never achieved relevance for PRI and
PRRT (Breeman et al., 2001). In 2016, a “shake and
bake” kit preparation of 68Ga-labeled (t1/2 = 68 minute)
DOTATOC (Netspot; Advanced Accelerator Applica-
tions, Saint-Genis-Pouilly, France) was approved by
the FDA for PET imaging of NETs, whereas the
corresponding 68Ga-kit of the Thr8-analog [68Ga]DOTA-
TATEwas approved by the EuropeanMedicines Agency
(SomaKIT TOC; Advanced Accelerator Applications). In
addition, attempts were undertaken to optimize target-
ing properties of the first SST-imaging agent, [123]Tyr3-
octreotide, and to transfer this tracer methodology to
other radiohalogens, i.e., to the most commonly used
PET radioisotope, fluorine-18 (t1/2 = 109.7 minutes).
Unfortunately, until recently, methods for direct radio-
fluorination were not available, and complex multistep
preparations, which are inherently hard to automate,
were developed. To overcome the limitations accompa-
nied by radioiodination and conjugation of peptides
with typically used 18F-labeled prosthetic groups, i.e.,
a significant increase in lipophilicity and the resulting
suboptimal imaging characteristics, Schottelius et al.
(2004) adapted an interesting approach developed in
the early 1990s by Albert et al. (1993) to improve oral
availability of SST-binding peptides by glycosylation.
Compensation of the negative influence of radiohaloge-
nation by the use of carbohydrated peptides was highly
effective, both for radioiodinated and 18F-SST ligands
(Wester et al., 2003, 2004; Schottelius et al., 2004),
resulting in radiopharmaceuticals with excellent imaging
properties. In a pilot study in 25 patients, Na-(1-deoxy-D-
fructosyl)-N«-(2-[18F]fluoropropionyl)-Lys0-Tyr3-octreotate
PET (Gluc-Lys[18F]FP-TATE) allowed fast, high-contrast
imaging of SST-positive tumors. The biokinetics and
diagnostic performance of Gluc-Lys([18F]FP)-TATE was
superior to [111In]DTPA-octreotide and comparable with
[68Ga]DOTATOC (Meisetschläger et al., 2006).

To improve imaging quality and the availability of a
suitable SPECT imaging agent, 99mTc-labeled analogs
of octreotide (t1/2 = 6 hours), such as 99mTc-tricine-
HYNIC-Tyr3-octreotide (Bangard et al., 2000), have
been developed and successfully established for routine
clinical use (Trejtnar et al., 2000; Gabriel et al., 2003;
Hicks, 2010). Furthermore, [99mTc]ethylenediamine-N,
N9-diacetic acid/HYNIC-Tyr3-octreotide (Tektrotyd,
NCBJ RC POLATOM) has been approved in a number
of European and non-European countries.

2. Pan Somatotropin-Release Inhibitory Factor–Like
Peptides. Radiolabeled ligands that bind with similar
high affinity to all five SSTs, so-called panSRIF-like
ligands, are expected to expand the clinical indications
of currently applied predominantly SST2-targeted li-
gands and to significantly improve tumor targeting,
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imaging sensitivity, and therapeutic efficacy by cross-
reactivity to coexpressed SST1, SST3, SST4, and SST5.
One of the first developments in that direction was
[111In]DOTANOC (Wild et al., 2003), which showed
high affinity to SST2, SST3, and SST5, and finally
resulted in [68Ga]DOTANOC (Wild et al., 2005), one of
the most frequently used PET-imaging agents (already
mentioned above), whereas the use of other compounds,
such as DOTA-1-naphthylalanin,Thr8-octreotide (DOTA-
NOC-ATE) or DOTA-BzThi3,Thr8-octreotide (DOTA-
BOC-ATE) with even higher and broader affinity
remained limited in use (Ginj et al., 2005, 2006a).
Fani et al. (2010) developed bicyclic analogs, such as
DOTA-Tyr-cyclo(DAB-Arg-cyclo(Cys-Phe-D-Trp-Lys-Thr-
Cys)) (AM3; affinity for SST2, SST3, and SST5). The
authors concluded that due to its rapid background
clearance and high tumor to nontumor ratios, 68Ga-AM3
might be an ideal PET-imaging agent (Fani et al., 2010).
The first such peptidewith high-affinity binding for all five
receptor subtypes wasKE108 [Y-DOTA-Tyr-cyclo(D-Dab-
Arg-Phe-Phe-D-Trp-Lys-Thr-Phe)] (Reubi et al., 2002)
and its DOTA analog [111In]KE88 (Ginj et al., 2008).
Unfortunately, this peptide was only efficiently in-
ternalized in SST3-expressing cells and did not offer
pan-receptor–imaging properties. Another cyclic pep-
tide, DOTA-pasireotide with affinity for four SST
subtypes (SST1, SST2, SST3, and SST5), has also been
evaluated, with limited success. For both pasireotide-
and KE108-based radioligands, the absence of SST2

