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Abstract

Alcohol use disorder is a widespread mental illness characterized by periods of abstinence 

followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence 

of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, 

such as craving, is stronger in females. Given the greater susceptibility of females to stress-related 

psychiatric disorders, understanding sexual dimorphism in the relationship between stress and 

alcohol use is essential to identifying better treatments for both male and female alcoholics. This 

review addresses sex differences in the impact of stressors on alcohol drinking and seeking in 

rodents and humans. As these behavioral differences in alcohol use and relapse originate from 

sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, 

on molecular adaptations and neural activity in males and females will also be discussed. Together 

the data reviewed herein, arising from a symposium entitled “Sex matters in stress-alcohol 

interactions” presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the 

importance of identifying sex differences to improve treatments for comorbid stress and alcohol 

use disorder in both populations.

Keywords

alcohol; ethanol; stress; corticosterone; noradrenaline

Introduction

Substance Use Disorders (SUDs) are a major public health burden in the US, costing more 

than $400 billion annually in crime, poor health outcomes, and lost productivity (U.S. 

Department of Health and Human Services, 2016). Traditionally SUDs, including alcohol 

use disorder (AUD), have been diagnosed up to twice as frequently in males (World Health 

Organization, 2014). However, women are steadily increasing their use of alcohol and illicit 

substances, with greater prevalence of binge drinking and heavy alcohol consumption 
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(Dawson, Goldstein, Saha, & Grant, 2015; Grant et al., 2017; Keyes, Li, & Hasin, 2011), as 

well as psychoactive drug use (SAMHSA, 2015), than previously observed. In addition, 

women display greater vulnerability than men to all stages of addiction, including initiation, 

progression and relapse (Agabio, Campesi, Pisanu, Gessa, & Franconi, 2016; Quinones-

Jenab, 2006). Given the chronically relapsing nature of AUDs, determining the 

neurobiological underpinnings of differential susceptibility to AUDs can promote the 

development of more effective treatments for both sexes. Of particular interest as a source 

for sexual dimorphism in disease prevalence, progression and resurgence is the impact of 

stress on neurobiology and behavior.

Stress-related disorders, including anxiety disorders, mood disorders and post-traumatic 

stress disorder (PTSD), are twice as frequently diagnosed in females as compared to males 

(World Health Organization, 2014). Stress and the negative emotional state it generates are 

primary triggers of relapse in men and women (Annis, Sklar, & Moser, 1998; Seo & Sinha, 

2014; Sinha, 2007), suggesting that overlapping circuitry regulates alcohol use and stress 

responses in both sexes. Data indicate that females may display a more direct relationship 

between current or past stress exposure and relapse-related variables. Females with 

comorbid alcohol use and PTSD show greater sensitivity to the effects of stress on alcohol 

craving and relapse (Heffner, Blom, & Anthenelli, 2011), and PTSD may more commonly 

precede the development of AUD in females vs. males (Sonne, Back, Diaz Zuniga, Randall, 

& Brady, 2003). Moreover, chronic drug abuse shows differential neuroadaptations in men 

and women. Sex differences have been observed in physiologic, neuroendocrine, and craving 

responses to stress and drug cues (Back, Brady, Jackson, Salstrom, & Zinzow, 2005; Fox & 

Sinha, 2009). Importantly, these measures have been associated with high risk of relapse and 

poor treatment outcomes (Back et al., 2005; Daughters, Richards, Gorka, & Sinha, 2009; 

Fox & Sinha, 2009; Moeller, Bederson, Alia-Klein, & Goldstein, 2016; Sinha, Garcia, 

Paliwal, Kreek, & Rounsaville, 2006; Van Dam, Rando, Potenza, Tuit, & Sinha, 2014). 

These differential sensitivities to alcohol and stress in males and females suggest circuit 

dichotomies between the sexes – yet most preclinical research to date has focused on 

elucidating factors promoting alcohol use, relapse, and stress responses solely in males. The 

limited number of studies that have, to date, investigated sex differences in stress-alcohol 

interactions, or effects in females, are reviewed herein and summarized in Table 1. One 

primary intersection between stress and abused drugs like alcohol, which may generate 

divergent neuroadaptations in males and females, is the activation of systemic stress 

response systems.

