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Abstract

For half a century, we have known that some patients experience neurocognitive dysfunction after 

cardiac surgery, yet defining its incidence, course, and causes remains challenging and 

controversial. Various terms have been used to describe neurocognitive dysfunction at different 

times after cardiac surgery, ranging from “postoperative delirium” to “postoperative cognitive 

dysfunction or decline.” Delirium is a clinical diagnosis included in the diagnostic and statistical 

manual of mental disorders (fifth edition, DSM-V). Postoperative cognitive dysfunction is not 

included in the DSM-V and has been heterogeneously defined, though a recent international 

nomenclature effort has proposed standardized definitions for it. Here, we discuss 

pathophysiologic mechanisms that may underlie these complications, review the literature on 

methods to prevent them, and discuss novel approaches to understand their etiology that may lead 

to novel treatment strategies. Future studies should measure both delirium and postoperative 

cognitive dysfunction to help clarify the relationship between these important postoperative 

complications.

We have known for over 50 years that many older adults have neurocognitive dysfunction 

after cardiac surgery,1-5 yet precisely describing this phenomenon has remained elusive. 

Terms used to describe this condition have ranged from encephalopathy6,7 and pump-head8 
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to post-cardiotomy/post-operative delirium,1,9 and postoperative cognitive dysfunction/

decline (POCD).10 Although these disorders also occur after non-cardiac surgery,11-20 they 

are a particular concern after cardiac surgery due to perturbations such as cardiopulmonary 

bypass, median sternotomy, embolic load, and long surgical/anesthetic duration, see Table 

1.21-31 Here, we discuss the definitions of delirium and POCD, similarities between them 

(including in their causes), interventions to prevent them, and novel approaches to study, 

prevent and treat these important complications after cardiac surgery.

Delirium after cardiac surgery

The DSM-5 defines delirium as a fluctuating disturbance in attention and awareness that 

represents an acute change from baseline, accompanied by disturbed cognition or 

perception, and not due to a pre-existing neurocognitive disorder or occurring in context of a 

severely reduced arousal level (such as coma).32 The DSM-5 refers to three delirium 

subtypes (hyperactive, hypoactive, and mixed); hypoactive is the most common subtype 

after cardiac surgery.33,34 Post-cardiac surgery delirium rates range from 14%35 to ≥ 50%,36 

perhaps reflecting differing levels of delirium risk factors (e.g. older vs younger patients, 

etc.) in these study populations and the varied assessment tools utilized.37,38 Many 

administrative databases significantly underreport delirium rates, likely due to under-

diagnosis of delirium in routine clinical care.39 The most official form of delirium diagnosis 

is a formal psychiatric interview according to DSM-5 criteria. Additionally, many delirium 

assessment tools have been studied (reviewed in40), and some are more appropriate for 

detecting delirium in intubated patients (such as the CAM-ICU41) while some are more 

appropriate (i.e. sensitive and specific) for detecting delirium in non-intubated patients (such 

as the 3D-CAM42).43,44 Many of these tools are more sensitive than chart review alone,44 

though chart review can help improve the accuracy of single assessments such as the CAM-

ICU (or 3D-CAM), which can miss delirium due to its fluctuating course.44 Thus when 

considering post-cardiac surgery delirium rates, it is important to consider the methods used 

and whether they were used in intubated or non-intubated patients.

POCD after cardiac surgery

Many studies have used pre- and postoperative neuropsychological testing to assess 

neurocognitive dysfunction after cardiac surgery, with varying testing deficit thresholds used 

to define POCD. POCD incidence at 1–3 months after cardiac surgery ranged from ~10-16% 

(for a drop of 2 reliable change index units)13,45 to 40% (for a 1 SD drop in test scores).46,47 

Most studies show POCD rates decrease over time from 3 months to 1 year after surgery.
13,47 Five issues are important for interpreting these studies. First, for most individuals, 

scores improve with repeat testing over short intervals. Several methods can account for this 

learning effect and intrinsic test-retest variability.48 These issues can be partly mitigated by 

including multiple individual tests to assess each cognitive domain, and by using methods 

such as factor analysis to create overall cognitive domain scores that have higher test-retest 

reliability than do single tests.10,47 Second, some tests have floor or ceiling effects that 

reduce sensitivity to detect cognitive change in patients with high or low baseline cognitive 

function.49 This issue may be minimized by choosing appropriate tests for the baseline 

cognitive status of patients under study. For example, the Trail Making Test (part B) has high 
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sensitivity for detecting cognitive impairment in patients with high baseline cognition, but 

has floor effects that reduce sensitivity for detecting postoperative cognitive change in 

patients with severe preoperative cognitive impairment. In contrast, the Mini Mental Status 

Examination50 has a ceiling effect in cognitively healthy individuals, but is sensitive to 

cognitive change in patients with mild cognitive impairment or mild dementia.51 Thus, an 

optimal cognitive test battery includes assessments that span different cognitive domains and 

cognitive ability ranges.52 Third, postoperative cognitive changes in older adults occur 

superimposed on normal age-related neurocognitive/neurophysiologic changes,53,54 

including pre-existing neurodegenerative pathology. Since Alzheimer’s Disease (AD)-

associated pathology begins decades prior to observable cognitive deficits (such as memory 

impairment),55,56 many older cardiac surgery patients may have undetected, clinically silent 

AD-associated neuropathology; these patients are at increased risk for postoperative 

delirium57 and POCD.58,59 Thus, it is important to compare postoperative cognitive changes 

to those seen over the cognate time interval in non-surgical controls matched on cognitive 

decline risk factors (such as preclinical AD-associated pathology and/or genetic risk factors, 

age, vascular disease, and educational level), or by adjusting results based on normative test 

data.60 Fourth, many statistical thresholds have been used to define cognitive dysfunction 

after cardiac surgery. Some incorporate changes in one61 or two62 tests; others rely on 

changes in larger cognitive domains, such as attention and verbal memory47; and others 

measure global change across an entire cognitive test battery.63 Depending on the statistical 

thresholds and rules used to define it, POCD may represent either a single or multi-domain 

deficit, in particular memory, executive function or both may be affected. It is unclear how 

long term cognitive trajectories differ in more detailed domain specific (memory vs. 

executive function) analysis - this is a key question for future study (Table 2). Fifth, the 

timing of pre- and post-operative testing is important to consider. Cognitive dysfunction 

early after cardiac surgery is likely influenced by postoperative pain, medications like 

opioids, and acute postoperative recovery.64 Thus, current guidelines consider POCD 

assessments to be free from these confounds starting 30 days after surgery.64

For clinical practice, the international POCD nomenclature recommendations defines mild 

POCD (i.e. neurocognitive disorder, or mild NCD-postoperative) as a 1-SD drop in test 

performance and major POCD (i.e. major NCD-postoperative) as a 2-SD drop in test 

performance, occurring between 30 days to 1 year after surgery.64 These recommendations 

help provide clarity on when POCD occurs, and what magnitude of deficits should be 

considered mild vs major POCD. However, these recommendations do not specify which 

cognitive tests should be used or whether deficit thresholds should be applied to individual 

tests, multiple test scores grouped by factor analysis, or to all tests within a battery. Further, 

these 1- and 2-SD statistical thresholds do not imply that patients who don’t meet these 

thresholds don’t have significant cognitive dysfunction that may impair their quality of life. 