internalization may turn out to be a serious disadvan-
tage and compromise their accumulation in target cells,
because in most cases SST2 overexpression prevails.
Recently, native SRIF-14 and its D-Trp8 analog were

considered for ligand development. Not unexpectedly,
[111In]DOTA-SS14 and [111In]DOTA-DTrp8-SS14 showed
high affinity to all human SST subtypes, and [111In]
DOTA-DTrp8-SS14 localized in experimental tumors,
which selectively expressed rat SST2, human SST2, SST3,
and SST5 (Tatsi et al., 2012). Furthermore, Maina et al.
(2014) evaluated the SRIF mimic [111In]DOTA-LTT-SS28

[(DOTA)Ser1,Leu8,D-Trp22,Tyr25-SS28]. DOTA-LTT-SS28
exhibited a panSRIF-like binding profile (IC50 values for all
SST subtypes in the low nanomolar range); behaved as an
agonist at human SST2, SST3, and SST5; and efficiently
stimulated internalization of the three receptor subtypes.
In addition, significant and specific uptake was observed
inHEK293-SST2–, HEK293-SST3–, and HEK293-SST5–

expressing tumors. The authors concluded that
[111In-DOTA]LTT-SS28 might be a promising ligand for
multi-SST1–SST5–targeted tumor imaging.

Taking into account that high in vivo stability of a
peptide radiopharmaceutical is of utmost importance for
successful tumor imaging andPRRT, the re-evaluation of
native or slightly modified SRIF-14 and SRIF-28 needs
to be considered in the context of peptidase activity
in vivo. Neutral endopeptidase is responsible for rapid
breakdown of i.v. administered SRIF-, bombesin-, and
gastrin-derived peptides, and activity of neutral endo-
peptidase can be overcome through the mere coinjection
of a protease inhibitor, such as phosphoramidone (Nock
et al., 2014). This approach may result in enhanced
supply and accumulation of these radiopeptides at tumor
sites and in increased clinical diagnostic sensitivity and
therapeutic efficacy (Kaloudi et al., 2015, 2016).

3. Antagonists. Radiolabeled antagonists for imag-
ing of cerebral receptor systems were established early
in the application of noninvasive SPECT and PET
imaging (Wagner et al., 1983). Internalization of the
receptor after radioligand binding has been as-
sumed to be critical for efficient retention of peptide
radiopharmaceuticals in tumor cells and a prerequi-
site for efficient PRI and PRRT imaging. Almost all
SST-binding peptide lead structures exploited for
radiopharmaceutical development originate from de-
velopment of SST-targeting drugs (e.g., octreotide) and
exhibited agonistic behavior. The first results indicat-
ing that high-affinity SST antagonists that poorly
internalize into tumor cells perform more effectively
than corresponding agonists that are highly internal-
ized into tumor cells were considered to be at the