Physiological stress responses and alcohol use

Sex differences in substance misuse, as well as the long-term impact of stressors on drinking 

or other drug use and relapse, may stem from sexual divergence in systemic stress responses. 

Activation of the hypothalamic-pituitary-adrenal (HPA) axis by stressors, resulting in 

elevated circulating corticosterone (CORT; cortisol in humans), is magnified in female 

rodents, relative to males, after various stressors (Rivier, 1999) and multiple drugs of abuse, 

including alcohol (Ogilvie & Rivier, 1996; Rivier, 1993). In male rats, alcohol dependence 

dysregulated HPA axis responses to alcohol (Richardson, Lee, O’Dell, Koob, & Rivier, 

2008), whereas blockade of the glucocorticoid receptor, one target of CORT, impeded both 
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the development (Somkuwar et al., 2017; Vendruscolo et al., 2012) and the expression 

(Vendruscolo et al., 2015) of dependence-induced exacerbation of alcohol self-

administration. At present, the effects of alcohol dependence on these parameters in females 

remain unknown and as such are a critical future direction of preclinical research, as 

polymorphisms in the glucocorticoid receptor gene were associated with earlier onset of 

alcohol use or misuse in females, more than in males, in a large cohort of Finnish teenagers 

(Desrivieres et al., 2011). Early abstinence from alcohol in humans is marked by 

dysregulated basal physiological and neuroendocrine tone, and stress- and cue-induced 

physiological, HPA axis and emotional changes are strongly associated with increased drug 

and alcohol craving, drug use and relapse risk (Back et al., 2005; Fox et al., 2009; Fox & 

Sinha, 2009). Administration of the glucocorticoid receptor antagonist mifepristone reduced 

alcohol craving, relative to placebo, in a mixed-sex clinical treatment population with AUD, 

similar to effects observed in male alcohol-dependent rats (Vendruscolo et al., 2015); 

however, the population was disproportionately male and thus sex differences in treatment 

efficacy could not be determined. Together, these data implicate stress responses, 

particularly CORT function via glucocorticoid receptors, as intrinsic drivers of alcohol use in 

both sexes and suggest overlapping neurocircuitry and similar neuroadaptations may drive 

the interaction between stress and drug use in males and females. Despite long-standing 

knowledge of increased systemic HPA axis response to stressors and alcohol in females, 

most research into neuroadaptations caused by alcohol, stress, or their co-occurrence, and 

the impact of such adaptations on alcohol-related behaviors, has focused exclusively on male 

subjects. To date, only a small fraction of preclinical investigations into stress, alcohol and 

their interaction have explored sex differences, at either the molecular or behavioral level, as 

detailed in the following sections.

Sexual dimorphism and differential neuroadaptations of stress- and alcohol-responsive 
circuitry

A reciprocal relationship exists for behavioral regulation by stress and alcohol, with alcohol 

modifying stress-related behaviors and stressors altering alcohol consumption (Logrip, 

Zorrilla, & Koob, 2012). This suggests that overlapping neurocircuits support behavioral 

responses to both alcohol and stress, with intrinsic sex differences in the circuitry producing 

different behavioral responses in males and females. Candidate regions activated by both 

stress and alcohol that display divergent structural or electrophysiological responses between 

the sexes include regions of the limbic system and extended amygdala, where stress and 

alcohol interact to regulate neuronal activity, as well the locus coeruleus (LC), responsible 

for controlling arousal.

