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In the mammalian central nervous system (CNS), chemical synapses are specialized 

intercellular apparatuses that mostly form during early postnatal development and mediate 

rapid communication among neurons. Accumulating evidence has shown that synapse 

formation is a multi-step process with initial steps involving trans-synaptic interactions of 

cell adhesion molecules that trigger accumulation of the essential components at both 

presynaptic and postsynaptic sites [4, 11, 12, 14, 16, 19]. Nascent synapses generally 

undergo a highly-regulated selection process that involves complex signaling events 

including synapse validation, retention or even elimination. Finally, a portion of nascent 

synapses mature through an activity or experience-dependent refinement process to become 

functional.

Development of excitatory glutamatergic synapses and inhibitory GABAergic/glycinergic 

synapses largely involve different processes but that nevertheless share apparent 

commonalities. For example, while the vast majority of glutamatergic synapses at pyramidal 

neurons are formed on dendritic spines, GABAergic synapses are developed independent of 

dendritic protrusions. In developing neurons, dendritic filopodia, the precursor of spines, 

actively search for nearby glutamatergic axons to make initial contacts [5, 8, 22, 23]. In 

contrast, newly formed GABAergic synapses in hippocampus exclusively form at pre-

existing axon-dendrite crossings [21]. These observations suggest that development of 

GABAergic synapses involves mechanisms distinct from that of glutamatergic synapses. 

Nevertheless, convincing evidence has demonstrated that cell adhesion molecules are critical 

for both excitatory and inhibitory synapse development, suggesting that trans-synaptic 

interactions are a common requirement for the formation of different types of synapses [4, 6, 

10, 12]. Interestingly, distinct sets of cell adhesion molecules are enriched at excitatory vs 

inhibitory synapses [4, 6, 10, 12], suggesting different synaptogenic machineries present at 

these synapses to instruct their formation respectively.

Dysregulations of synapse development can lead to neurodevelopmental and psychiatric 

disorders such as autism spectrum disorders (ASDs) [24]. Indeed, many rare mutations in 
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cell adhesion molecules have been associated with ASDs [17, 24]. Autistic patients and 

animal models of autism have deficits in both excitatory and inhibitory synapse development 

[24]. Thus, understanding molecular and cellular mechanisms underlying synapse 

development will not only shed light on how neural circuit is assembled in the normal brain, 

but also provide important insights into pathogenesis of many brain illnesses.

In this Special Issue, neuroscientists working in synapse development and related fields 

discuss formation and regulation of chemical synapses in the brain. For excitatory 

glutamatergic synapses, Parajuli et al., [13] provide a systematic review on the formation, 

function, molecular composition and stability of nascent spines. Using Purkinje cells (PCs) 

as a model to study synaptogenesis and synaptic specificity, Sassoe-Pognettoet al., [15] 

discuss molecular mechanisms underlying the domain-specific formation of synaptic 

connection. Lu and Zuo [9] highlight the functional implication of clustered spine 

plasticity, rather than random spine formation along dendrites, as an activity dependent 

mechanism for plasticity. Chen and Geng [3] review recent exciting progress of synapse 

engineering to manipulate synapses that allows more precise manipulation of synapses in 

behaving animals.

For inhibitory synapses development, Lu et al., [10] discuss the key role of postsynaptic 

transmembrane molecules in the development of GABAergic inhibitory synapses, including 

NMDA receptors, GABAA receptors, synaptogenic cell adhesion molecules and 

immunoglobulin superfamily proteins. Wierenga [20] highlights the importance of local 

exchange of synaptic adhesion molecules, actin dynamics and activity-driven fine-tuning in 

GABAergic presynaptic development. Alvarez [1] provides a comprehensive review of the 

development and regulation of glycinergic synapses with a focus on scaffolding protein 

gephyrin.

In addition, two reviews discuss the role of glial cells in the regulation of formation, 

elimination and function of chemical synapses. Krencik et al., [7] review how human 

astrocytes contribute to circuit formation with a focus on unique features of human 

astrocytes that may be important contributors to high functional capacity of human brain. 

Terni et al., [18] discuss the role of glial cells in synapse elimination during development 

and emphasize the importance of glia and neuron coordination in the refinement of synaptic 

connectivity.

Dysregulation of synapse development can lead to devastating brain disorders. Baig et al., 
[2] summarize genetic variants and rare mutations of cell adhesion molecules as risk factors 

for ASDs and discuss molecular mechanisms for their etiology.

In summary, the compilation of reviews in this Special Issue provide a rich view of the 

molecular mechanisms that underlie synapse formation and maturation, and they underscore 

the commonalities and differences in the mechanisms that regulate excitatory and inhibitory 

synapse development.
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