Global cognitive dysfunction one year after CABG, for example, was directly correlated 

with worsened quality of life measures, and both global cognitive dysfunction and worsened 

quality of life one year after CABG were associated with increased self-reported depressive 

symptoms (but not increased anxiety symptoms).65 A continuous correlation between 

overall cognitive dysfunction magnitude and declining quality of life was also seen over 5 

years after cardiac surgery, with a similar association between both measures and self-
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reported depressive symptoms.66 This correlation between POCD severity and quality of life 

impairments was present across the full range of cognitive dysfunction severity at 1 and 5 

years after surgery;65,66 even relatively minor postoperative cognitive deficits were 

associated with reduced quality of life. Thus, from a patient-centric perspective, we believe 

POCD should be conceptualized as a syndrome with a continuous severity distribution rather 

than as a simple dichotomous trait, and considered in terms of how much it subjectively 

affects individual patients.48,67 Although the lack of a specific diagnostic threshold may 

seem vague, it is consistent with the notion in psychiatry and from the recent international 

nomenclature recommendations for perioperative neurocognitive disorders64 that 

neurocognitive disorders should be evaluated in terms of both objective signs and subjective 

symptoms. Further, the idea that “sub-threshold” postoperative cognitive deficits may be 

significant for patients is consistent with the emerging view in medicine that many disease 

processes represent a continuous spectrum rather than dichotomous traits. For example, in 

cardiovascular medicine current recommendations support suppressing cardiovascular risk 

factors to ever lower levels68-71 rather than believing that there are specific LDL or blood 

pressure thresholds below which these processes do not contribute to stroke or MI risk.

Similarities in risks for and mechanisms of postoperative delirium and 

POCD

Although postoperative delirium and POCD are distinct disorders measured with different 

instruments at differing times, similarities in their likely mechanisms, risk factors, and long-

term sequelae suggest they may be part of an underlying neurobiological continuum. We 

refer to both delirium and POCD as types of “neurocognitive dysfunction” because the 

recent International Nomenclature Recommendations64 refers to both delirium and POCD as 

“perioperative neurocognitive disorders,” and because of the similarities between them. For 

example, many studies have identified increased age,47,72-76 depression,72,76,77 and altered 

baseline neurocognitive function10,36,46,47 as risk factors for both delirium and cognitive 

dysfunction after cardiac surgery. Overall, the risk for each disorder is associated more 

closely with baseline patient characteristics (such as those mentioned above) than procedural 

factors,78,79 though intraoperative management can lower the risks of both POCD and 

delirium.80 Both disorders are also thought to be caused by similar mechanisms such as 

neuroinflammation,48,79,81 and both delirium and POCD are associated with decreased 

quality of life,65,66,82,83 increased mortality,12,84 increased economic costs,85,86 long-term 

cognitive decline,87-90 and a possible increased risk for developing dementia such as 

Alzheimer’s disease (AD, discussed at length in subsequent sections).91-94 Many patients 

with postoperative delirium also develop POCD,95-100 although the magnitude of this 

overlap varies between studies. Indeed, several investigators have proposed that delirium and 

POCD primarily differ in when they occur, and that both are part of the same spectrum of 

postoperative central nervous system dysfunction (Figure 1).101 Based on this idea, and 

because of the overall similarities in likely mechanisms of, risk factors for, and long-term 

sequelae of postoperative delirium and cognitive dysfunction, and the fact that many patients 

develop both disorders, here we discuss potential pathophysiologic mechanisms of and 

possible prevention strategies for both disorders together. Future studies should measure 

both delirium and POCD using well-defined instruments to further clarify the extent to 
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which their pathology overlaps versus the extent to which distinct mechanisms are involved 

in each disorder. Clarifying this question is an important challenge for the field, and should 

help determine whether interventions could potentially help prevent or treat both disorders.

Current understanding of the pathophysiology of neurocognitive 

dysfunction after cardiac surgery

In general, risk factors and mechanisms that contribute to postoperative delirium and POCD 

can be categorized in two ways. First, they can be defined by processes present before or 

after surgery (such as patient factors), vs those present during surgery (such as 

cardiopulmonary bypass or anesthetic dosage; see Table 1). These temporal divisions are 

useful because they clarify which processes can be targeted at a given time during 

perioperative care. It is also important to recognize that some proposed risk factors and 

mechanisms may be modifiable (such as smoking), some may be partially modifiable (such 

as frailty), and some such as chronological age may be non-modifiable (Table 1). Further, 

the inaccuracies of existing risk prediction models36,46 suggest that much remains to be 

discovered about the mechanisms and etiology of postoperative delirium79 and POCD.48

A second way to categorize etiology is by potential pathophysiological processes, such as 

inflammation, neuronal damage, vascular damage/embolism, cerebral autoregulation and 

oxygen delivery, neurodegenerative disease pathology, and brain network dysfunction, 

though these processes likely overlap. Here we discuss the potential role of these processes 

in postoperative delirium and POCD.

Inflammation

Systemic inflammation and the ensuing neuroinflammatory response following peripheral 

surgical trauma are thought to play a causal role in delirium102,103 and POCD104-109 

(reviewed in48,110). Sterile tissue injury and trauma during cardiac surgery lead to the release 

of damage-associated molecular patterns (DAMPs), chemokines and cytokines.111,112 These 

soluble mediators result in a systemic inflammatory response via activation of pattern 

recognition receptors, which leads to further release of interleukins IL-1 and IL-6, tumor 

necrosis factor (TNF)-α, and DAMP molecules such as high mobility group box-1 

(HMGB1), and S100 calcium binding proteins (Figure 2).113 Systemic inflammatory 

mediators may then be able to enter the brain due to post-surgical breakdown of the blood-

brain barrier.105,108,114-117 Blood brain barrier dysfunction is frequently seen in older adults 

(even in the absence of surgery),118 and has been seen in ~50% of patients after cardiac 

surgery.119 Further, the magnitude of postoperative blood-brain barrier breakdown correlates 

with the degree of cognitive dysfunction after cardiac surgery.120 Inflammatory cytokines 

may also be produced within the brain itself after surgery, due to peripheral-to-central 

signaling via both humoral and neural pathways.121 In either case, neuroinflammation has 

detrimental effects on the brain, is sufficient to cause deficits in cognition, memory, and 

behavior and overall “sickness behavior,”122 and has been implicated in conditions ranging 

from mood disorders to neurodegenerative disease and POCD.48,123,124 Further, blocking 

neuroinflammation improves cognition in patients with autoimmune encephalitis, suggesting 
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that neuroinflammation can be sufficient to cause cognitive dysfunction, and conversely, that 

blocking neuroinflammation can improve cognition.125

Further support for the role of neuroinflammation in POCD comes from studies that have 

demonstrated that genetic polymorphisms that modulate inflammation (i.e. in the genes 