Behavioral arousal, regulated by norepinephrine, modulates individual perception of 

stressful and rewarding experiences (Espana, Schmeichel, & Berridge, 2016), and sex 

differences in noradrenergic arousal mechanisms could contribute to differential systemic as 

well as neuronal stress responses. Noradrenergic neurons, whose cell bodies are found in the 

LC, display sexual dimorphism in both structure and function, with increased dendritic 

complexity (Bangasser, Zhang, Garachh, Hanhauser, & Valentino, 2011) and basal activation 

of corticotropin-releasing factor (CRF) receptors, measured as CRF1-Gs-coupling, observed 

in unstressed Sprague-Dawley female rats, relative to males (Bangasser et al., 2010). Despite 
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the increased basal CRF1 activation, administration of CRF into LC increased neuronal 

activity to a greater degree in female, versus male, neurons, although prior swim stress 

normalized this difference (Curtis, Bethea, & Valentino, 2006). Similar to CRF, chronic 

alcohol consumption via liquid diet activated more neurons in female versus male rat LC, as 

measured by c-fos immunoreactivity, and differentially affected CRF1 localization, with 

more CRF1 observed in the plasma membrane of female rats (Retson, Reyes, & Van 

Bockstaele, 2015). Decreased membrane CRF1 levels, and associated reductions in LC 

neuron activation, likely result from sex differences in CRF1 internalization by β-arrestin2, 

which is observed only in males (Bangasser et al., 2010). Together these studies implicate 

the LC as one neuronal locus displaying intrinsic sexual dimorphism, yielding sex 

differences in activation by acute stressors, as well as sex differences in adaptation to the 

chronic stress of alcohol dependence.

A primary source of CRF input to the LC is the central extended amygdala (Van Bockstaele, 

Bajic, Proudfit, & Valentino, 2001), a circuit comprised of the central nucleus of the 

amygdala (CeA), bed nucleus of the stria terminalis and shell of the nucleus accumbens 

(Alheid & Heimer, 1988; Cassell, Freedman, & Shi, 1999). The extended amygdala provides 

an interface by which stress and reinforcers, including alcohol, interact, and adaptation of 

this circuit following chronic stress or alcohol underlies the negative affect believed to drive 

escalated alcohol use and relapse (Koob, 2015; Koob & Le Moal, 2008). In particular, the 

central nucleus of the amygdala (CeA), the output nucleus of the amygdala complex, has 

long been implicated in alcohol dependence and alcohol-stress interactions. In males, CeA 

neuron activity is altered by various neuropeptides whose expression is changed by 

substantial alcohol exposure in a direction associated with elevated anxiety-like behavior 

(Economidou et al., 2008; Funk, O’Dell, Crawford, & Koob, 2006; Gilpin et al., 2011; 

Pandey, Zhang, Roy, & Misra, 2006; Roberto, Bajo, Crawford, Madamba, & Siggins, 2006; 

Zhu, Bie, & Pan, 2007). While few studies have addressed sex differences in the extended 

amygdala, two studies investigating sex differences in CRF expression have shown sex-

specific expression patterns in the CeA. During adolescence, female rats displayed fewer 

CRF-immunoreactive cells than males, with binge-like alcohol drinking blunting CRF 

expression in both sexes (Karanikas, Lu, & Richardson, 2013). Conversely, chronic alcohol 

liquid diet consumption activated CRF-expressing CeA neurons in females only, relative to 

alcohol-naïve controls, whereas swim stress in alcohol-dependent rats increased activation of 

CRF neurons only in males (Retson, Hoek, Sterling, & Van Bockstaele, 2015). Together 

these data demonstrate that alcohol and stress generate sexually divergent adaptations of 

similar targets, which may vary by developmental stage. Of importance is the impact of such 

neuroadaptations on neuronal activity in the region.

Alcohol’s effects on male neurons of the medial CeA have been extensively studied. Alcohol 

enhances GABAergic inhibitory postsynaptic responses and reduces the magnitude of 

glutamatergic excitatory postsynaptic potentials and currents (EPSP/Cs) (Roberto et al., 

2006; Roberto, Madamba, Moore, Tallent, & Siggins, 2003; Roberto, Madamba, Stouffer, 

Parsons, & Siggins, 2004), in part via CRF’s actions (Bajo, Cruz, Siggins, Messing, & 

