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A new era in cytomegalovirus vaccinology: considerations for
rational design of next-generation vaccines to prevent
congenital cytomegalovirus infection

Cody S. Nelson', Betsy C. Herold? and Sallie R. Permar’

Human cytomegalovirus (HCMV), a member of the beta-herpesvirus family, is the most common cause of congenital infection
worldwide as well as an important cause of morbidity in transplant recipients and immunosuppressed individuals. An estimated 1
in 150 infants are infected with HCMV at birth, which can result in lifelong, debilitating neurologic sequelae including microcephaly,
sensorineural hearing loss, and cognitive impairment. Natural maternal immunity to HCMV decreases the frequency of reinfection
and reduces risk of congenital transmission but does not completely protect against neonatal disease. Thus, a vaccine to reduce the
incidence and severity of infant infection is a public health priority. A variety of candidate HCMV vaccine approaches have been
tried previously, including live-attenuated viruses, glycoprotein subunit formulations, viral vectors, and single/bivalent DNA
plasmids, but all have failed to reach target endpoints in clinical trials. Nevertheless, there is a great deal to be learned from the
successes and failures of the HCMV vaccine field (both congenital and transplant-associated), as well as from vaccine development
efforts for other herpesvirus pathogens including herpes simplex virus 1 and 2, varicella zoster virus, and Epstein-Barr virus. Here,
we review those successes and failures, evaluating recent cutting-edge discoveries that have shaped the HCMV vaccine field and
identifying topics of critical importance for future investigation. These considerations will inform rational design and evaluation of
next-generation vaccines to prevent HCMV-associated congenital infection and disease.
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CLINICAL ENDPOINT OF CONGENITAL HCMV VACCINATION
TRIALS

Over the past 50 years of vaccine development to prevent
congenital CMV (cCMV) infection, the field has struggled with how
best to clinically evaluate vaccine efficacy. Given that cCMV is
somewhat rare at a population-level (1 in 150 pregnancies) and
occurs in an extraordinarily vulnerable patient population, what is
the most appropriate and practical clinical trial endpoint? Should
vaccination seek to reduce viral spread from toddlers, prevent
infection of the mother, block viral transmission across the
placenta, and/or reduce pathogenesis in the infant?' The endpoint
utilized in phase 2 efficacy trials of the glycoprotein B (gB) subunit
vaccine was a reduction in the rate of maternal HCMV
acquisition.”®> As preexisting natural HCMV immunity is not
protective against HCMV reinfection or against viral reactivation,
there is a certain degree of pessimism among researchers who
contend that vaccine-elicited sterilizing maternal immunity is an
unrealistic goal.” Yet, it is quite encouraging to future vaccine
development efforts that the gB subunit vaccine demonstrated ~
50% efficacy in preventing HCMV acquisition in women,”® and
reduced viremia in organ transplant recipients.> Potentially, if the
primary outcome of gB subunit vaccination studies had been the
prevention of fetal infection, the measured vaccine efficacy might
have been higher.

Given that sterilizing immunity against HCMV infection may be
difficult to achieve, one alternative approach (or proposal) is to
prioritize a reduction in the incidence of fetal infection and/or

severity of congenital disease as a clinical endpoint.' Importantly,
both guinea pig and rhesus macaque challenge models of cCMV
transmission have given confidence to the assertion that vaccines
can modulate the incidence and severity of congenital infection.
In guinea pigs, immunization with a gB subunit vaccine® live-
attenuated vaccine,”® or LCMV vector® as well as passive infusion
of a gH-specific mAb'® have been shown to reduce rates of cCMV
infection. Furthermore, we have demonstrated that preexisting
HCMV-specific antibody can reduce cCMV transmission in a rhesus
monkey model."" These findings justify further preclinical and
clinical evaluation of vaccine candidates for their ultimate purpose
—to prevent congenital infant infection and disease.