Fig. 25. Representative examples of clinical PRRT images. PRRT in a 73-year-old patient with metastasized neuroendocrine cancer (G1).
Pretherapeutic 68Ga-DOTANOC PET/computed tomography images show extensive metastases in the liver and additional abdominal lymph node
metastases (A). Post-therapeutic whole-body scintigraphy after application of 177Lu-DOTATATE confirms uptake in metastatic lesions (B). After four
cycles of 177Lu-DOTATATE, 68Ga-DOTANOC PET/computed tomography demonstrates considerable response of liver and abdominal lymph node
metastases (C). Images courtesy of M. Eiber, Department of Nuclear Medicine, Technical University Munich, Germany.
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forefront of a paradigm shift in nuclear oncology imaging
(Ginj et al., 2006b).
Motivated by a study of Bass et al. (1996), who found

that inversion of the chirality at positions 1 and 2 of the
octreotide peptide family converts an agonist to an
antagonist, and by structure activity relationship stud-
ies of Hocart et al. (1998, 1999), the first radiolabeled
SST antagonists were evaluated (Cescato et al., 2008).
Ginj et al. (2006b) showed that two peptides with high
affinity to SST2 ([111In]DOTA-sst2-ANT) and SST3

([111In]DOTA-sst3-ODN-8), respectively, did not trigger
SST2- or SST3-mediated internalization and prevented
agonist-stimulated internalization. Subsequent biodis-
tribution studies in mice bearing SST3-expressing
tumors revealed strong accumulation of [111In]DOTA-
SST3-ODN-8 at 1 hour with up to 60% of injected
radioactivity per gram of tissue and maintained at a
high level for .72 hours, whereas [111In]DOTA-NOC,
with strong SST3-binding and internalization proper-
ties, showed amuch lower and shorter-lasting uptake in
SST3-expressing tumors. The same tendency was seen
for SST2-binding ligand [111In]DOTA-SST2-ANT when
compared with the highly potent SST2-selective agonist
[111In]DTPA-TATE, suggesting that this observation
may be valid for more than just one particular GPCR.
A pilot study in five patients with NETs or thyroid

cancer provided the first evidence that SST imaging
with [111In]DOTA-sst2-ANT ([111In]DOTA-BASS) is sig-
nificantly more sensitive and effective than that
employing the FDA-approved radiotracer 111In-DTPA-
octreotide (OctreoScan; Mallinckrodt) (Wild et al.,
2011). In a comprehensive preclinical study, three different
SST2 antagonists, LM3 (p-Cl-Phe-cyclo(D-Cys-Tyr-D-
Aph(Cbm)-Lys-Thr-Cys)D-Tyr-NH2), JR10 (p-NO2-Phe-
c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH2), and
JR11 (Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-
D-Tyr-NH2), were evaluated in combination with two
chelators [DOTA and 1,4,7-triazacyclononane,1-glutaric
acid-4,7-acetic acid (NODAGA)] and various (radio)metals
[In(III), Y(III), Lu(III), Cu(II), and Ga(III)]. Although the
antagonists were found to be very sensitive to chelator
modifications and complexation with distinct radiometals
(Fani et al., 2012), the study illustrated the potential of the
antagonists, because even a low-affinity antagonist was
shown to be slightly superior to a high-affinity agonist,
outweighing the affinity differences. This is due to the
fact that a neutral antagonist labels receptors in all
states (active or inactive), whereas an agonist only labels
receptors in an active conformation. The active confor-
mation may represent a limited proportion of the whole
population, because most GPCRs show low levels of
constitutive activity.
JR11 was selected for clinical development as a PET-

imaging agent labeled with 68Ga using the chelator
NODAGA (68Ga-NODAGA-JR11 or 68Ga-OPS202) and
as a therapeutic agent labeled with 177Lu using the
chelator DOTA (177Lu-DOTA-JR11 or 177Lu-OPS201).