CRP, SELP, GPIIIA, and iNOS) are associated with POCD risk.126-128 Additionally, 

inflammatory processes during cardiac surgery may be augmented by 4 factors during 

cardiopulmonary bypass (CPB). First, blood contact with foreign surfaces of the CPB circuit 

causes significant peripheral inflammation, including multiple-fold elevations of the pro-

inflammatory cytokines interleukins 6 and 8 (IL-6, IL-8).129 This effect can be reduced by 

using CPB pumps with biocompatible materials and miniaturized circuits, which reduce 

leukocyte aggregation, complement and coagulation cascade activation, and pro-

inflammatory cytokine production (reviewed in130). The classical complement cascade can 

also be activated by heparin-protamine complexes after CPB.131 Second, median sternotomy 

(as opposed to smaller lateral thoracotomy approaches) increases pro-inflammatory cytokine 

levels in rats,132 and possibly in humans,133,134 although some studies have not replicated 

these findings.135,136 Third, cardiac ischemia/reperfusion injury is also accompanied by 

significant increases in serum inflammatory cytokine/chemokine levels, and in recruitment 

and activation of neutrophils, monocytes, and other leukocytes.137 Fourth, anesthetic drugs 

themselves can modulate inflammation. Inhaled anesthetics have pro-inflammatory effects 

on microglia in vitro,138 and on the mouse brain in vivo,139 and opioids and heparin can also 

modulate inflammation and monocyte function in vitro.140 The drugs given during cardiac 

surgery may thus have significant effects on the overall balance of pro- and anti-

inflammatory cytokine levels, and on patient outcomes (reviewed in141). Taken together, 

these findings suggest that exposure to anesthetics and other drugs during cardiac surgery, 

together with the effects of the bypass circuit, median sternotomy and tissue damage, and 

ischemia re-perfusion injury, may contribute to neuroinflammation and ensuing 

postoperative delirium and POCD. As a whole these factors may also explain why serum 

IL-6 and other pro-inflammatory cytokine levels are higher after cardiac vs peripheral 

surgery,135,142 although underlying differences between these patient cohorts could also play 

a role.

In rodent models, cardiac surgery causes more prolonged neuroinflammation and a wider 

spectrum of behavioral impairments than abdominal surgery, though both surgery types 

reduced hippocampal neurogenesis rates and neurotrophic factor levels (such as brain 

derived neurotrophic factor).143 Terrando et al. have also found similar behavioral 

impairments and neuroinflammation after orthopedic surgery in mice,144 suggesting that 

common mechanisms involving decreased hippocampal neurogenesis, spinal pain signaling, 

and central neuroinflammation may lead to memory dysfunction after both orthopedic and 

cardiac surgery. Further, mouse orthopedic surgery studies suggest that increased brain 

monocyte chemoattractant protein 1 (MCP-1) levels recruit peripheral monocyte-derived 

macrophages into the CNS, which play a role in postoperative explicit memory deficits.
105,107,145 Blocking neuroinflammation106 and microglial activation146 reduced 

postoperative memory deficits in mouse models, though these interventions have yet to be 

tested in humans. Human studies have found postoperative CSF increases in MCP-1147 and 

other inflammatory cytokines148,149 after orthopedic surgery and CSF IL-6 and IL-8 
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increases have been observed after cardiac surgery,117 though it is unclear whether CSF 

MCP-1 levels increase after cardiac surgery.116 To our knowledge, no study has ever 

examined whether monocytes or macrophages enter the human central nervous system after 

cardiac surgery, or whether such monocyte/macrophage influx plays a role in cognitive 

dysfunction or delirium after cardiac surgery (or other types of surgery); these are important 

questions for future research.

Several anti-inflammatory drug trials have failed to prevent delirium or cognitive 

dysfunction after cardiac surgery, including lidocaine,10 magnesium,46 complement cascade 

inhibitors,150 and postoperative acetylcholinesterase treatment151,152 (which may increase 

vagal anti-inflammatory pathways in addition to boosting brain acetylcholine levels). 

However, lidocaine or magnesium may have cognitive benefits in specific patient subgroups,
10,46 and acetylcholinesterase treatment improved postoperative memory.151 Intraoperative 

high dose steroids were also ineffective,35,45,153,154 perhaps because steroids can also cause 

delirium and hallucinations155 that may counter-balance their theorized cognitive-improving 

anti-neuroinflammatory effects. Intraoperative ketamine treatment reduced delirium156 and 

cognitive dysfunction157 after cardiac surgery in small pilot studies, but did not reduce 

delirium in a large multi-center randomized trial (which included ~1/3 cardiac surgery 

patients).158 Dexmedetomidine also had no effect on delirium incidence after cardiac159 

surgery in a recent multicenter randomized trial, though it had mixed effects on delirium 

after non-cardiac surgery;160,161 these divergent results may be due to differing 

dexmedetomidine infusion rates and durations between these studies.159-161

These generally negative study findings may reflect the pathophysiologic complexity of 

delirium and POCD, which may also underlie the relatively greater success of multi-modal 

interventions.162 Alternative strategies to more specifically modulate postoperative 

inflammation may better help prevent postoperative delirium and POCD. For example, 

resolution of inflammation is an active process orchestrated by specialized pro-resolving 

mediators,163 including omega-3 fatty acid-derived lipid mediators (i.e. resolvins) that have 

potent postoperative anti-inflammatory and pro-resolving effects.164-166 Administration of 

the omega-3 derived resolvin D1 reduced memory impairments after orthopedic surgery in 

mice.166 Other resolution agonists, including Annexin a1 peptide mimetics, also reduced 

neuroinflammation and improved cognitive outcomes after CPB and deep hypothermic 

circulatory arrest in a rat cardiac surgery model.167 Pro-resolving mediators can also reduce 

inflammatory pain,168 lower antibiotic requirements,169 and reduce mortality from microbial 

sepsis.170 Thus, understanding the role of resolvins and other anti-inflammatory lipids in 

cognitive function after cardiac surgery, and whether manipulating them can improve it, are 

important future research goals.

Embolic load and clinically covert stroke

Embolic load may also play a role in neurocognitive dysfunction after cardiac surgery. The 

direct manipulation of the aorta during cardiac surgery often disrupts atheromatous plaques. 

Aortic atheroma burden can be measured intraoperatively by epiaortic ultrasound, and 

increased intraoperative atheroma burden has been seen in patients with POCD (vs those 

without POCD) at 1 week, but not at 3 or 12 weeks, after cardiac surgery.62 Current 
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guidelines recommend epiaortic ultrasound evaluation of aortic plaque in patients with 

increased stroke risk, including those with a vascular disease history, and those with other 

evidence of aortic atherosclerosis or calcification.171

Aortic plaque disruption can liberate micro-emboli that can travel to the brain. These micro-

emboli can be detected by transcranial Doppler (TCD) ultrasound,172 although the majority 

of TCD signals actually represent small gas emboli.173 Gaseous micro-emboli occur 

frequently in open chamber cardiac valve cases, which has led many centers to flood the 

open cardiac chamber with CO2, since CO2 is more soluble than air and thus promotes the 

resorption of gas emboli (potentially before they enter the cerebral vasculature).174 However, 

a randomized trial found that field flooding with CO2 versus medical air had no effect on 

cognitive function six weeks after surgery.175 Rather than intracardiac gas volume, the main 

predictor of cognitive decline in this study was atheromatous vascular disease.175

Micro-emboli can also be detected by postoperative diffusion-weighted MRI176 though 

preoperative MRI scans are needed to differentiate new micro-emboli from prior lesions. 