SUCCESSES IN HERPESVIRUS VACCINE DEVELOPMENT

Over the past several decades, there have been major advances in
herpesvirus vaccine development. Because of the challenge of
inducing sterilizing immunity against herpesviruses, vaccine
efficacy is frequently assessed for both preventative efficacy
(prevention of acquisition) and therapeutic efficacy (improvement
of disease). The crowning achievement of herpesvirus vaccine
research is the development of safe and efficacious varicella zoster
virus (VZV) vaccines to both prevent “chickenpox” and provide a
therapeutic reduction in symptomatic shingles and/or postherpe-
tic neuralgia (PHN). A live-attenuated virus vaccine, which
demonstrated vaccine efficacy for the prevention of chickenpox
disease ranging from 70 to 96% depending on preparation,'? was
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initially approved in 1995. Subsequently, the same vaccine, which
was ~ 60% effective against zoster/PHN, gained FDA approval for
these additional indications.”® More recently, a VZV gE subunit
vaccine (combined with the adjuvant ASO1B) demonstrated a
remarkable 97% efficacy at preventing zoster in clinical trial and
was approved for that indication.'® It is remarkable that the
subunit vaccine outperformed the live-attenuated vaccine,
although the dosing regimen was different (two doses of subunit
versus single dose of live-attenuated vaccine strain) and
immunological responses that contribute to protection may be
distinct. This gE subunit vaccine boosts both humoral and
polyfunctional CD4 + T-cell responses to gE, which is the most
abundant viral glycoprotein expressed by VZV-infected cells.'”
Finally, though less well-known, there have also been successful
vaccination-based eradication campaigns for veterinary herpes-
viruses including bovine herpesvirus 1.'® The HCMV vaccine field
stands to learn a great deal from these successes—most
importantly that such a vaccine is possible.

The HCMV gB subunit vaccine is the most efficacious tested to
date, achieving ~50% efficacy in preventing primary HCMV
infection in multiple clinical trials.>® Intriguingly, the use of a
subunit vaccine platform has met with mixed success for several
other herpesvirus pathogens. A subunit vaccine comprised of
glycoprotein D from HSV-2 (gD-2) combined with the adjuvant
AS04, initially demonstrated 74% efficacy in HSV-1/2-seronegative
women with long-term HSV-2-infected partners, but was not
effective in HSV-1 seropositive women or in men.'” However, in
the larger phase 3 “Herpevac” trial field study, which enrolled >
8000 HSV-1/2-seronegative women, the same vaccine was 20%
efficacious (95% confidence interval: —29 to 50%) against all
genital herpes disease, although 58% (12-80%) efficacy was
observed against genital HSV-1 disease. Efficacy against HSV-1
infection (e.g., seroconversion with or without signs of disease)
was 35% (13-52%)) and there was no efficacy against HSV-2
infection (—8%; (—59 to 26%)). A subsequent analysis found that
gD-2 binding antibodies, but not CD4 + T-cell responses, corre-
lated with HSV-1 (but not HSV-2) protection.'® A subunit vaccine
platform has also been attempted for Epstein-Barr virus (EBV). In a
phase 2 study, the gp350 vaccine for EBV demonstrated 78%
efficacy in preventing infectious mononucleosis, though negligible
protection against asymptomatic EBV acquisition.'® These partial
successes clearly indicate that a subunit vaccine platform to
prevent herpesvirus pathology is indeed possible. However,
clinical trial data indicate that such herpesvirus subunit vaccines
may need to be focused on a subset of herpesvirus-related disease
processes (zoster, HSV-1 genital disease, mononucleosis, etc), and
may not be effective at preventing infection or eliciting
“sterilizing” immunity.