In a preclinical comparison of the antagonist
[177Lu]OPS201 (DOTA-JR11; DOTA-[Cpa-c(DCys-Aph(Hor)-
DAph(Cbm)-Lys-Thr-Cys)-DTyr-NH2]) and the SST2 ago-
nist [177Lu]DOTATATE, the antagonist showed 2.5-times
higher tumor dose, longer tumor residence time, and
1.3-fold higher tumor-to-kidney dose ratio (Nicolas et al.,
2017). A phase I/II PET/computed tomography study
for interindividual comparison of 68Ga-NODAGA-JR11
(68Ga-OPS202) and 68Ga-DOTATOC indicated increased
image contrast, sensitivity, and diagnostic accuracy of
68Ga-OPS202 for staging of gastroenteropancreatic
NETs (Nicolas et al., 2018). The theranostic pair
68Ga-DOTA-JR11 and 177Lu-DOTA-JR11 has also been
investigated in NET patients, and 177Lu-DOTA-JR11
(177Lu-OPS201) is being evaluated in phase I/II.

More than 20 years after approval of [111In]Octreoscan,
recent regulatory approvals of [68Ga]DOTATATE and
[68Ga]DOTATOC and the expected authorization of
[177Lu]DOTATATE will significantly advance the field
and stimulate further peptide receptor-based imaging
and therapy options. With respect to tracer develop-
ment, recent studies with radiolabeled antagonists have
generated high expectations that require verification in
detailed clinical studies. Combination of [177Lu]DOTATATE
radiotherapy with chemotherapy, targeted agents, or
immunotherapies has been initiated. Data of a first phase
III study comparing the combination of 177Lu PRRT and
capecitabine (Xeloda; Roche, Basel, Switzerland), an oral
chemotherapy agent, with 177Lu PRRT alone started at
Erasmus MC (Rotterdam, Netherlands) are expected
in 2017 (van Essen et al., 2008). Further studies on
combination therapies, named peptide receptor che-
moradionuclide therapy, have recently been published
(Kong et al., 2017).

XI. Conclusions

The SRIF system comprises seven genes encoding two
peptide precursors, SRIF and CST, and five receptors.
Compared with many other regulatory peptides, this is
a relatively high number of receptors. It remains an
intriguing question why this system needs five different
receptors to transduce the SRIF signal. To date, far few
disease-associated mutations have been identified. KO
mice for any of the SSTs exhibit rathermild phenotypes.
This suggests a high functional redundancy with po-
tential that loss of one SST can be compensated by
another SST subtype. Although SSTs often show over-
lapping distributions, they exhibit striking differences
in their subcellular localizations and trafficking. SST2

and SST5 receptors are primary targets for pharmaco-
logical treatment of pituitary adenomas and NETs. In
addition, SST2 is a prototypical GPCR for development
of peptide-based radiopharmaceuticals for diagnostic
and therapeutic intervention. Consequently, the local-
ization, regulation, and function of the five SSTs have
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been studied extensively in vitro and in vivo. However,
open questions remain:

• Are there additional receptors for SRIF and/or
CST?

• Does heterodimerization among SSTs and other
GPCRs occur in vivo?

• Can SSTs signal from within intracellular
compartments?

• What is the exact mechanism involved in the SST
and AIP–Zac1 pathway?

• Why do sparsely granulated GH-secreting adeno-
mas not respond well to SRIF analogs?

• Why do cell lines not respond well to SRIF
analogs?

• What is the molecular mechanism underlying
tumor imaging using SST antagonists?

• What is the therapeutic potential for develop-
ment of biased SST agonists?

• Is there a potential for SST ligands that can
penetrate the blood brain barrier and enter the
CNS?

• How are targeting and membrane trafficking of
SST1 regulated?

• What is the precise physiologic role of truncated
SST5 variants?

The future challenges include deciphering crystal struc-
tures for the five SSTs to facilitate discovery of novel
SST subtype-selective agonists and antagonists, which
are both safe and effective. It is expected that novel
delivery ligand systems including oral formulations and
longer-acting injectables will offer enhanced patient
convenience for long-term therapies. In the future,
SRIF-based therapies may become available for novel
indications, such as treatment of type 2 diabetes with
SST5 antagonists or treatment of neuropathic pain with
SST4 agonists.
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