The percentage of cardiac surgery patients with detectable micro-emboli vastly outnumber 

the percentage with clear postoperative stroke(s). Many experts refer to these emboli and 

diffusion-weighted MRI abnormalities as “clinically covert strokes,”78 because they are not 

associated with neurologic abnormalities detectable in routine clinical examination. 

Although it seems intuitive that embolic load to the brain and resulting T2-weighted MRI 

white matter hyper-intensities would have detrimental neurocognitive effects, correlations 

between embolic load and postoperative cognitive changes have been inconsistent 

(particularly after open chamber valve cases).176-179 This is a paradox, because large 

observational studies have found these “clinically covert strokes” are associated with future 

risk of stroke, cognitive decline and AD.180-183 One explanation may be that the location at 

which micro-embolic “covert strokes” occur may matter in addition to their total volume, 

since neurovascular coupling and neuronal circuitry can be disrupted beyond injury site(s) 

themselves,184 and small lesions at critical node locations can thus cause wider brain 

network dysfunction and impair neurocognitive processing.184 Future studies should 

examine this idea, and evaluate interactions between embolic load, central 

neuroinflammation, pre-existing neurodegenerative disease pathology, and other variables 

that may interact in synergistic ways to produce postoperative neurocognitive dysfunction.

Cerebral blood flow, autoregulation, and oxygen delivery and utilization

Many cardiac surgery patients have hypertension, which can shift the normal autoregulatory 

range of cerebral blood flow (classically thought to be 60–160 mHg). Thus, the actual 

autoregulation range for any given patient is unknown, and the lower limit of autoregulation 

during CPB may vary from 45–80 mm Hg.185 Newman et al. found significant cerebral 

autoregulation impairments in 215 patients during cardiac surgery, but no correlation with 

POCD.74,186 Similarly, Ono et al. found that up to 20% of cardiac surgery patients have 

impaired autoregulation, and these patients with “pressure passive” cerebral blood flow187 

had increased perioperative stroke rates.188 Further, intraoperative cerebral autoregulation 

can dynamically change in response to intraoperative physiologic changes,189,190 suggesting 

the need for real-time cerebral autoregulation measurement. Hori et al found that ultrasound-
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tagged near infrared spectroscopy can identify cerebral autoregulation limits, and showed (in 

a secondary analysis) that patients with delirium had higher blood pressure excursions above 

this range.191 Thus, an ongoing study is investigating whether cerebral oximetry-guided 

blood pressure management can decrease postoperative delirium after cardiac surgery.192

These findings then led to studies examining the relationship between MAP management 

and postoperative cognitive changes. For example, maintaining intraoperative MAP within 

80–90 mm Hg, rather than 60–70 mm Hg, was associated with less postoperative delirium 

and a smaller postoperative decrease in mini mental status exam scores.193 Gold et al found 

that higher MAP targets (i.e., 80–100 mm Hg vs 50–60 mm Hg) were associated with lower 

cardiac and neurologic complication rates (i.e. stroke),194 though they found no difference in 

postoperative cognition between groups. Postoperative MAP values below the lower limit of 

autoregulation have also been associated with increased levels of the glial injury biomarker 

glial fibrillary acidic protein (GFAP), emphasizing the importance of maintaining MAP 

within the autoregulatory range after as well as during cardiac surgery.195 However, 

observational studies have found that maintaining blood pressure above the upper limit of 

cerebral autoregulation is associated with increased postoperative delirium rates,191,196 

suggesting that it may be important to avoid MAPs above, as well as below, each patient’s 

autoregulatory range.

One major caveat to the interventional MAP management studies discussed above is that 

many of these studies193,194 did not measure cerebral autoregulation limits in individual 

patients. The cerebral autoregulation range varies substantially among patients,197 especially 

during cardiopulmonary bypass.198 Thus, it is possible that the higher MAP targets in these 

studies119,120 may have been outside the cerebral autoregulation limits in some patients, 

particularly in patients with hypertension.197 Future studies should thus measure 

individualized cerebral autoregulation limits and study MAP management algorithms based 

on them.

Maintaining blood pressure within each individual’s cerebral autoregulation range may help 

ensure adequate brain oxygen delivery. Lower MAP values are associated with cerebral 

venous oxygen desaturations, which are themselves associated with POCD.199 In other 

words, inadequate mean arterial pressure management during cardiac surgery may cause 

POCD by impairing cerebral oxygen delivery, which can be detected as a cerebral venous 

oxygen desaturation.199 Brain oxygen delivery and usage can be inferred from cerebral 

oximetry, which can help guide real-time intraoperative blood pressure management. 

Cardiac surgery patients who have intraoperative cerebral oxygen desaturations are more 

likely to develop postoperative delirium200 and POCD (measured one week201,202 and one 

month202 after surgery). This is consistent with the finding that cerebral venous oxygen 

desaturations are associated with POCD at hospital discharge.199 However, at least 2 other 

studies did not find a correlation between intraoperative cerebral oxygen desaturations and 

POCD.203,204 These divergent findings could reflect differences in postoperative cognitive 

assessment methods and/or different patient characteristics.201-204 Indeed, the de Tournay-

Jette202 study patients were ~10-20 years older and had more co-morbid disease processes 

than patients in the Reents203 and Hong204 studies, suggesting cerebral oximetry may be 

better able to identify POCD and delirium risk in older/sicker patients. Additionally, 
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hyperoxia has been associated with postoperative delirium,205 although we found no 

association between hyperoxia during CPB and POCD.206 A multi-modal perioperative 

management intervention including cerebral oximetry reduced delirium after cardiac 

surgery162 and POCD after non-cardiac surgery,207 raising the possibility that similar 

interventions may help improve cognition after cardiac surgery.

These intraoperative cerebral oximetry monitoring studies are also consistent with the effect 

of intraoperative hemodilution on cognitive dysfunction after cardiac surgery. In a 

randomized trial of extreme (hematocrit of 15-18) versus moderate (hematocrit of 27), there 

was a statistically significant interaction between age and extreme hemodilution: older 

patients who underwent extreme hemodilution had higher POCD rates.73 Taken together, 

these data suggest that ensuring adequate cerebral oxygen delivery may help reduce POCD.

