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SUMMARY Tuberculosis (TB) is the leading infectious cause of mortality worldwide,
due in part to a limited understanding of its clinical pathogenic spectrum of infec-
tion and disease. Historically, scientific research, diagnostic testing, and drug treat-
ment have focused on addressing one of two disease states: latent TB infection or
active TB disease. Recent research has clearly demonstrated that human TB infection,
from latent infection to active disease, exists within a continuous spectrum of meta-
bolic bacterial activity and antagonistic immunological responses. This revised un-
derstanding leads us to propose two additional clinical states: incipient and subclini-
cal TB. The recognition of incipient and subclinical TB, which helps divide latent and
active TB along the clinical disease spectrum, provides opportunities for the devel-
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opment of diagnostic and therapeutic interventions to prevent progression to active
TB disease and transmission of TB bacilli. In this report, we review the current under-
standing of the pathogenesis, immunology, clinical epidemiology, diagnosis, treat-
ment, and prevention of both incipient and subclinical TB, two emerging clinical
states of an ancient bacterium.

KEYWORDS Mycobacterium tuberculosis, tuberculosis

INTRODUCTION

Mycobacterium tuberculosis is an ancient bacterium that was first presented as the
cause of tuberculosis (TB) in 1882. Despite the global introduction of a vaccine

and the discovery of an effective four-drug treatment regimen, M. tuberculosis still likely
infects approximately one-quarter of the world’s population and is the leading infec-
tious cause of mortality worldwide (1, 2). The current TB pandemic is fueled not only by
poverty and HIV/AIDS but also by an insufficient understanding of the spectrum of TB
pathogenesis, which may be essential in developing new diagnostic tests and creating
more-adaptable treatment regimens.

The “End TB Strategy” of the World Health Organization (WHO) seeks to reduce TB
incidence to fewer than 10 cases per 105 people per year by 2035 (3). The primary
approach for achieving this goal is to improve efforts to find and treat people with
active TB disease, conduct universal screening of individuals at high risk, and provide
preventive therapy for those at risk of progressing to active TB disease (3). While there
are concentrated efforts to develop a new vaccine, this alone may not be enough to
end the TB epidemic (4). A strong public health response will require new diagnostic
tools and therapeutic options along with a better understanding of the microbiological
and clinical spectrum of TB infection and disease.

The Spectrum of Tuberculosis Infection to Disease

A longstanding tenet of TB pathogenesis has been that M. tuberculosis exists in
either a metabolically inactive latent state or a metabolically active disease state. In this
framework, about 5% of people infected with TB progress rapidly to active disease,
while the vast majority of people develop a latent infection and remain at risk for
progression to active disease (“reactivation”) (5). Studies of pathogenesis in animal
models and in humans suggest a more complex course, where, following initial contact
between M. tuberculosis and a human host, the pathogen may progress to primary
active TB disease or be completely eliminated through an innate and/or acquired
immune response (4). For individuals with latent TB infection, the host maintains a
dynamic relationship with M. tuberculosis through the regulation of available nutrients
as well as the innate and acquired immune systems (6, 7).

This new paradigm for a dynamic continuum of M. tuberculosis infection suggests
that additional categories of infection can be defined between latent infection and
active TB disease (8). With a better understanding of the TB spectrum, we propose and
describe two additional clinical states, called incipient and subclinical TB. Although the
spectra of TB infection and disease remain continuous, categorizing M. tuberculosis into
these discrete states may allow for better dialogue on TB pathogenesis and help foster
the development of new diagnostic and therapeutic interventions to prevent progres-
sion to active TB disease and ongoing transmission of M. tuberculosis bacilli.

DEFINITIONS OF INCIPIENT AND SUBCLINICAL TUBERCULOSIS

We propose a new framework in which the pathophysiological spectrum is divided
into five discrete categories for both conceptual and practical purposes. This five-state
framework incorporates a recent understanding of clinical TB pathogenesis as well as
advances in the diagnostic approaches to detecting viable TB and predicting the
progression of disease activity. These definitions and categories are meant to build
upon each other, as detailed in Table 1.

Eliminated TB infection is an individual with prior exposure to M. tuberculosis who
either has cleared the infection by innate and/or acquired immune responses or has
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been cured of the infection with anti-TB medications. This individual no longer has
viable M. tuberculosis bacteria but may still have immunological evidence of prior
infection.

Latent TB infection (LTBI) is infection with viable M. tuberculosis for which progres-
sion to TB disease is not expected to occur in the near future in the absence of any
significant immunological compromise. This represents a more conceptual analogue to
the current WHO definition, which considers LTBI “as having evidence of TB infection
and no clinical, radiological or microbiological evidence of active TB disease” (9–11).
Currently, there is no direct way of confirming LTBI or its microbiological load, as
existing tests infer LTBI based on a T cell response to TB or TB-like antigens (12).

Incipient TB infection is an infection with viable M. tuberculosis bacteria that is likely
to progress to active disease in the absence of further intervention but has not yet
induced clinical symptoms, radiographic abnormalities, or microbiologic evidence con-
sistent with active TB disease.

Subclinical TB disease is disease due to viable M. tuberculosis bacteria that does not
cause clinical TB-related symptoms but causes other abnormalities that can be detected
using existing radiologic or microbiologic assays.

Active TB disease is disease due to viable M. tuberculosis that causes clinical
symptoms with radiographic abnormalities or microbiologic evidence consistent with
active TB disease. This would remain consistent with the current WHO definition, which
considers active TB disease as “symptomatic patients with radiological or microbiolog-
ical evidence of M. tuberculosis” (13).