Roberto, 2008; Herman et al., 2013; Herman et al., 2016; Varodayan et al., 2017). Given the 

aforementioned sex differences in the effects of stress and alcohol on CeA CRF neurons, 

associated changes in neuronal activity would be expected to display different patterns in 
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males and females. To date, only two studies have tested sex differences in the 

electrophysiological impact of alcohol and stress on CeA neurons. The first investigated 

alcohol’s effects on the circuitry connecting the basolateral amygdala (BLA), a region with 

greater spine density in males vs. females (Rubinow, Drogos, & Juraska, 2009), to the CeA’s 

lateral (CeL) vs. medial (CeM) subdivisions in adult male and female Wistar rats (Logrip, 

Oleata, & Roberto, 2017). Alcohol was less effective in decreasing female EPSPs, 

particularly in the BLA-CeM circuit, as compared to male neurons that showed similar 

alcohol-induced reductions in BLA-CeL and BLA-CeM EPSPs. Hormonal status also 

impacted female responses, as BLA-CeM EPSPs were unexpectedly potentiated by alcohol 

during proestrus. To extend these investigations, stress-alcohol interactions were assessed by 

acute CORT application, a pharmacological challenge previously shown to potentiate BLA 

excitability through the same mechanism as acute stress in males (Duvarci & Pare, 2007; 

Karst, Berger, Erdmann, Schutz, & Joels, 2010). CORT significantly reduced EPSP 

magnitude only in the female BLA-CeL circuit, with no significant effects observed in 

female BLA-CeM or either male CeA subdivision (Logrip et al., 2017). Subsequent co-

application of alcohol reduced EPSPs in both male CeA subdivisions similarly to alcohol 

alone, whereas female BLA-CeM neurons demonstrated no response to either stimulus and 

female BLA-CeL neurons showed no further decrease in EPSP magnitude beyond the 

dramatic reduction induced by CORT. Together these studies demonstrated sexually 

dimorphic sensitivity of CeA neurons to alcohol and CORT, with male neurons primarily 

inhibited by alcohol and not CORT, whereas female neurons were more sensitive to CORT 

than to alcohol. Recent studies in Long-Evans rats have shown reduced sensitivity of 

females, relative to males, to the effects of withdrawal from chronic intermittent alcohol 

vapor on BLA EPSCs as well as anxiety-like behavior (Morales, McGinnis, Robinson, 

Chappell, & McCool, 2018). Specifically, females required longer exposure to intermittent 

ethanol vapor to display the same phenotypes as males, which included increased glutamate 

release and increased EPSC amplitude in the BLA. These data are in line with the reduced 

acute alcohol sensitivity of female neurons to BLA-evoked CeA EPSPs (Logrip et al., 2017). 

While these differential sensitivities would suggest greater amygdala neuroadaptation to 

stressors for females and to alcohol for males, the broader molecular and behavioral impacts 

of these findings remain to be determined.

A subsequent study assessing sex differences in CeM neuronal activity, using local 

stimulation to activate glutamatergic inputs to the CeA from various sources, compared 

outbred Wistar rats with selectively bred Marchigian Sardinian alcohol-preferring (msP) rats 

(Kirson, Oleata, Parsons, Ciccocioppo, & Roberto, 2017). With local stimulation, Wistar 

females were shown to have comparable sensitivity to EPSP inhibition by alcohol as Wistar 

and msP males, whereas msP female rats’ EPSPs were insensitive to acute alcohol treatment 

(Kirson et al., 2017). Activation of the CB1 receptor, considered anxiolytic, also produced 

sex-specific effects, inhibiting EPSPs significantly in neurons from msPs of both sexes, but 

only in Wistar male neurons. CB1 activation blocked alcohol’s ability to modulate Wistar 

female CeM EPSPs and unmasked an alcohol sensitivity in msP female neurons, without 

altering alcohol’s effects in male neurons of either genetic background. This contrasts with 

equivalent reductions in alcohol intake in C57BL/6J (B6) mice of both sexes after inhibition 

of FAAH, the enzyme that catalyzes breakdown of CB1’s endogenous ligand anandamide 
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(Zhou et al., 2017), but aligns with greater female dose sensitivity to CB1 antagonist effects 

to reduce drinking in Long-Evans rats (Morales, McGinnis, & McCool, 2015). Yet CB1 