Temperature Management During Cardiac Surgery

The cerebral metabolic rate of oxygen utilization (CMRO2) is closely regulated by 

temperature, which led the idea that lowering CMRO2 by inducing hypothermia could 

reduce brain oxygen deprivation and neurocognitive injury during reduced oxygen delivery 

periods (i.e. such as during CPB). Indeed, hypothermia reduces neurologic injury in animal 

models of focal cerebral ischemia and cardiopulmonary resuscitation.208,209 Conversely, 

hyperthermia increases CMRO2 and is associated with worse neurocognitive outcomes and 

increased mortality risk in numerous clinical situations.210-212 Thus, studies have examined 

whether lowering CMRO2 by inducing hypothermia during CPB would improve 

postoperative neurocognitive function. Early work showed that patients who underwent 

normothermic (i.e. “warm” or >35 deg C) CPB had a three-fold higher stroke incidence than 

those who underwent hypothermic (i.e. cold or <28 deg C) CPB.213 Yet, one randomized 

trial found no benefit of hypothermia (i.e. 28–30 deg C) vs normothermia (35.5-36.5 deg C) 

during CPB on cognitive change from before to 6 weeks after cardiac surgery.214 

Nonetheless, the maximum postoperative temperature after cardiac surgery was associated 

with cognitive dysfunction severity six weeks after surgery,215 emphasizing the importance 

of avoiding postoperative hyperthermia. This concept may help explain data showing that 

rewarming to a lower temperature (34 vs 37 deg C) was associated with lower cognitive 

dysfunction rates 1 week after surgery and improved performance on the grooved pegboard 

test (a manual dexterity and visuomotor processing speed task) at 3 months after surgery,216 

although there was no overall cognitive benefit at 3 months after surgery.217 In essence, the 

early cognitive benefits of rewarming to a slightly lower target in this trial216 may have been 

due to the prevention of postoperative hyperthermia. This group also found no 

neurocognitive difference among CABG patients randomized to undergo normothermic (37 

deg C) CPB or hypothermic (34 deg C) CPB without OR rewarming in either group; thus, 

avoiding central hyperthermia during rewarming may help optimize postoperative cognitive 

function.217 Similarly, another recent randomized trial found that achieving a lower core 

body temperature (via external head cooling) during CPB was associated with less cognitive 

dysfunction 10 days after cardiac surgery.218 Nonetheless, despite numerous studies 

(reviewed in219,220), there is still debate about temperature management during cardiac 

surgery.221,222 Current clinical recommendations simply call for avoiding hyperthermia 

(arterial outlet blood temperature ≥37 deg C) during cardiac surgery, and for a rewarming 
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rate ≤0.5 deg C/min once temperature exceeds 30 deg C.223 Slow rewarming may help avoid 

cerebral ischemia, since rapid rewarming has been shown to cause CMRO2 increases prior 

to corresponding increases in CBF.224

Glucose Homeostasis During Cardiac Surgery

Aside from oxygen delivery and perfusion pressure, neurocognitive function is also 

influenced by serum glucose levels (discussed in37). Similar to cerebral blood flow 

autoregulation, neurocognitive function is typically unaltered by glucose changes within 

normal physiologic limits.225-227 Since many cardiac surgery patients have diabetes, and the 

surgical stress response can decrease peripheral insulin sensitivity and cause hyperglycemia, 

studies have investigated the relationship between intraoperative glucose management and 

postoperative neurocognitive outcomes. One retrospective study found that intraoperative 

hyperglycemia (i.e. glucose levels >200 mg/dL) was associated with worsened postoperative 

cognitive function in non-diabetic patients, but not in diabetic patients.228 This is not 

surprising because diabetic patients are often exposed to hyperglycemia, which causes 

physiologic compensatory responses (such as glucose transporter downregulation on brain 

capillaries) to reduce excessive glucose influx into the brain.229 This adaptation helps 

explain why intraoperative hyperglycemia may be more detrimental to the brains of non-

diabetic patients. However, this interpretation is challenged by the results of Butterworth et 
al,230 who found in a large randomized trial (N=381) that intraoperative insulin infusion (up 

to 4 U/hour) in non-diabetic patients did not improve neurocognitive outcomes. This lack of 

effect may have been due to residual hyperglycemia secondary to insufficient insulin 

administration (possibly due to hypothermia-induced insulin resistance231) in the insulin 

treatment arm, though, as the authors discussed.230

The idea that hyperglycemia is detrimental to the brain led to additional interventional 

studies examining whether tighter glucose control (i.e. to avoid hyperglycemia) would 

improve postoperative cognition. Yet, tight intraoperative glucose control with a 

hyperinsulinemic-normoglycemic clamp (glucose target 80–110 mg/dL) vs standard therapy 

(glucose target <150 mg/dL) during cardiac surgery was associated with increased delirium 

rates,232 perhaps due to the increased hypoglycemia in the intensive glucose control arm of 

this study.37 However, this study did not assess delirium before surgery,232 so it is unclear 

how many of these cases of postoperative delirium might have reflected pre-existing 

cognitive deficits or delirium before surgery.37 Another recent pilot study found that the use 

of glucose and insulin infusions to maintain serum glucose at ~64-110 mg/dL preserved 

auditory learning and executive function after cardiac surgery,233 suggesting that avoiding 

hyperglycemia may result in improved postoperative cognitive function. Thus, as with 

oxygen delivery and cerebral perfusion management (discussed above), these data suggest 

that it may be equally important to avoid hypoglycemia and hyperglycemia in order to avoid 

postoperative delirium and POCD. Further, the physiologic adaptions to chronic 

hyperglycemia in diabetic patients suggests that, as in the case of cerebral autoregulation and 

intraoperative blood pressure management, intraoperative glycemic control may need to be 

individualized for particular patients.
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Effects of On-pump vs off-pump cardiac surgery, and medical vs surgical 

management for CAD, on delirium and POCD rates

Given the concern that cardiopulmonary bypass alone may contribute to postoperative 

delirium and POCD, several studies have examined delirium and cognitive dysfunction rates 

after on-pump vs off-pump cardiac surgery. A recent retrospective analysis found that 

patients who underwent off-pump cardiac surgery had significantly lower delirium rates 

compared to on-pump patients,75 although residual confounding could explain these 

observational findings. In the OCTOPUS study, patients who underwent off-pump cardiac 

surgery, as opposed to those who underwent on-pump cardiac surgery, had a trend towards 

less cognitive dysfunction 3 months after surgery, but this small difference disappeared by 1 

year after surgery.234 The ROOBY trial found no difference in overall cognitive outcomes 

between on- vs off-pump cardiac surgery, although they did detect a significantly greater 

postoperative cognitive improvement in the clock drawing test in patients who underwent 

off-pump vs on-pump cardiac surgery.235 Since this difference was seen only in one of 

eleven tests within a larger cognitive test battery, it is difficult to ascertain whether this 

difference represents a true neurocognitive improvement effect of off-pump CABG vs a false 

positive due to performance of multiple tests. Similarly, Kok and colleagues found that 

patients who underwent off-pump cardiac surgery, as compared to those who underwent on-

pump cardiac surgery, had similar cognitive dysfunction rates at 4 days after surgery but had 

lower cognitive dysfunction rates 1 month after surgery.236 Finally, Selnes and colleagues 

found no difference in 6-year cognitive outcomes between patients with coronary artery 

disease who were managed medically, and patients who underwent on-pump or off-pump 

coronary artery bypass grafting. However, the Selnes study was not randomized; thus, 

residual confounding could explain the lack of differences between patients who underwent 

CABG vs medical management, and between those who underwent on- vs off-pump CABG.
237 Further, the Selnes study used group averaged data, which may have obscured more 

severe long term cognitive decline in individual cardiac surgery patients.220

These findings are compatible with 2 different interpretations. The first, and perhaps 

simplest, interpretation is that cardiopulmonary bypass does not contribute to postoperative 

delirium or cognitive dysfunction.238 The second interpretation is that other aspects of off-

pump cardiac surgery, such as steep Trendelenberg positioning,239 which results in cerebral 

venous engorgement and possible cerebral oxygen desaturation,240 may be equally 

detrimental to postoperative cognition as cardiopulmonary bypass. Additionally, surgical 

manipulation of the heart in off-pump cases (i.e. to expose the circumflex and right coronary 

arteries) may cause both increased central venous pressure and arterial hypotension, thus 

reducing cerebral perfusion pressure and possibly also worsening postoperative brain 

function. According to this interpretation, there is no advantage to avoiding cardiopulmonary 

bypass during cardiac surgery if current “off-pump” cardiac surgery techniques are used, but 

this does not mean that cardiopulmonary bypass is cognitively benign, and suggests that 

further advances in bypass technology may improve postoperative cognitive outcomes. 