Following the establishment of latent infection, the pathways by which disease may
naturally progress include (i) latency (the most common course, which encompasses
persistent or eliminated disease burden), (ii) rapid or (iii) slow progression through
incipient and subclinical disease to active TB, or (iv) a period of cycling through
incipient and subclinical states that may precede the development of symptomatic
disease or eventual disease resolution (Fig. 1). A larger disease burden may correlate
with increasing host symptoms, a likelihood of transmission, a decreasing probability of
spontaneous self-cure, an impaired or poor immunological response, and/or a larger
abundance of TB bacilli and other pathogen biomarkers. While we have not depicted
all possibilities for regression of disease burden, spontaneous recovery may occur in
any of these clinical trajectories, including pathways that have progressed through
active TB.

We acknowledge that there are limitations by applying discrete categorical defini-
tions to a continuous process. First, this introduces challenges with categorical inter-
pretation, particularly as people transition from one state to another. As such, the time
spent within each disease state as well as routes of progression may be highly variable.
Second, there may also be various levels of evidence for patients to fit these categorical
definitions. For example, a culture with M. tuberculosis may be a higher level of
diagnostic evidence for subclinical TB than chest radiography suggestive of upper lobe
disease. Despite these limitations, we hope that applying new categories to the
continuous spectrum of TB will help advance biomedical research and interventions to
end the TB epidemic.

TABLE 1 Defining criteria for the five categorical states of tuberculosis

Categorical state
of TB

Presence of criterion

M. tuberculosis
exposure

Person has viable
M. tuberculosis
pathogen

M. tuberculosis has metabolic
activity to indicate ongoing
or impending progression of
infection

Radiographic abnormalities
or microbiological
evidence of active, viable
M. tuberculosis

Person has symptoms
suggestive of active
M. tuberculosis
disease

Eliminated TB infection ✕
Latent TB infection ✕ ✕
Incipient TB infection ✕ ✕ ✕
Subclinical TB disease ✕ ✕ ✕ ✕
Active TB disease ✕ ✕ ✕ ✕ ✕
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BACTERIAL PATHOGENESIS AND IMMUNE RESPONSE
Pathogenesis of Incipient and Subclinical Tuberculosis

M. tuberculosis exerts a wide spectrum of infectious pathophysiology. Evidence is
mounting that genetic and phenotypic variation of the bacteria, along with the
interaction between these bacteria and their individual hosts, can influence the pro-
gression of TB. To our knowledge, very few studies have focused specifically on the
state of the pathogen during incipient TB or subclinical TB or progression through these
states. Therefore, much of this section relies on making inferences from studies
dichotomously conceptualizing latent TB infection and active TB disease.

At the population level, genetic heterogeneity between M. tuberculosis strains
influences interactions with the host immune system and the consequent pathogenesis
of TB infection. M. tuberculosis strains show substantial variation in their virulence and
immunogenicity, which ultimately impact their propensity to induce or accelerate
active disease (14–17). Based on whole-genome sequence analysis, human-adapted M.
tuberculosis complex strains have been divided into seven phylogenetic lineages
(15–20). Lineages 2 to 4, which harbor a deletion in the genomic region known as TbD1,
are collectively referred to as “modern” because these strains diversified genetically
more recently than the “ancient” lineages (lineages 1, 5, and 6) and “intermediate”
lineage 7 (17, 18, 21). Numerous differences in host disease presentation have been
ascribed to the different lineages, some of which are listed in Table 2. In addition,
mechanistic studies have shown that different M. tuberculosis strains induce differential
innate and adaptive immune responses via multiple effectors (16–18). Modern M.
tuberculosis strains have been shown to elicit lower-level and delayed proinflammatory
cytokine production from human peripheral blood mononuclear cells and replicate
more rapidly in aerosol-infected mice and are more pathogenic to mice than more-
ancient TB strains (17, 18, 20, 22–24). A well-characterized example is the HN878 strain
of the lineage 2 Beijing family, which is highly virulent in mouse and rabbit models and
has been implicated in multiple human TB outbreaks (25–27). HN878 produces a
particular phenolic glycolipid in its cell wall (28, 29) and induces altered innate and
adaptive immune responses (see Table 3 for examples). Together, these processes
result in increased lung pathology and reduced survival in immunocompetent mice. In
contrast, infections with ancient lineage 6 strains result in reduced bacterial burdens in
marmosets and differential T cell responses in humans compared to modern-lineage

FIG 1 Pathways of tuberculosis disease progression. After initial exposure, M. tuberculosis may be eliminated by the host immune
response, persist as a latent infection, or progress to primary active disease. Following the establishment of latent infection, disease may
persist in a latent form, naturally progress in a slow or rapid fashion to active tuberculosis, or cycle through incipient and subclinical states
before developing into symptomatic disease or eventual disease resolution. Although not all possibilities for regression of disease burden
are depicted, spontaneous recovery may occur in any of these clinical trajectories.
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strains and have been associated with reduced virulence and reduced progression to
disease (30–32). As a result, it has been proposed that as human populations expanded
rapidly, M. tuberculosis may have evolved traits of more-rapid disease progression and
increased transmission (16–18). Given the influence of different M. tuberculosis strains
on the host immune response and disease progression, the state of the pathogen is
likely to play an important role in shaping the disease states for incipient and subclin-
ical TB.