THE CHALLENGE OF SUPERINFECTION

Given that the HCMV basic reproductive rate (Ry) is 1.7 (e.g., each
person infects 1.7 others on average),®° effective immunity in a
mere 41% of the population would restrict population-level
transmission if this virus behaved like any other pathogen. One of
the largest challenges of HCMV vaccine development remains the
ability of this “changeling demon”' to superinfect previously
exposed individuals, which recent epidemiologic data has
suggested can result in a comparable level of infant congenital
disease in seropositive and seronegative populations.?? Thus, in
addition to a focus on vaccine-elicited protective immunity among
HCMV-naive individuals, future studies should investigate whether
vaccination can boost natural immunity and enhance protection
against superinfection/reactivation and HCMV-related disease.”
Preliminary vaccination studies investigating the use of the gB/
MF59 subunit vaccine in seropositive individuals indicate that
vaccination can indeed improve upon natural immunity, specifi-
cally gB-specific CD4 + T-cell responses.®* Furthermore, in a cohort
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of HCMV-seropositive transplant recipients, gB vaccination
boosted neutralizing antibody responses targeting the AD-2
neutralizing epitope, and enhanced AD-2 binding was associated
with a reduced incidence of HCMV viremia.®

HUMORAL VS. CELLULAR PROTECTIVE IMMUNITY

It is anticipated that any efficacious HCMV vaccine may have to
engage multiple branches of the immune system.?* Neutralizing
antibodies have been frequently associated with protection
against cCMV transmission.?®™2° Furthermore, an apparent reduc-
tion in the rate and severity of cCMV infection was observed
following passive infusion of HCMV-neutralizing antibodies to
infected women,>**' though this protection was not replicated in
a recent phase 3, placebo-controlled trial3? In addition to
neutralizing antibodies, high-magnitude HCMV-specific CD4 + T-
cell responses have been repeatedly correlated with protection
against cCMV infection,**3* suggesting that this cell type is likely
critical in maturation of the protective antigen-specific immune
response.

The debate over antibodies vs. cellular immune responses as
correlates of protection is shared by the HSV vaccine field. HSV
gD-binding antibodies, which exhibit neutralizing activity in vitro,
were associated with modest protection against HSV-1 disease in
the Herpevac trial, although the primary endpoint (protection
against genital herpes) was not achieved.'® Similar to the HCMV
gB vaccine trials,>* it is unclear whether the limited vaccine
efficacy was due to: (1) inadequate neutralizing and/or epitope-
specific gD antibody responses,®® (2) need for a combination of
viral antigens, (3) requirement for non-neutralizing antibody
functions such as antibody-dependent cellular cytotoxicity (ADCC),
and/or (4) failure to elicit potent antigen-specific T-cell immunity.
The highly efficacious live-attenuated VZV vaccine elicits both
robust and durable humoral immunity®® as well as potent CD4 + /
CD8 + T-cell responses.” Furthermore, the VZV gE subunit vaccine
stimulates high-magnitude gE-specific antibodies and CD4 +, but
not CD8 +, T-cell responses.®® These data suggest that humoral
and cellular immunity may both be necessary for optimal
herpesvirus vaccine efficacy.

Our group previously established a nonhuman primate model
for cCMV transmission®” observing that depletion of CD4 + T cells
prior to primary rhesus CMV (RhCMV) infection resulted in
universal congenital RNCMV infection and a high frequency of
fetal loss. We subsequently used this model to investigate the
ability of preexisting neutralizing antibodies to protect against
placental CMV transmission and fetal loss following primary
maternal infection. Pregnant, RhCMV-seronegative, CD4 + T-cell
depleted dams were treated with hyperimmune globulin purified
from RhCMV-seropositive monkeys, then inoculated with RhCMV.
Intriguingly, the pre-infused antibody provided complete protec-
tion against fetal loss, while the most potently neutralizing HIG
product blocked placental RhCMV transmission.’ These studies
indicate that antibody alone can be protective against cCMV
transmission and could be a primary target of vaccines to
eliminate this disease. We hypothesize that depletion of CD4 +
T cells impacts the incidence of congenital RhnCMV infection due
to the impact on antibody maturation pathways, though we have
not excluded any potential protection of cell-mediated immunity
in the rhesus monkey model.