Nonetheless, in other studies, off-pump cardiac surgery has been associated with worsened 1 

year composite outcomes (including mortality),235 so there is currently little enthusiasm for 

performing off-pump cardiac surgery.
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Studies have also examined the relative cognitive effects of cardiac surgery vs medical or 

percutaneous therapy for patients with cardiac disease. As discussed above, Selnes et al 
found no difference in long-term cognitive outcomes between medical and surgical 

management for coronary artery disease.237 Similar to the discussion of cardiopulmonary 

bypass, these data can be interpreted in at least three ways. The first, and simplest, 

interpretation is that cardiac surgery has no long-term detrimental effect on cognition. A 

second interpretation, which is also compatible with the data, is that operative management 

(CABG or valve surgery) and medical management have similar cognitive effects in patients 

with cardiac disease, who often have cerebrovascular disease processes that predispose them 

to long-term detrimental cognitive effects. For example, the detrimental cognitive effects of 

cardiac surgery (including anesthesia, possible cardiopulmonary bypass, postoperative pain, 

and sleep disruption, etc), may be counterbalanced by the beneficial cognitive effects of 

coronary revascularization (such as improved overall cardiovascular and physical function). 

These mixed cognitive effects of cardiac surgery may roughly approximate the overall 

mixture of beneficial and adverse effects of medical management for cardiac disease. For 

example, medical management for cardiac disease may help patients avoid the detrimental 

cognitive effects of operative management (as discussed above), but would also likely 

deprive patients of the potential cognitive benefits of successful revascularization, and may 

leave patients with residual angina and related physical limitations. A third interpretation is 

that since POCD is associated with increased postoperative mortality, a long-term 

comparison of cognitive outcomes after surgical vs medical management may underestimate 

the long-term detrimental cognitive effects of cardiac surgery, since an increased fraction of 

the most cognitively impaired surgical patients may have died and not been included in 

longer-term assessments.237

Cardiac Surgery, Neurotoxicity and Alzheimer’s disease (AD) pathology

Up to 30% of patients may develop dementia within 7.5 years after cardiac surgery,88 which 

has raised concern that both surgical stress and excessive exposure to volatile anesthetics 

and/or propofol may contribute to neurocognitive dysfunction. This would not be surprising 

since both volatile anesthetics and propofol increase GABA-A receptor function, and 

GABA-A agonist usage has been associated with increased risk of delirium,241 cognitive 

dysfunction242 and dementia243 outside perioperative care. Mechanism(s) that could 

underlie a detrimental effect of anesthetic drugs on postoperative cognition could include a) 

GABA-ergic anesthetic-induced acceleration of AD processes such as amyloid beta and tau 

pathology,91,244,245 b) anesthetic-induced disruption of gamma oscillation patterns involved 

in amyloid beta clearance,246-249 c) direct neuronal or glial cell damage (reviewed in250,251), 

or d) anesthetic-induced increases in neuroinflammation,138,139,252,253 Further, 

neuroinflammation can increase neuronal sensitivity to anesthetic drugs;254 thus, anesthetic-

induced neuroinflammation could potentially promote a positive feedback loop that further 

amplifies initial neuroinflammatory responses to anesthesia and surgery.

The notion that POCD and delirium may involve mechanisms similar to those involved in 

AD (reviewed in255,256) has led to studies of whether AD-associated genetic 

polymorphisms, such as ApoE4, also increase risk for postoperative delirium or POCD. 

However, the interpretation of these studies is complex, because aside from its association 
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with AD risk, ApoE4 has pleiotropic neurologic effects (including cerebrovascular 

dysfunction and decreased cerebral blood flow).257 These studies have found conflicting 

results; overall it appears that ApoE4 carriers are not more likely to develop early 

postoperative delirium or POCD, but do have worse long-term cognitive trajectories after 

cardiac surgery.258-263 This finding could be related to the known long term detrimental 

effects of the ApoE4 allele on cognition,259 and/or to the increased aortic arch atheroma 

burden seen in ApoE4 carriers264 and thus a possible increase in cerebral microemboli 

during cardiac surgery. Several other genetic polymorphisms have recently been found that 

are associated with AD risk,265-269 and it will be important to examine whether these AD 

risk polymorphisms are also associated with POCD or delirium risk after cardiac surgery.

Changes in AD biomarkers (such as changes in CSF amyloid beta and tau levels) occur after 

cardiac surgery in humans,117,245 and both mouse model and in vitro data suggest that 

isoflurane may accelerate AD pathology to a greater extent than propofol.270,271 However, 

there is no human data demonstrating that any particular anesthetic agent is associated with 

greater (or smaller) CSF AD biomarker changes after cardiac surgery. A recent randomized 

trial in neurosurgery patients showed that propofol and isoflurane treatment were each 

associated with similar increases in CSF tau levels, and minimal changes in amyloid beta or 

phospho-tau.272 Thus, there is currently no human evidence to favor one anesthetic type 

versus another for avoiding changes in CSF AD biomarkers or AD pathogenesis.

Further, it is unclear whether postoperative CSF AD biomarker changes are associated with 

or play a cause role in delirium or POCD after cardiac surgery, or whether they merely 

represent an acute-phase response to cardiac surgery. To clarify these issues, future studies 

will need to: 1) examine whether there is a correlation between the magnitude of these 

pathologic processes and the magnitude of cognitive dysfunction after cardiac surgery, 2) 
determine whether these pathologic processes advance to a greater extent after cardiac 

surgery than after the same period in matched non-surgical controls with similar 

comorbidities that predispose to neurocognitive dysfunction (i.e. neurovascular and AD risk 

factors, etc), and 3) determine whether blocking postoperative changes in these pathways 

abrogates delirium or POCD after cardiac surgery.

Anesthetic dosage and potential neurotoxicity

Several lines of evidence suggest that anesthetic administration during cardiac surgery may 

modulate postoperative neurocognitive function via effects on the Alzheimer’s disease 

pathways discussed above or by modulating inflammation or synaptic function (reviewed 

in91,251). General anesthesia is a drug-induced coma273; and observational studies have 

found both direct274-276 and inverse277 associations between the duration of 

electroencephalogram (EEG) burst suppression, and postoperative delirium and/or POCD. 