Within the context of an individual patient, different infection sites within the lung
create diverse microenvironments that induce bacterial phenotypic heterogeneity,
which can in turn influence the immune response and progression of infection, from
LTBI through the spectrum of incipient and subclinical TB and, ultimately, to active TB
disease. Variations in the cellular compositions and activation levels of immune cells,

TABLE 2 Summary of M. tuberculosis complex phylogenetic lineages, including some of the reported differences in disease presentation

Lineage
Geographic
distribution

Main lineage-specific
genetic deletion(s) Difference(s) in disease presentation Reference(s)

1 (Indo-Oceanic) East Africa and Central,
South, and
Southeast Asia

RD239 Elicits higher IFN-� responses than lineage
2 and 3 strains; not associated with
extrapulmonary disease

237, 238

2 (East Asian [includes Beijing
family])

Central and East Asia,
Eastern Europe, and
South Africa

TbD1, RD105 Associated with extrapulmonary disease;
induces more-rapid wt loss than lineage
6; associated with relapse, treatment
failure, and fever early during treatment

30, 238–242

3 (East African-Indian) East Africa and Central,
South, and
Southeast Asia

TbD1, RD750 Associated with extrapulmonary disease;
higher-level anti-inflammatory
phenotype than with lineage 4

243

4 (Euro-American) Asia, Europe, Africa,
and the Americas

TbD1, pks15/1 Associated with more �1-acid
glycoprotein and C-reactive protein,
higher neutrophil counts, and lower
body mass index than with lineage 1;
associated with more pulmonary than
meningeal disease; lower mortality rates
from meningeal TB; associated with
lung consolidation in chest X ray

32, 244, 245

5 (West Africa [Mycobacterium
africanum])

West Africa RD9, RD711 Lower rate of progression to disease than
for M. tuberculosis

32

6 (West Africa [M. africanum]) West Africa RD9, RD7, RD8, RD10,
RD702

Lower rate of progression to disease than
for M. tuberculosis; more
extrapulmonary spread

30–32

7 (Ethiopia) Ethiopia RD3, RD11, 10 bp in
mmpL9, 27 bp in
lppH, 1.3 kb in
lppO-sseB, 3.3 kb in
Rv3467-rmlB2-mhpE

Delay in patients seeking treatment 246

TABLE 3 Examples of altered immune responses by M. tuberculosis strain HN878 relative
to the CDC1551 or H37Rv strain

Immune
response HN878-induced difference(s) vs H37Rv or CDC1551 References

Innate Altered interactions with pattern recognition receptors
(e.g., Toll-like receptors)

29, 247, 248

Reduced activation of monocytes, macrophages, and
dendritic cells

Adaptive Raised levels of CD4�/CD25�/FoxP3�/CD223�/IL-10�

regulatory T cells
27, 29, 249

Cytokine Induction of type I IFNs 27, 29, 249
Induction of TH2 cytokines IL-4 and IL-13
Rapid repression of an initial spike in TH1 cytokines

TNF-�, IL-6, IL-12, and IFN-�
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epithelial cells, and the extracellular matrix that comprise granulomas expose the
residing M. tuberculosis bacteria to differences in nutrient availability, reactive interme-
diates, and cytokine profiles as well as to differential drug penetration (5, 33–35). M.
tuberculosis also reaches extrapulmonary sites even during asymptomatic infections,
each with its own diverse milieu (36–39).

The types of lesions detectable in asymptomatic individuals correlate with the onset
of subclinical TB disease and with progression toward active disease. One study
surveying LTBI in individuals with asymptomatic HIV-1 infection with no clinical evi-
dence of TB showed that over 70% of individuals harbored a broad range of abnormal
lung lesions detected by [18F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomog-
raphy (PET) combined with computed tomography (PET/CT) imaging. Importantly,
individuals with subclinical TB that harbored fibrotic scars or infiltrates or who were
FDG active by PET/CT were more likely to develop active, symptomatic TB disease
during a 6-month follow-up period (40, 41).

The mechanisms by which M. tuberculosis adapts to the diverse microenvironments
created by these infection sites could contribute to differential disease progression (33,
34). Experiments in vitro and in mouse models have characterized molecular responses
to some of the specific stresses encountered by M. tuberculosis during infection (e.g.,
oxygen and nutrient limitation) that promote a physiological shift toward reduced
replication (33, 42, 43). Exposure of M. tuberculosis to either low oxygen or starvation
in vitro triggers large-scale changes in gene and protein expression (44–47), which
remodel key cellular processes, including energy metabolism (45, 47–49). Several
mechanisms underlying the M. tuberculosis response to these stresses enact transcrip-
tional, posttranslational, or allosteric control (50–60). How these responses integrate to
influence patient-level outcomes for incipient or subclinical TB disease is currently
unclear.

Recent in vitro studies have shown that host stresses encountered during infection
will also influence the cell-to-cell variability in the growth and metabolism of M.
tuberculosis, creating a spectrum of phenotypically heterogeneous subpopulations
even under uniform conditions (61, 62). One subpopulation with potentially high
clinical relevance is a subset of cells that are metabolically viable but do not replicate,
even after being returned to growth-permissive culture conditions. Phenotypically
similar subpopulations of “differentially culturable tubercle bacilli” (DCTB), which could
not form CFU when cultured on standard solid media but could be grown after
exposure to liquid media supplemented with fresh M. tuberculosis culture filtrates, have
been found in sputum samples of TB patients and sputum culture-negative, smear-
negative individuals (63). The DCTB subpopulation appears to be phenotypically het-
erogeneous, as different subsets of DCTB replicate differentially when exposed to
medium supplementations of resuscitation-promoting factors. The correlation between
relative abundance levels of DCTB and HIV status in TB patients suggests an interaction
between these bacilli and the immune response (64). However, additional studies are
required to clarify the molecular mechanisms that generate DCTB and the conse-
quences of this population in patients with a clinical phenotype of incipient or
subclinical TB.

Bacterial heterogeneity also influences immune control. Primate and human exper-
iments have shown diverse trajectories for individual granulomas (5, 35). In one study,
the numbers of viable M. tuberculosis bacilli within individual granulomas varied by
several orders of magnitude in both asymptomatic and symptomatic individuals, the
histopathology of lesions correlated with the bacterial load, and individuals in both
groups harbored granulomas that were completely clear of M. tuberculosis bacilli (65).
Individuals who progressed to active disease differed from those with sustained
asymptomatic infection in three key ways: (i) they had a subpopulation of lesions that
exhibit a minimal bactericidal effect after the onset of adaptive immunity, (ii) they
exhibited evidence of bacterial dissemination to form new granulomas at later time
points, and (iii) they had increased inflammation in their lesions (5, 65). Thus, various
host-directed therapies that could contain metabolically active and dividing M. tuber-
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culosis bacilli within the existing granulomas and prevent escape may help stop disease
progression (66).