IMMUNOGEN SELECTION

HCMV encodes 165 unique proteins,*® yet previous HCMV
vaccination efforts have focused almost exclusively on a handful
of prevalent and immunodominant antigens including common
targets of neutralizing antibodies gB, gH, and UL128-131A as well
as T-cell epitopes pp65 and IE1.23 To elicit potent humoral
immunity, gB seems a logical immunogen choice as it is the viral
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fusogen,*! is highly immunogenic, is the target of neutralizing
antibodies, and is necessary for entry into all cell types.*? gH is also
a dominant target of neutralizing antibodies and part of the core
viral fusion machinery,*' though this neutralization can be strain-
specific*® Finally, the UL128/UL130/UL131a proteins, when
assembled with the gH/gL heterodimer to form the HCMV
pentameric complex (PC), is necessary for entry into epithelial
cells and is the target of the most potent neutralizing
antibodies.**™® The robust potency of neutralizing antibodies
targeting UL128-131A makes the PC an attractive vaccine target,
and indeed much of the HCMV vaccine field is now focused on
targeting these epitopes.”” However, there is no indication that
the magnitude of neutralization assessed in epithelial cells in vitro
has any relationship with protective efficacy in vivo.***° Pre-
sumably, HCMV traverses the placenta by spreading from cell-to-
cell.>® However, there is some disagreement regarding whether
PC-specific antibodies can block infection of human placental
trophoblasts and thereby prevent cCMV transmission. This process
may be influenced by gestational age of the placenta: PC mAbs
have been shown to inhibit infection of cytotrophoblasts
harvested from term placentas,®’ but not trophoblast progenitor
cells isolated during the first trimester of gestation.>?

For T-cell epitopes, both pp65 and IET have classically been
identified as dominant T-cell targets that are present in high
frequency in HCMV-seropositive individuals.?® Yet, of the 165
proteins encoded by HCMV, 151 have been shown to be targeted
by CD4+or CD8+T cells.>® And it should be noted that the
immunodominance of pp65 and IE1-specific T cells does not
necessarily reflect the functionality of protective responses, as
“subdominant” responses have been shown to be equivalently
protective in murine transplant models following adoptive
transfer’® or DNA vaccination.’> More recent analysis of the
HCMV-specific CD4+and CD8 + T-cell repertoire elicited by
natural infection suggests that gB and the PC are more commonly
targeted by CD4 + T cells, IE1 more commonly by CD8 + T cells,
and pp65 by both T-cell subsets.>

It has long been theorized that an HCMV vaccine might require
a multi-antigen approach, incorporating diverse epitopes to
optimally engage both humoral and cellular immune factors, thus
maximizing the protective immunity elicited. Multi-epitope
immune responses can be achieved either through vaccination
with a live-attenuated virus or through delivery and/or in vivo
expression of a combination of antigens. This approach is not
unique to the HCMV vaccine field, as the successful live-
attenuated varicella vaccine-elicited responses against many
antigens and a diverse array of multivalent vaccine platforms
are in development for HSV-1/HSV-2.>"">° The most commonly
trialed multi-antigen vaccine for HCMV has been the combination
of gB and pp65, either as DNA or co-expressed in a viral vector,
which appears safe and highly immunogenic’ and has demon-
strated additive protection in a guinea pig congenital transmission
model.” However, ASP0113, a bivalent DNA vaccine encoding
pp65 and gB, did not meet its primary or secondary endpoints in a
recent Phase 3 clinical trial of HCMV disease in seropositive
hematopoietic stem cell transplant recipients.®® Multi-antigen
vaccines are logistically challenging to develop®'—particularly, if
future vaccine candidates seek to incorporate the HCMV PC, which
requires that five proteins be manufactured, delivered, expressed,
and stabilized in a conformationally accurate manner.