Further, several interventional studies in non-cardiac surgery have shown that BIS-titrated 

anesthetic administration results in lower levels of postoperative delirium.80,278,279 In the 

CODA trial, a ~30% decrease in mean end-tidal inhaled anesthetic was associated with a 

40% reduced incidence of cognitive dysfunction 3 months after surgery.80 However, this 

reduction in POCD due to BIS-guided anesthetic administration was not observed by Radtke 

and colleagues, likely because BIS monitor usage was not associated with a significant 
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reduction in anesthetic dosage in their study.278 Similarly, a secondary analysis of cardiac 

surgery patients in the BAG-RECALL study showed that BIS-titrated anesthetic 

administration was associated with a trend (which narrowly missed statistical significance) 

toward lower postoperative delirium rates.280 This lack of significance may also partly be 

due to the use of the CAM-ICU instrument for all delirium assessments in this study,280 an 

instrument with limited sensitivity in non-intubated patients.43

Based on these data, we and others have called for appropriately powered prospective 

studies to definitively determine whether EEG-guided anesthetic delivery during cardiac 

surgery lowers postoperative delirium rates.280,281 An important challenge for these future 

studies will be to determine whether using raw EEG measures instead of or in addition to the 

BIS (or other proprietary processed EEG anesthetic depth indices) reduces delirium or 

POCD rates. Although a simple anesthetic depth index is easy to use, the BIS index has a 

non-linear relationship with inhaled anesthetic dose.282 Both theoretical work283 and 

retrospective analyses284 demonstrate that the BIS index may be unreliable in older adults, 

perhaps because it does not account for age-dependent changes in the EEG spectrogram and 

total EEG power.283 Nonetheless, the findings described above suggest that processed EEG-

guided anesthetic titration can lower POCD rates if it results in reduced anesthetic dosage. 

Similar to pulmonary artery (PA) catheter use in cardiac surgery (in which outcomes likely 

depend not on whether a PA catheter was placed, but rather on how the information from it 

was used to manage patients285), patient outcomes are likely impacted not by whether an 

EEG monitor was used, but rather by how the data from it was used (i.e. to titrate anesthetic 

dosage). Thus, differences between how clinicians used EEG monitor data to make 

anesthetic titration decisions may explain some of the outcome differences between the 

studies discussed above.80,278 Ongoing observational286 and interventional244,287 studies are 

examining these issues in more detail to determine whether raw or processed EEG-titrated 

anesthetic administration protocols can reduce the incidence of postoperative delirium and 

POCD and even reduce postoperative mortality.288

Systems/cognitive neuroscience-level mechanisms of post-cardiac surgery 

cognitive dysfunction

Significant neuroimaging advances have been made over the past 20 years, and several 

studies have used structural and functional neuroimaging to examine the neuroanatomic 

basis of cognitive dysfunction after cardiac surgery. For example, cardiac surgery patients 

with structural MRI evidence of increased ventricular size (a likely neural correlate of 

cortical atrophy), have an increased odds of developing postoperative delirium.9

Functional MRI (fMRI) can also measure activity within specific brain regions via the blood 

oxygen level dependent (BOLD) signal, a hemodynamic correlate of neuronal activity, and 

can be used to measure postoperative brain activity changes. For example, Abu Omar et 
al289 performed BOLD fMRI scans before and 4 weeks after surgery in 12 on-pump and 13 

off-pump cardiac surgery patients, while they completed a working memory task, (i.e. the N-

back task, in which subjects see a series of letters or numbers and are asked to press a button 

whenever the letter or number was seen N times beforehand48). Patients who underwent on-
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pump, but not those who underwent off-pump, cardiac surgery showed a postoperative 

decrease in prefrontal cortex activation during the most demanding attention task, the 3-back 

condition.289 Interestingly, the postoperative decrease in prefrontal cortex activation during 

3-back task performance in on-pump cardiac surgery patients correlated with transcranial 

Doppler-detected intraoperative emboli number, though no differences in N-back task 

performance were observed in on-pump vs off-pump groups, or before vs after surgery.289 

These data suggest that intraoperative embolic load may be associated with altered brain 

activity during cognitive task performance, although these changes may not be sufficient to 

impede task performance/accuracy. Future studies will be necessary to determine whether 

these changes in prefrontal cortex activity are associated with subjective cognitive 

complaints after on-pump cardiac surgery.

In addition to measuring activity within specific brain regions, functional MRI can also 

measure correlated activity patterns between brain regions, known as functional 

connectivity, even in regions that are not directly anatomically connected. Multiple 

“functionally connected” human brain networks play important roles in specific cognitive 

processes (Figure 3).290 Recent studies have begun to examine the function of these 

networks in patients before and after cardiac surgery. For example, Browndyke et al recently 

examined cognitive and functional connectivity changes in 12 patients before and 6 weeks 

after cardiac surgery, and over the same time interval, in 12 non-surgical “controls” with 

cardiac disease.63 There was a larger drop in cognition after cardiac surgery than over the 

same interval in non-surgical controls. Further, in cardiac surgery patients, the degree of 

postoperative global cognitive dysfunction correlated with the magnitude of decreased 

functional connectivity in the posterior cingulate cortex and the right superior frontal gyrus,
63 2 key regions of the brain’s default mode network (DMN).291,292 Similarly, Huang et al 

also recently observed decreased DMN functional connectivity in older adults after 

orthopedic surgery.293 The DMN is a set of brain regions that show temporally correlated 

BOLD signal activation patterns while subjects are at rest and not performing cognitive 

tasks291,292 and thus, could be viewed as an “idling state network” that is not important for 

cognition. Yet, these findings support the emerging view that DMN functional connectivity 

is important for cognition,294 and suggest that resting-state DMN dysfunction may be a 

correlate of post-cardiac surgery cognitive dysfunction. Similar altered connectivity between 

the posterior cingulate (a DMN hub region) and the prefrontal cortex has been observed in 

patients with delirium,295 which raises the possibility that DMN functional connectivity 

disruptions may underlie both postoperative delirium and POCD.

Studies have also used EEG recordings to identify changes in underlying brain connectivity 

patterns that may be associated with postoperative delirium and/or POCD. For example, 

post-cardiac surgery patients with delirium, as compared to those without delirium, had 

decreased postoperative EEG alpha band (8-13 Hz) power and connectivity.296 These 

findings are interesting because alpha band power under general anesthesia significantly 

decreases in patients over age 65,283 who are at increased risk for postoperative delirium and 

cognitive dysfunction. Low intraoperative alpha band power has also been correlated with 

lower preoperative baseline cognitive function,297 which is a risk factor for postoperative 

delirium and POCD. Together, these findings suggest that low intra- and post-operative 

alpha band power and connectivity may be EEG correlates of delirium, and raise the 
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possibility that deficits in the thalamo-cortical circuitry thought to produce alpha band 

power298 may play a role in postoperative delirium. These findings also support Sanders’ 

hypothesis that delirium represents an acute breakdown in brain network connectivity.299 

Future studies combining multi-electrode EEG recordings with resting-state and task-based 

functional MRI and other modern cognitive neuroscience techniques300 should help clarify 

functional connectivity and activity changes that may underlie delirium and POCD after 

cardiac surgery.