Immune Correlates of Incipient and Subclinical Tuberculosis

A common feature of immune correlate studies has been the upregulation of
interferon (IFN) signaling, decreased B and T cell signaling, and increased myeloid cell
signaling, including phagocytosis. When analyzed kinetically, IFN signaling preceded all
other transcriptional modules, suggesting the promise of an IFN-driven signature for
the progression of incipient TB (67). Cell-specific validation experiments suggested that
immune signatures may be attributed to neutrophils. To address the specificity of host
transcriptional signatures for TB, these preliminary signatures have also been evaluated
in sarcoidosis, pneumonia, systemic lupus erythematosus, and lung cancer. While some
overlap was observed, four studies were able to develop a refined signature driven by
IFN signaling that could possibly delineate TB from other inflammatory conditions that
contained IFN-stimulated genes (68–71). However, these signatures remain to be
externally validated by others.

Humoral immunity may provide protective immunity to M. tuberculosis (72–74).
Circulating antibodies to immunodominant antigens of M. tuberculosis may serve as
biomarkers of subclinical TB (75, 76). For example, in an antibody screening study,
distinctive Fc effector functions and glycosylation patterns were strongly associated
with active TB, compared to LTBI (74). Notably, pooled IgG antibodies from latently
infected individuals, but not those with active TB, were able to contain M. tuberculosis
in an in vitro macrophage culture assay. Low levels of M. tuberculosis-targeting IgG may
foreshadow a transition through incipient and subclinical TB. Since humoral immunity
is involved in the response to M. tuberculosis infection, quantification of families of
antibodies may provide an approach to identifying subclinical TB.

Interferon gamma release assays (IGRAs), which measure M. tuberculosis-specific
CD4� T cell immunity, have value in discerning exposure to M. tuberculosis but fail to
identify infection or to distinguish the disease stage. However, one study reported that
an IGRA conversion value of �4 IU/ml in infants was associated with a 42-fold-elevated
risk of progression to TB (77). The presence of interleukin-2 (IL-2) cytokine-secreting
CD4� T cells has been shown to correlate with bacterial burden and clinical disease (78,
79). People with active TB disease also have a more activated and proapoptotic
phenotype of antigen-specific CD4� T cells than people with LTBI (80, 81). Th17-type
CD4� T cell responses may be associated with a lower risk of progression to TB (67).
Individuals with a lower risk for TB progression, as measured by an RNA host signature,
had higher levels of Th17-associated transcripts, including IL-17F (67). Measuring T cell
immune responses using both CD4� and CD8� cells may be capable of differentiating
LTBI from subclinical or active TB, if the frequency of antigen-specific CD8� T cells can
serve as a reflection of the antigen load and disease burden. Two independent studies
found CD8� T cells at a higher frequency in smear-positive than in smear-negative
active TB (79, 82). Furthermore, frequencies of TB-specific CD8� T cells are increased in
disease progression in nonhuman primates (83) and decreased with anti-TB treatment
(79, 84). IFN-� production from CD8� T cells can provide a signature of TB in young
children (85). Most studies have not delineated T cell immune responses by different TB
disease states, incipient and subclinical TB.

As M. tuberculosis changes its gene expression in response to host immune pressure,
the antigen repertoire may also change (86). A number of antigens, DosR-regulated
proteins, and enduring-hypoxic-response proteins have been described as being se-
lective for LTBI, but data from confirmatory studies have been inconsistent (87). At
present, relatively little is known regarding antigens that are selectively expressed
during early TB as well as progression of TB infection (88–90). Ag85B is highly expressed
during early M. tuberculosis infection and appears to be repressed during chronic M.
tuberculosis infection (91–93). Lung-specific antigens could also be of value, but only a
few reports have defined these antigens (94, 95). Nevertheless, an additional under-
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standing of antigen recognition by the human cellular immune system may be helpful
for generating diagnostic tools for incipient and subclinical TB.

Nonclassically restricted T cells use invariant restriction molecules and can present
peptidic and nonpeptidic antigens, including glycolipids (96) and TB-derived products
(97, 98). HLA-E-restricted CD8� T cells can recognize TB-derived peptides (98–100) and
proliferate during active TB, compared to healthy controls (101). Frequencies of CD1b-
c-restricted T cells, which recognize lipid antigens, are similarly increased in during LTBI,
compared to TB-uninfected individuals (102, 103). In contrast, frequencies of MR1-
restricted T cells, which recognize riboflavin biosynthetic products, are reduced during
active TB, compared to LTBI (104–106). Frequencies of natural killer T (NKT) cells,
restricted by CD1d and recognizing glycolipid antigens, are similarly reduced from the
circulation of individuals with TB compared to healthy controls (107). In a prospective
household contact study, NKT cells were significantly less prevalent in people who
progressed to active TB than in people who did not progress to active TB (108).
Cumulatively, circulating frequencies of nonclassically restricted T cells change in the
context of the progression from LTBI to active TB disease and could be useful as
biomarkers to discern bacterial burdens for incipient and subclinical TB.

Proteomic, metabolomic, and epigenetic data may also be used to define signatures
of TB progression (109–114). A longitudinal analysis of soluble biomarkers of an
adolescent cohort monitored for progression to TB suggested that the complement
cascade was the earliest upregulated group of proteins and correlated with an upregu-
lated IFN-driven host RNA signature (67). While few of these signatures have been
prospectively validated, multiple approaches suggest that measurement of the host
response to mycobacterial infection can serve to identify those with subclinical and
incipient TB. Future technological advances will likely define specific immune subsets
associated with both incipient and subclinical TB, but validation of these approaches
will need to rely upon prospective clinical trials.