Next-generation, “plug and play” vaccine platforms such as
mMRNA are well suited to the rapid development of multivalent
vaccines,®” and can elicit both robust humoral and T-cell
immunity. For example, gB, PC, and pp65-encoding mRNA
molecules might easily be combined for use in a single vaccine.
The antigenicity of multiple HCMV mRNA constructs has been
recently evaluated, both alone and in combination, and observed
to elicit both robust neutralizing antibody and T-cell responses in
mice and nonhuman primates.®®> Reassuringly, there was no
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discernable interference in the neutralizing antibody responses
elicited by vaccination with a single immunogen vs. multiple
immunogens. However, the authors did observe an important
phenomenon of T-cell epitope competition, as mMRNA co-
expression of PC and pp65 resulted in robust CD4 + and CD8 +
T-cell responses against PC epitopes, but negligible responses
against pp65 epitopes. Yet this competition was able to be
overcome by an initial priming vaccination with pp65 alone,
followed by co-administration of a pp65 and PC mRNA vaccine.®®

NEUTRALIZING VS. NON-NEUTRALIZING ANTIBODY
RESPONSES

The elicitation of neutralizing antibodies has been a primary goal
of HCMV vaccine research for the past 40 years.?® It has been
hypothesized that a cCMV vaccine could be efficacious by
inducing HCMV-neutralizing antibodies that either: (1) provide
sterilizing immunity by inhibiting HCMV acquisition or (2) reduce
systemic viral replication, viral seeding of the placenta, and
subsequent fetal infection.! Neutralizing antibodies targeting
HCMV surface glycoproteins have repeatedly been correlated
with reduced incidence of congenital virus transmission after
primary?®® and secondary®® maternal HCMV infection. Few
studies have evaluated any potential role of non-neutralizing
antibodies. However, HCMV is a highly cell associated virus®* and
“immunologically covert” cell-to-cell spread of HCMV is particularly
implicated among wild-type clinical strains of HCMV with an intact
PC.* It has become increasingly recognized that neutralizin
antibodies cannot block cell-to-cell spread of wild-type HCMV.®
Thus, non-neutralizing antibodies might provide an additional
benefit by inducing complement-mediated virion lysis or by
engaging Fc receptors on immune effector cells that mediate
ADCC or antibody-dependent cellular phagocytosis (ADCP).5®

There is accumulating evidence in the HSV vaccine field that
non-neutralizing antibodies may play an important role in vaccine-
mediated protection, particularly against HSV-2. The magnitude of
gD-specific antibodies was correlated with protection against
genital HSV-1, but not genital HSV-2 disease in the Herpevac
clinical trial'® and it is hypothesized that the results may reflect
serotype differences in neutralization.”” Given that the gD/
AS04 subunit vaccine demonstrated no efficacy against HSV-2 in
the Phase 3 field study®® a variety of vaccines employing multiple
antigenic targets (gC, gD, gE in combination) have been tested
and have met with success in animal models of HSV pathogen-
esis.®®7" Furthermore, Genocea Biosciences tested the GEN-003
vaccine containing both soluble gD and the ICP4.2 T-cell epitope
in phase 2 trials, resulting in a measurable reduction in viral
shedding (though comparable to valacyclovir drug therapy).”?