Future Interventions to Prevent or Treat POCD and/or Delirium

A number of novel approaches have been developed or proposed to improve neurocognitive 

function in older adults, ranging from video game-based brain training301 to vagal nerve 

stimulation302 to non-invasive transcranial magnetic303,304 and electrical305 brain 

stimulation to diet interventions,306 physical exercise,307,308 and early postoperative 

ambulation.309-311 Many of these approaches share the common theme that they target entire 

brain regions and/or networks (or multi-organ systems, as in the case of vagal nerve 

stimulation), rather than single neurotransmitters or neuronal subtypes. Further, many of 

these approaches can be targeted and/or titrated in response to specific pathophysiological 

brain activity patterns and/or cognitive deficits present in individual patients. Similarly, 

many of the best-established non-pharmacological delirium prevention interventions (such 

as the HELP program) involve interdisciplinary, multi-component approaches that likely 

target multiple underlying brain mechanisms involved in delirium.312 To the best of our 

knowledge, though, none of the novel approaches discussed above have been used to prevent 

or treat POCD or delirium in cardiac surgical patients; thus, such studies will be important to 

conduct in the future.

Conclusions

The brain is widely viewed as the most complex organ in the human body, and there are 

significant anatomical and functional differences between the brains of individual cardiac 

surgery patients.9,63 Thus, optimizing post-cardiac surgery neurocognitive function will 

likely require an individualized, patient-centered approach to managing multiple 

determinants of brain function ranging from oxygen and glucose delivery, to cerebral 

perfusion pressure management, to the careful pharmacologic modulation of neural network 

activity, the surgical stress response, and the ensuing inflammatory response (Figure 2). This 

suggests that improving cognitive function after cardiac surgery will be complex and 

challenging. An additional challenge for future interventional studies will be to track each of 

the variables discussed above that may influence postoperative cognitive function and/or 

delirium (Table 1), because interventions designed to reduce POCD or delirium by targeting 

a single risk factor may have counterbalancing effects if they distract from other 

intraoperative tasks (i.e. a fixation error313). Thus, an important goal will be to develop 

“bundle” protocols designed to simultaneously and practically optimize multiple intra- and 

post-operative variables to promote postoperative cognitive function for older patients. The 

significant ongoing progress in these areas and the potential of modern cognitive 

neuroscience approaches to study63 and to treat301,303,304 these problems provides optimism 
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that we will succeed in improving neurocognitive outcomes for future older cardiac surgery 

patients, an important ASA Brain Health Initiative goal.314
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Summary Statement

Postoperative delirium and cognitive dysfunction occur frequently after cardiac surgery, 

and are associated with decreased quality of life and increased mortality risk. This review 

discusses the potential mechanisms that may underlie these complications, and questions 

for future study.
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Figure 1. 
One of the principal distinctions between postoperative (Post-Op) delirium and postoperative 

cognitive dysfunction (POCD) is the time frame in which they are found. Emergence 

delirium occurs in the operating room (OR) or immediately after in the post-anesthesia care 

unit (PACU). Postoperative delirium occurs 24–72 h after surgery. POCD is measured at 

weeks to months after surgery and anesthesia. Pre-Op= preoperative. Reproduced from 

Silverstein J et al.101
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Figure 2. 
Pathophysiologic Mechanisms That May Play a Role in Postoperative Cognitive 

Dysfunction and/or Delirium. Starting from the top, in clockwise order the pullout boxes 

represent cellular/molecular and synaptic mechanisms (such as AD-related pathology), 

cerebral oximetry monitoring, anesthetic dosage, resolution of inflammation, vascular 

mechanisms (such as emboli), and blood brain barrier dysfunction, which may be involved 

in POCD and delirium. Additional physiologic variables that may be involved in POCD and 

delirium are listed in free text.
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Figure 3. 
Functionally Connected Networks in the Human Brain. These functional brain network 

region of interest (ROI) maps were derived from independent components analysis (ICA) of 

low-frequency BOLD fMRI data from the Human Connectome Project dataset (n = 497).290 

A) default mode network ROIs (blue), salience network ROIs (red); B) Dorsal attention 

network ROIs (black), frontoparietal network ROIs (light green); C) Language network 

ROIs (purple), visual network ROIs (pink); and D) Cerebellar network ROIs (yellow), 
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sensorimotor network ROIs (green). Abbreviations: ROIs = Regions of Interest, BOLD = 

Blood Oxygen Dependent Signal, fMRI = functional magnetic resonance imaging.
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Table 1

Modifiable, partly modifiable, and non-modifiable factors that may contribute to postoperative delirium and/or 

POCD after cardiac surgery. The degree to which these factors can be modified in a real-world setting is 

beyond this article’s scope. Selected references are listed below, please see the body of the article for 

additional references and discussion.

Pre-/Post-operative Intraoperative

Modifiable 1. Preoperative blood pressure control23

2. Preoperative glycemic control23,76

3. Sleep disruption25/sleep apnea24

4. Alcohol Abuse21,22

5. Postoperative sedation, analgesia and delirium 
management309-311

1. Use of cardiopulmonary bypass234-237

2. Temperature management214-219,221,222

3. Surgery duration76

4. Arterial pressure management193,194,196

5. Glycemic control228,230,232,233

6. Hemodilution73

Partly modifiable 1. Patient frailty28

2. Preoperative cognitive function29,47

3. Preoperative neurocognitive reserve26,27

4. Depression72,76,77

1. Surgical approach (i.e. median sternotomy vs lateral 
thoracotomy)132-136, On vs Off CPB75,234-237

2. Anesthetic dosage30,31 and EEG responses280,281

Non-modifiable 1. Patient chronological age47,48 1. Direct myocardial injury136,137
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Table 2

Key Questions for Future Research on Delirium and Cognitive Dysfunction after Cardiac Surgery

1. Are there subtypes of POCD/delirium characterized by deficits in specific cognitive processes or neural networks? If so, are these subtypes 
caused by distinct pathophysiologic mechanisms, and do they have different long term trajectories?

2. What changes in functional brain connectivity are present in patients with delirium and/or POCD after cardiac surgery?

3. To what extent are POCD and delirium associated with similar vs differing brain network connectivity changes?

4. What is the long term cognitive trajectory of neuroanatomic functional connectivity changes after cardiac surgery?

5. Would reversing the brain network connectivity changes seen in delirium and/or POCD by neural stimulation methods304 or brain training 
approaches301 improve these disorders?

6. Are delirium or POCD after cardiac surgery associated with a postoperative acceleration of Alzheimer’s disease pathology, and/or with an 
increased long term risk of developing AD or related dementias?

7. What specific neuroinflammatory processes are present in human delirium and POCD?

8. Would blocking or resolving specific neuroinflammatory processes improve cognitive function after cardiac surgery?

9. How do neuroinflammation, pre-existing AD or other neuropathology neurocognitive reserve, intraoperative cerebral microembolic load 
interact with each other and the intraoperative variables listed in table 1 in increasing the risk of delirium and POCD?

10. Is there an intraoperative management “bundle” to optimize multiple intraoperative physiologic variables (temperature, hemodynamics, 
anesthetic dosage and brain responses, glycemic control, etc) that would result in a greater reduction in POCD/delirium than single 
interventions?
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