EPIDEMIOLOGY OF INCIPIENT AND SUBCLINICAL TUBERCULOSIS

Our limited understanding of incipient and subclinical TB at the population level
reflects the dearth of available diagnostic tools. Tests that have been utilized to
understand the epidemiology of incipient and subclinical TB include national preva-
lence surveys, active case-finding studies, and systematic screening of high-risk groups,
including preventive-therapy studies and TB vaccine trials (115–138). Studies recording
both patient symptom histories and diagnostic test results, as well as postmortem
studies, have also helped to characterize the burden of subclinical TB in specific
populations (139, 140).

Given that incipient TB is not detectable on the basis of symptoms, radiography, or
microbiological testing, our understanding of the epidemiology of incipient TB is very
limited at present. We are, however, able to make some inferences about this disease
state. Assuming that all cases of active TB progress through a period of meeting the
definition of incipient TB, the incidence must be at least that of active TB (i.e., an
estimated 10.4 million cases in 2016 [141]). To the extent that some individuals with
incipient TB do not progress to detectable active disease, the incidence of incipient TB
would be expected to be even higher than that of active TB disease.

The reported prevalence of subclinical TB varies widely across epidemiological
settings, populations, and screening tools used. The prevalence of subclinical TB is
generally high in studies performing active case finding among high-risk groups, during
which all participants are screened with high-sensitivity tests (119, 123), compared to
broader prevalence surveys, during which sputum culture might be performed only for
persons with chest radiography suggestive of TB (142). A review of 12 national
prevalence surveys in Asia found that the percentages of all bacteriologically confirmed
TB cases who did not report TB symptoms (often requiring cough with a duration of 2
to 3 weeks) ranged from 40% in Pakistan to 79% in Myanmar. In three countries with
repeat survey data on symptoms (Cambodia, Republic of Korea, and China), the
percentages of confirmed prevalent cases who did not report symptoms rose between
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18 and 21% over a period of 5 to 10 years (115, 143–145). This suggested that
traditional TB control measures may reduce the prevalence of symptomatic TB but not
that of subclinical TB, which may increase the proportion of subclinical TB cases among
all culture-positive TB cases.

Groups at high risk for subclinical TB are likely to be similar to those for active TB and
include residence in high-incidence settings; persons with a history of TB (119, 123,
139); HIV-positive individuals, particularly those not treated with antiretroviral therapy
(118–123, 125–134, 146–154); pregnant and postpartum women (135, 136, 148, 155);
people with noncommunicable disease comorbidity, including renal disease and dia-
betes (139); and high-exposure-risk groups, including household or recent TB contacts
(119), miners (124, 134), and prisoners (137). Certain known TB risk factors have not yet
been studied in association with subclinical TB; these factors include immunosuppres-
sive medications (e.g., tumor necrosis factor alpha [TNF-�] inhibitors or glucocorticoids)
and residential or occupational exposure (e.g., health care workers). Further studies of
these groups would presumably identify an elevated risk for subclinical TB. As better
biomarker-based assays become available, researchers can prospectively monitor high-
risk individuals to better describe the epidemiology of incipient and subclinical TB.

CLINICAL COURSE AND TRANSMISSIBILITY OF INCIPIENT AND SUBCLINICAL TB
Clinical Course

The clinical course of incipient and subclinical TB disease is driven by a complex
interaction between pathogen and host defenses. As a result, the duration and trajec-
tory of these disease states can differ substantially across patients (Fig. 1). It is possible
that the highest-risk individuals (e.g., those with advanced HIV) progress rapidly from
subclinical TB to active TB, whereas those at a more moderate risk remain in a
protracted or cyclic disease state. Immunosuppressive conditions are important risk
factors for progression and include less-prevalent but higher-risk conditions, such as
HIV infection and TNF-� blockade, and more-common but lower-risk conditions, in-
cluding malnutrition and diabetes mellitus (156, 157). The time since initial exposure is
a risk factor for progression; for instance, reactivation of TB is highest in the first 2 to
5 years following infection (158). Importantly, while progression from latent to incipi-
ent, subclinical, and symptomatic TB disease is sometimes a unidirectional process,
regression of disease may also occur (159).

Currently, little is known about the duration of incipient or subclinical TB disease
states. Given this variable natural history, the time from initial infection to the devel-
opment of incipient or subclinical TB may range from weeks to a lifetime. The duration
of each disease phase is similarly heterogeneous, and a window period for incipient or
subclinical TB disease may last from months to years. National prevalence surveys
suggest that the duration of subclinical TB, as estimated by the prevalence-incidence
ratio, is at least as long as that of symptomatic disease (115). However, observational
studies in settings where HIV is endemic suggest that people with subclinical TB can
quickly progress to active TB disease within weeks to a few months (119–122, 124).

The relationship between clinical symptoms and underlying disease burden may not
be entirely proportional. To the extent that smear positivity measures bacillary burden
in the lungs, subclinical TB is generally more likely to be smear negative than symp-
tomatic TB, as suggested by national prevalence surveys (115) and observational
studies in HIV-positive cohorts (118, 119, 126). However, since subclinical TB is a
dynamic state, transitions from smear-negative to smear-positive disease or the devel-
opment of new radiographic abnormalities as individuals progress from subclinical to
symptomatic TB disease may occur (123, 124). Although the burden of M. tuberculosis
in the lungs may correlate loosely with the presence of symptoms, extrapulmonary or
disseminated TB in immunocompromised individuals is often asymptomatic, rapidly
progressive, and fatal. Postmortem studies highlight the frequency of extrapulmonary
disease in high-HIV-prevalence settings (140, 160, 161). Thus, heterogeneity in clinical
presentation and diagnostic findings must be interpreted within the context of differ-
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ing patterns of progression through incipient and subclinical TB as well as differing
levels of host immune status.