In contrast, one intriguing new HSV vaccine candidate is an
HSV-2 virus deleted for gD.”* In the absence of gD, this vaccine
(designated AgD-2) provided 100% protection against intravaginal
(female) and skin (males and females) challenge with clinical
isolates of both HSV-1 and HSV-2.°"7%7> Passive transfer studies
demonstrated that immune sera alone were sufficient to mediate
protection. Importantly, vaccine-elicited antibodies were weakly
neutralizing but potently activated Fc-gamma receptors (FcyR) to
mediate ADCC and ADCP.>””*”> Protection was lost in FcyR or Fc
neonatal receptor knockout mice, indicating a central role for non-
neutralizing Abs.>” The precise mechanisms by which deletion of
an immunodominant viral antigen results in a preferential
induction of non-neutralizing antibody responses is under
investigation. One hypothesis is that the relative balance of
neutralizing and non-neutralizing antibody responses may be
regulated, in part, by herpesvirus entry mediator (HVEM), a TNF
receptor, and a second-signaling molecule on B cells, T cells, and
antigen-presenting cells.”® gD competitively binds to HVEM and
this interaction may promote the induction of neutralizing or
inhibit the generation of non-neutralizing antibodies. In the
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absence of gD, the balance may be shifted. Notably, CMV UL144
binds BTLA, one of the ligands for HVEM, and could potentially
modulate immune responses against CMV through a similar
pathway.”””® Although the studies with the HSV deletion vaccine
are limited to date to small animal models, the notion that ADCC
Abs may be important is consistent with prior clinical studies
demonstrating that maternally acquired HSV-specific antibodies
that mediate ADCC provided greater protection against viral
dissemination.”*®° Furthermore, data have arisen suggesting the
protective efficacy of non-neutralizing antibody responses against
other viral pathogens including HIV/SHIV®'®? and influenza,®
although a combination of neutralizing and non-neutralizing
antibody response may be required for optimal protection.
Further investigation of AgD-2 and of FcR antibody responses in
mediating HSV protection is warranted.

The role of non-neutralizing antibodies in anti-HCMV immunity
is gradually being recognized. A recent study examined the ability
of neutralizing and non-neutralizing gB-specific antibodies to
reduce viral replication in a murine CMV (MCMV) model when
given prior to MCMV inoculation (prophylactically) or following
MCMV infection (therapeutically).*® When given prophylactically,
neutralizing antibodies had the greatest therapeutic effect on viral
load, though both neutralizing and non-neutralizing antibodies
were equally effective in preventing mouse mortality. In addition,
we recently identified that non-neutralizing antibodies were likely
responsible for the 50% vaccine efficacy observed in an HCMV gB
subunit vaccine trial>®* In previous phase 1 trials, the gB/MF59
vaccine was observed to elicit a high titer of gB-specific
antibodies,® though relatively low-level neutralization®® that is
enhanced in the presence of complement®” Therefore, the
induction of neutralizing antibodies has long been thought to
be the mechanism of partial vaccine efficacy. However, in a
detailed evaluation of the vaccine-elicited responses in a phase 2
trial of postpartum women gB/MF59 vaccinees,® there were no
neutralizing responses detectable against heterologous viral
strains, suggesting both: (1) a possible difference in the elicitation
of neutralizing antibodies in postpartum women compared to
healthy, non-recently pregnant individuals and/or (2) that
neutralizing antibodies may not have been necessary for the
partial vaccine efficacy.®*

IMMUNOGEN STRUCTURAL DESIGN

There have been significant advances made in the structural
biology of viral fusion proteins over the past decade. The
structural models that have emerged have revolutionized the
vaccine immunology field by facilitating structure-based vaccine
design.2 Immunogen conformation has been recognized as an
extraordinarily important consideration for HCMV gB as well as the
gH/gL/UL128-131a PC. gB is a class Ill viral fusogen,®® and is thus a
metastable protein that facilitates merger of the viral envelope
and host cell membrane by a conformational change from pre-
fusion and post-fusion states.’®°! The post-fusion crystal structure
of the protein has been determined,”*?® though the pre-fusion
form has remained elusive. Following natural infection, some gB-
specific antibodies are neutralizing, though the majority are non-
neutralizing.®* It has been hypothesized that neutralizing anti-
bodies preferentially target epitopes exposed on the pre-fusion
form of the protein, and non-neutralizing antibodies those on the
post-fusion form.*? Indeed, viral metastable expression of both
post-fusion and pre-fusion forms of gB on the virion membrane is
proposed as a mechanism of HCMV immune evasion, by which
the virus elicits a dominant, non-neutralizing antibody response.”
Consistent with this hypothesis, we have previously demonstrated
that immunization with soluble post-fusion gB elicited low-level
binding responses against neutralizing gB epitopes in comparison
with natural infection,®* suggesting that neutralizing epitopes are
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not adequately exposed to immune cells when gB is in the post-
fusion form.