Transmissibility

One of the key concerns is that persons who persistently or intermittently carry
lower bacillary burdens in their lungs, as might occur with subclinical TB, may be
important sources of transmission in the community (162). Transmission of TB can be
considered to be a function of the degree of infectiousness, the duration of infectious-
ness, and the availability of susceptible contacts (163). Most models of TB transmission
have not included a subclinical TB stage, which may constitute half of the average total
duration of active TB prior to treatment. However, people with subclinical TB may likely
be missed by current TB control efforts, especially in settings where TB culture is not
included in intensified case-finding efforts. In a recent mathematical model where
subclinical disease was included, active detection of 5% of prevalent TB cases had a
substantially greater impact than a 20% increase in rates of passive case detection on
diagnosis and mortality at 10 years in most epidemiological settings (163). More clinical
studies are needed to fully characterize the contribution of subclinical TB disease to M.
tuberculosis transmission.

SCREENING AND DIAGNOSTIC APPROACH

Until recently, screening and diagnostic tools have not been prioritized for either
incipient or subclinical TB. Currently, there are no approved diagnostic tests for
incipient TB, although several novel biomarkers are under investigation (108, 114). For
diagnosing subclinical TB, conventional tools, including chest radiography, sputum
smear microscopy, culture, and Xpert MTB/RIF (Cepheid Inc.), may be used with various
utilities (4). Overall, better diagnostics for incipient and subclinical TB (2, 163–165),
which could allow treatment of individuals before they become symptomatic and
infectious, may be required to make significant progress for the WHO’s “End TB
Strategy” (166).

Current Approaches and Incremental Improvements for Incipient Tuberculosis

Tuberculin skin testing (TST) and IGRAs have be used to identify individuals with a
persistent immune response to TB antigens. While these tests have well-described
limitations (167–170), their biggest problem is that they poorly predict who is at
greatest risk for disease progression (171, 172). In countries with a high burden of TB,
a large proportion of the general population may be infected with M. tuberculosis, but
few adults will progress to active TB disease within their lifetime. The TST and IGRAs are
not specific for disease progression, and providing universal LTBI treatment is often
impractical for national TB programs (173–176). Several newly developed tests for
latent infection represent incremental improvements but appear to suffer from the
same major shortcomings of not accurately predicting disease progression (177–181).
One new assay, QuantiFERON TB Gold Plus (Qiagen), includes additional peptides
designed to stimulate both CD4� and CD8� T cells. Early studies have demonstrated
improved sensitivity over the traditional QuantiFERON-TB Gold in-tube assay and the
potential to serve as a proxy for recent infection (178, 182–184). The WHO recently
articulated the minimal and optimal characteristics for a target product profile of a test
to predict progression from incipient TB infection to active TB disease (185).

Since incipient TB exists on a spectrum of TB progression, defining immunologically
distinct characteristics has been challenging. Recent research on host transcriptional
changes has relied on the measurement of immune markers and responses as a
surrogate for TB disease burden. An early microarray identified innate antimicrobial
genes that differentiated TB patients from LTBI patients (186). Independent blood-
based genome-wide transcriptional profiles for patients in high-burden settings have
revealed additional gene signatures, few of which have been mined for the enrichment
of molecular pathways (69, 71, 187–189). In a whole-transcriptome approach, a 393-
gene signature was derived by using a “molecular distance to health” composite score
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that incorporated the severity of radiographical disease (68). The more recent Adoles-
cent Cohort Study, performed in South African adolescents with LTBI, highlighted a
16-gene signature that could identify subjects as early as 18 months prior to the
development of active TB (67, 114). The CORTIS study, a prospective validation trial to
identify patients with incipient TB and guide preventive therapy using the same
16-gene signature, is under way (190, 191). Further improvements in simplifying the
host RNA signature to a 6-gene set may also be possible (Thomas Scriba, personal
communication), but the practicality of implementing this approach may remain
challenging.

Current Approaches and Incremental Improvements for Subclinical Tuberculosis

In principle, tools used to diagnose active TB can also detect subclinical TB, although
their sensitivity may be lower (192, 193). Since persons with subclinical TB do not have
a symptomatic cough, they may be unable to produce quality sputum specimens, so
novel assays may be necessary for use on non-sputum-based specimen types (194).
Traditional diagnostic tests to confirm active TB disease include sputum smear micros-
copy, which has low diagnostic sensitivity (195), and mycobacterial culture, which has
major infrastructure requirements and takes weeks to yield results (196). Xpert MTB/RIF,
a nucleic acid amplification assay, has higher sensitivity than smear microscopy and
important advantages over culture but has limited sensitivity to detect early or pauc-
ibacillary disease (197, 198). The next-generation Xpert MTB/RIF Ultra assay has im-
proved sensitivity (199), but its ability to detect subclinical TB is unknown and still
requires a sputum sample for the diagnosis of pulmonary TB. Several non-sputum-
based approaches are currently under development for diagnosing active TB in both
adults and children, which include M. tuberculosis nucleic acid detection in oral mucosa
and stool (200, 201) as well the as detection of M. tuberculosis proteins and metabolites
in urine (202). The most developed non-sputum-based assay detects urinary lipoara-
binomannan (LAM) (203) and is indicated for use in severely immunocompromised
HIV-infected hospitalized patients (204). However, the test is only moderately sensitive
(�60%) among HIV positive adults with CD4 counts of �100 cells/mm3 and has lower
sensitivity in patients with CD4 counts of �100 cells/mm3. Urinary LAM has been
shown to detect subclinical TB in 25% (7/28) of HIV-infected ambulatory patients in
South Africa (205). Despite these limitations, there is the potential to improve diag-
nostic sensitivity in next-generation urinary LAM assays (206–209).

Transformational Approaches and Remaining Challenges for Diagnostics

Transformational and novel approaches may be necessary to overcome limitations
in diagnosing incipient or subclinical TB. In particular for incipient TB, a high-sensitivity
test may be achieved by measuring the host immune response, as opposed to direct
pathogen detection (210, 211). Several systems biology “omics”-based diagnostic ap-
proaches appear promising (212, 213). The most advanced approach has been periph-
eral blood host RNA-based signatures, which show the potential to differentiate the
entire spectrum of TB (67) and may be suitable for the detection of incipient and
subclinical TB. Multiple RNA signatures have been reported (69, 71, 214–217), only
some of which have focused on incipient or subclinical TB. Recently, a meta-analysis of
RNA data sets identified a 3-gene signature for differentiating TB from other respiratory
diseases (218) and may be useful for detecting incipient TB (Purvesh Khatri, personal
communication). Other novel approaches investigated for incipient TB, including cell
activation and differentiation markers, cytokine levels in blood, and antigen-specific T
cells, have also been described (219, 220).

While a more comprehensive approach may be promising, the eventual develop-
ment, validation, and implementation of a complicated assay would be challenging.
Translating a host RNA signature into a simple, affordable, and globally applicable test
poses formidable technical challenges (221). Host-based signatures typically do not
require simply differentiating “signal from noise” (i.e., a qualitative/binary assessment of
the presence versus the absence of a pathogen marker) but instead require a precise
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quantification of multiple biomarkers. Furthermore, validating possible diagnostic tests
will pose unique challenges for tests targeting subclinical or incipient TB due to the lack
of a good reference standard as well as requirements for sample size and longitudinal
follow-up (185). Ensuring broadly generalizable accuracy estimates will also be difficult
since host response signatures will likely vary depending on a multitude of factors,
including age, ethnicity, medical comorbidities, the local environment, and various
exposures to pathogens and immunological stressors (222, 223). Validation across a
wide range of populations will be critical, but high levels of participant dropout can
occur in the cascade of care for active TB (224, 225). Finally, many practical implemen-
tation questions will also need to be resolved, and additional work is needed on
evaluating combinatorial approaches and complex algorithms.

TREATMENT AND PREVENTION OF INCIPIENT AND SUBCLINICAL TUBERCULOSIS

The basic principles underpinning treatment of TB infection and disease also apply
to both incipient and subclinical TB (12). These include the microbiological burden
(inferred from tests of bacterial load); disease extent (inferred from radiological studies);
testing of susceptibility to major first- and second-line drugs; the site of disease for drug
penetration; the risk of adverse events and medication side effects, including hepato-
toxicity; and prognostic features and comorbidities, such as diabetes and HIV coinfec-
tion, with an increased risk of drug-drug interactions. Several of these factors may
influence the drug-specific selection, dose, or duration of therapy for incipient and
subclinical TB. All patients with suspected incipient or subclinical TB should have a
comprehensive clinical evaluation for other comorbidities, including HIV.

Incipient Tuberculosis

Although pathophysiologically characterized, incipient TB has not previously had a
clearly defined diagnostic definition, which has precluded the evaluation of a specific
treatment regimen for a defined subgroup. However, incipient TB remains a critically
important entity to diagnose, as preventing progression to active TB will optimize the
use of health care resources. Although speculative, the conventional regimens for LTBI,
which include 6 to 12 months of isoniazid, 3 months of a combination of rifamycin and
isoniazid, or 3 to 4 months of a rifamycin alone, may be effective for incipient TB,
assuming a relatively low burden of disease. However, newer, existing, and repurposed
drugs (bedaquiline, delamanid, linezolid, likely sutezolid in the future, and fluoroquino-
lones) are now being used in clinical practice to treat drug-resistant TB (226, 227). Once
issues of toxicity, teratogenicity, and effectiveness are clarified, newer and repurposed
drugs offer the prospect of simplifying and shortening regimens for incipient TB of any
susceptibility profile in the future. Another treatment option is providing a high dose
of rifamycins, which have the potential to shorten the duration of conventional
treatment for active TB and are well tolerated (228). Clinical trials are already in progress
to evaluate the utility of different drugs, including delamanid and fluoroquinolones, for
the treatment of multidrug-resistant LTBI (229). If successful, then they may also be
appropriate for treating incipient TB. Future, alternative approaches for the treatment
of incipient TB might include therapeutic vaccines, host-directed therapies, or combin-
ing immunosuppressive agents and anti-TB drugs (230). Future clinical trials will also
need to address the issue of duration of therapy for incipient TB. In countries where TB
is endemic, the WHO recommends treating presumed LTBI in HIV-infected persons with
isoniazid for 36 months (231), which may be a starting point for incipient TB.

Subclinical Tuberculosis

Treatment of subclinical TB should include concurrent HIV testing and, where
possible, obtaining a biological sample for drug susceptibility testing. The presence of
HIV coinfection will impact the choice of antiretroviral therapy and raise considerations
related to immune reconstitution inflammatory syndrome, while regimens for the
treatment of drug-resistant TB will depend on the susceptibility profile of the M.
tuberculosis isolate. However, in general, treatment for subclinical TB should be identical
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to that of conventional active TB disease while taking into account comorbidities,
potential drug-drug interactions, and other considerations described above. Once
results from clinical studies that are evaluating newer and repurposed drugs become
available, additional trials may need to be initiated to evaluate the possibility for
shortening the duration of treatment for drug-sensitive subclinical TB, based on disease
extent and bacterial burden. One clinical trial is currently evaluating the utility of a short
4-month treatment course, compared to a standard 6-month regimen, based on
bacterial burden and the radiological extent of disease (232). While ongoing studies are
directed at patients with active TB disease, future studies will need to validate or
improve treatment options for patients with subclinical TB.