There is a high degree of conservation between HCMV gB and
that of HSV and EBV.”'??%> We have a great deal to learn from
other herpesvirus fields as HCMV structural biology has lagged
behind. The HSV post-fusion crystal structure has been published
for well over a decade,”® and now have the first hints of a pre-
fusion structure using cryo-electron tomography technology.””%8
Furthermore, structure-based mutagenesis techniques have led to
the identification of targeted mutations that can prevent the
transition from pre-fusion to post-fusion conformation.”® A
stabilized pre-fusion form of the protein will be an indispensable
tool for future study. The HCMV vaccine field should utilize these
advances to pursue both a pre-fusion structure and a stabilized
pre-fusion gB construct. Moreover, isolation of antibodies specific
for this conformation of the protein, would be a tremendous
advance for a reverse vaccinology approach to HCMV.

Finally, the structural biology of the gH/gL/UL128-131a PC is of
interest in the HCMV vaccine field. Though extremely potent
epithelial cell-neutralizing antibodies are directed against UL128,
UL130, and UL131 following natural infection,*® immunization
with recombinant protein subunits or peptides induces far less
potently neutralizing antibodies.'® This finding suggests that
native folding and assembly of the full complex may be critical for
optimal neutralizing antibody responses,?® and indeed antibodies
have been identified that recognize conformational epitopes only
formed by the full PC*® The recently deciphered PC crystal
structure’®’ bound to neutralizing antibodies has informed the
molecular basis of these conformational epitopes. And wherreas
the PC can be expressed in soluble form,'%? it is unknown how
stable this complex is in vivo and thus unknown whether PC
subunit vaccination could elicit neutralization titers comparable to
natural infection. Thus, many researchers have sought to employ
epitope expression strategies such as an MVA vector'® or
mRNA.%*

ANTIGENIC DIVERSITY AND BREADTH

It has long been recognized that HCMV is polymorphic between
hosts.'®*"%” With the application of next-generation sequencing
technology to HCMV, it has become increasingly apparent that
there is extensive, genome-wide antigenic variability between
viral strains and even within a single host.'®'"° The HCMV
vaccine field appears to face a somewhat unique challenge in
combating this antigenic diversity; among herpesvirus, HCMV
boasts far-and-away the highest level of interstrain diversity.'"
Indeed, HCMV has an overall mean distance (i.e, number of
substitution per base pair) of 0.027,""" which places it in the realm
of dengue and other RNA viruses.'%®

Thus, it is perhaps no surprise that antigenic differences have
been observed to impact neutralizing antibody responses. In a
landmark study, neutralization of HCMV viral isolates was assessed
by paired human sera (autologous neutralization) and by the sera
of other HCMV-seropositive subjects (heterologous neutraliza-
tion)."'? Intriguingly, the authors noted that neutralization anti-
body titers frequently differed between individuals by an order of
magnitude or more, and one viral isolate exhibited complete
resistance to heterologous sera antibodies. Indeed, studies of the
HCMV and MCMV-specific antibody repertoire have confirmed
these findings by identifying mAbs directed at gB and gH that
exhibit strain-specific neutralization activity.''*'"* Thus, antigenic
variation will likely be a critical consideration for HCMV vaccine
design. Yet it is worth noting that neutralizing antibodies targeting
certain conserved epitopes such as gB AD-2°* or the UL128/
UL130/UL131a proteins'"® of the PC do not appear to be strain-
specific and have been observed to neutralize genetically diverse
HCMV strains.
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We have observed in a cohort of gB/MF59-vaccinated
postpartum women from a phase 2 vaccine efficacy study® that
neutralizing antibodies were only detectable against a virus
containing the vaccine strain of gB (Towne), though not against
heterologous strains AD169 and TB40/E.3* However, heterologous
neutralizing antibodies were measurable in a cohort of phase 1
healthy adult gB/MF59 vaccinees, suggesting that patient
population may impact the breadth of neutralizing antibodies
elicited by gB/MF59 vaccination.