Isoniazid Preventive Therapy

Persons with incipient or subclinical TB are sometimes identified as having LTBI and
may be started on isoniazid preventive therapy (IPT). While this practice raises concerns
for the emergence of isoniazid resistance and the potential for ongoing disease
transmission (233, 234), IPT-driven drug resistance, despite decades of use, has not
been confirmed at the population level (235). In one study, treatment was switched to
a four-drug regimen upon the recognition of subclinical TB, and participants had a
good response (123). Furthermore, a comparison of recently IPT-treated and -untreated
individuals with subclinical disease did not show differences in the proportions of
individuals who subsequently developed active TB (119). Although evidence is limited,
observational studies have not suggested a benefit of IPT on the clinical progression or
outcomes of subclinical TB disease (155). Despite a lack of evidence, it will be essential
to first exclude subclinical TB when considering treatment for LTBI. In contrast, pre-
ventive regimens are appropriate in the setting of incipient TB.

Treatment Outcomes

Responses to treatment for each stage of disease are variable (Fig. 2). Clinical
outcomes are rarely recorded for the treatment of LTBI, and the appropriate treatment
course for incipient or subclinical TB remains uncertain. Currently, treatment outcomes
for active TB are often reported simply as treatment success (i.e., completion of a full
course of treatment and resolution of symptoms) versus failure (persistent disease), loss

FIG 2 Primary and secondary disease states for the five categorical states of TB. Clinical outcomes following treatment are
variable and depend on the respective pathophysiological outcomes. MTB, M. tuberculosis.
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to follow-up, or death (13). Cure is sometimes confirmed microbiologically, but even
microbiological cure does not necessarily equate to pathophysiological cure (i.e., the
absence of viable bacilli in the host). One study that profiled patients from multiple
cohorts infected with drug-sensitive M. tuberculosis after 6 months of anti-TB therapy
found that a substantial number of people still showed ongoing inflammation in the
lung by FDG PET/CT and that some developed new or intensified lesions during the
course of therapy (41, 236). Thus, “treatment success” as recorded clinically may
correspond with regression to an earlier stage in the pathophysiological spectrum of
disease.

RESEARCH NEEDS AND PRIORITIES

Earlier diagnosis and prompt therapy for incipient or subclinical TB may be critical
to preventing TB disease progression and transmission of M. tuberculosis bacilli. Since
both incipient TB and subclinical TB are relatively new concepts, many clinical, trans-
lational, and basic science research questions remain. In Table 4, we list some of the key
research needs and priorities for each of the domains presented in this review. This list
is not meant to be comprehensive but rather is meant to present some prior research
questions for the current field.

Several basic science questions pertain to the complex host-pathogen interactions
that may either promote or halt the progression of infection from an incipient or
subclinical TB stage to active TB disease. Additional research is needed to determine
whether the powers of the host immune system may be harnessed to existing or novel
host-directed therapies to stop M. tuberculosis in the incipient or subclinical stage. To
improve the understanding of TB epidemiology, more research is needed on the
underlying prevalence and incidence of both incipient and subclinical TB across various
high- and low-risk populations. Many research questions also exist for the clinical
course and transmissibility of incipient and subclinical TB. Some of these questions
include the general pattern of disease progression and the associated risk factors, while
the apparent transmissibility of subclinical TB is largely unknown but clearly important
for adequate infection control and public health responses. Finally, the optimal diag-

TABLE 4 Priority research questions for incipient and subclinical tuberculosis

Question

Pathogenesis and immune response
What triggers/prevents progression from incipient or subclinical to active TB disease?
How do different strains of M. tuberculosis alter proliferation and progression to active TB?
Can the immune system be harnessed to stop M. tuberculosis in the incipient or subclinical

stage?

Epidemiology
How does the prevalence of incipient and subclinical TB vary across populations?
Are there host genetic factors that may increase the risk of incipient or subclinical TB?

Clinical course and transmissibility
How common is a waxing/waning picture of adults with subclinical and active TB?
What are the risk factors for progression of disease through incipient and subclinical TB?
How transmissible is TB in the incipient or subclinical disease stage?
Should contacts of a patient with incipient or subclinical disease be evaluated for TB?

Screening and diagnostic approach
What are the optimal screening and diagnostics tests for incipient TB?
What are the optimal screening and diagnostics tests for subclinical TB?
What is the recommended screening frequency for either stage in high-TB-burden regions?

Treatment and prevention
Should incipient TB be treated with isoniazid monotherapy or another regimen, and for how

long?
Should subclinical TB be treated with monotherapy, 4-drug therapy, or a new drug

combination?
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nostic modalities and treatment of incipient and subclinical TB have been largely
underexplored but are quickly becoming important priority topics.

CONCLUSIONS

The recognition of incipient and subclinical TB as distinct states between latent and
active TB along the clinical disease spectrum provides opportunities for an improved
understanding of disease dynamics as well as the development of diagnostic and
therapeutic interventions to prevent progression to active TB disease and transmission
of active TB bacilli. However, this revised understanding of TB may not currently change
the therapy directed to individual patients, mainly because of the major limitations with
the available diagnostic methods and tools. In this review, we have highlighted the
current knowledge of incipient and subclinical TB and offered opportunities and
priorities for further exploration.

In 2018, the United Nations General Assembly will hold its first high-level meeting
on M. tuberculosis and the global TB epidemic, roughly 136 years after the initial
discovery of a causative agent for TB. The meeting will likely highlight the need for
more innovative solutions to an ancient disease, which should include priority research
questions around incipient and subclinical TB.

Through the development of a better understanding of the clinical pathogenic
spectrum of TB infection and disease, we may be able to devise more advanced and
specific solutions to the TB epidemic. By synthesizing the expanding knowledge and
addressing existing research gaps for both incipient and subclinical TB, the research
and public health communities may move forward together on developing sustainable
solutions to end the TB epidemic.
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