GLYCAN SHIELDING AND DECOY EPITOPES

The purpose of viral envelope protein glycosylation remains
poorly understood, though has been described to either: (1)
enhance viral immune evasion or (2) facilitate critical viral
processes including cellular entry and/or protein processing.''®
Glycan shielding of susceptible epitopes is a strategy known to be
employed by HIV-1 and influenza,''® and perhaps also by
HCMV.'""1"® The mutation of highly conserved glycan sites in
HCMV gN dramatically enhances viral susceptibility to neutralizing
antibodies—including nAbs targeting glycoproteins other than
gN.'""™ The structures of HCMV gB°? and the pentameric
complex'®" primary targets of neutralizing antibodies, are both
heavily glycosylated. Of particular note, for both gB and the PC,
neutralizing epitopes are enriched with highly conserved N-linked
glycan sites,”'"® suggesting that glycans might play a role in
preventing antigenic recognition of these susceptible sites. HCMV
gB in particular has 18 N-linked glycan sites, markedly more than
the homologous protein in either HSV-1 or EBV. By careful
manipulation of patterns of glycan shielding, it is anticipated that
HCMV can elicit a predominantly non-neutralizing anti-gB
response profile. For example, heavy glycosylation of the AD-4
and AD-5 regions known to be targeted by neutralizing
antibodies® yet sparse glycosylation of predominantly non-
neutralizing AD-1 might explain why non-neutralizing AD-1-
specific antibodies are the most dominant gB-specific antibody
response observed following natural infection.®” An alternative
hypothesis to glycan shielding is that viral envelope protein
glycans can interact with inhibitory immune cell receptors, and
thus might modulate either MHC presentation or B-cell activation
pathways,'*° though there are no data to support this theory for
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herpesvirus pathogens. Although the impact of HCMV envelope
protein glycosylation on neutralizing antibody recognition of
susceptible epitopes is currently theoretical, it will be an important
consideration for future vaccine design efforts.

Analogously to glycan shielding, an immune-dominant decoy
response elicited upon vaccination can divert and limit functional
immunity against a pathogen. This phenomenon has been
described for several viruses, including HIV-1 and HSV. In one
HIV vaccine study,'®' 93% of the HIV-specific B-cell response was
observed against gp41—a protein subunit located proximally to
the virion membrane and most frequently targeted by non-
neutralizing antibodies.'** Similarly, in the HSV field, gD subunit
vaccines have long been the focus of vaccine development owing
to the immune-dominance of this antigen following natural
infection, yet they have had limited success in clinical trial.%® Thus,
it was hypothesized that gD-specific antibodies, though potently
neutralizing, may be a decoy immune response that can block the
development of more potently functional antibodies. Subse-
quently, it was observed that a gD-deletion live-attenuated
vaccine can elicit robust, protective, non-neutralizing antibody
responses.>’” 47>

Similarly, we recently assessed the epitope specificity of
antibodies elicited by gB/MF59 vaccination in the most efficacious
HCMV vaccine trial to date.®* Using a peptide microarray covering
the full gB open-reading frame, we identified that the gB/MF59
vaccine induced an extraordinarily high-magnitude response
against peptide epitopes within the cytosolic gB AD-3 region, a
known non-neutralizing epitope.’? Indeed, 76% of vaccine-elicited
linear gB-binding was directed against the AD-3 epitope, in
comparison to 31% in naturally HCMV-infected individuals. As we
also observed that this vaccine elicited: (1) very low neutralizing
antibody responses and (2) poor targeting of known neutralizing
epitopes, we hypothesize that the dominant AD-3-specific anti-
body response may have diverted functional antibodies away
from neutralization-susceptible sites (Fig. 1).

FINAL SUMMARY

There is an accumulating body of evidence that HCMV vaccination
can influence the incidence of infection and congenital disease.
There are still numerous questions to be answered and hurdles to
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