inhibition alone did not alter CeM electrophysiological properties in rats of either sex or 

genetic background, suggesting that behavioral effects of cannabinoid system manipulation 

on alcohol drinking may be driven by brain regions outside the CeA or by neuroadaptations 

caused by extensive alcohol drinking history. Regardless, these studies demonstrate 

significant sex differences in alcohol’s acute ability to modulate neuronal activity, illustrated 

here within the CeA, that may depend on the specific brain locus and/or circuit being studied 

as well as genetic background. These initial studies strongly support the need for additional 

investigations to elucidate how sex regulates neuronal adaptation to alcohol and stressors, in 

order to understand the myriad factors regulating sex differences in behavioral responses to 

alcohol, stressors and their interaction.

Sex differences in behavioral adaptations to alcohol and stress

As discussed above, sex differences exist in physiological responses to stress and to alcohol 

exposure, and are predictive of sex differences in behavioral responses to these two 

challenges. The effects of stress on alcohol-motivated behavior (reviewed in H. C. Becker, 

Lopez, & Doremus-Fitzwater, 2011; Sinha, Shaham, & Heilig, 2011) vary significantly 

across studies due to experimental differences in species, strain, age, type of stressor, 

chronicity of the stressor, and type of drinking behavior assessed. In contrast, animal models 

of drug-motivated behavior consistently show females take and seek alcohol and other drugs 

in larger amounts than males (J. B. Becker & Koob, 2016; Lancaster, Brown, Coker, Elliott, 

& Wren, 1996). Enhanced drinking in females, relative to males, would be predicted due to 

greater basal circulating and stress-induced levels of CORT in females (Kitay, 1961; 

Weinstock, Poltyrev, Schorer-Apelbaum, Men, & McCarty, 1998), since CORT levels 

positively correlated with the level of alcohol-seeking in females (Bertholomey, Nagarajan, 

& Torregrossa, 2016) and blockade of CORT’s effects at the glucocorticoid receptor reduced 

alcohol intake in males (Vendruscolo et al., 2015). However, studies examining sex 

differences in stress-induced alcohol-related behaviors are inconsistent, likely due to 

variations in experimental factors, as listed above.

Only a handful of studies have measured the behavioral consequences of experimenter-

administered alcohol as a function of stress exposure and sex. In one study, maternal 

separation produced behavioral sensitization to alcohol in female, but not male, Swiss mice 

tested in adulthood (Kawakami, Quadros, Takahashi, & Suchecki, 2007). In contrast, 

multiple studies have failed to detect sex differences in the ability of maternal separation or 

social isolation stress to alter alcohol conditioned place preference/aversion (CPP/CPA) or 

locomotor response to alcohol (Arias, Revillo, & Spear, 2012; Arias et al., 2010; Pautassi, 

Nizhnikov, Fabio, & Spear, 2012). Similarly, sex differences were not observed in the effects 

of adolescent or adult exposure to footshock stress on alcohol CPP in mice (Song et al., 

2007). Taken together, it appears that age at stress exposure and behavioral testing, as well 

as species of rodent, contribute to the ability to detect sex- and stress-dependent effects on 

behavioral responses to noncontingent administration of alcohol.
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A number of studies using limited, intermittent, or continuous home cage access to alcohol 

have examined the effects of stress, given at various times during development, on alcohol 

drinking and preference. With respect to early life stress, maternal separation in Wistar rats 

has been shown to increase adult alcohol intake in males, but not females (Ploj, Roman, & 

Nylander, 2003; Roman, Ploj, & Nylander, 2004), yet the same manipulation in a separate 

study enhanced restraint stress-induced alcohol drinking in adulthood in females compared 

to males (Penasco, Mela, Lopez-Moreno, Viveros, & Marco, 2015). A number of studies 

have also examined the effects of adolescent stress exposure on subsequent alcohol drinking, 

given that sex differences in alcohol intake tend to emerge during adolescence (Doremus, 

Brunell, Rajendran, & Spear, 2005; Lancaster et al., 1996). Repeated restraint stress in early 

adolescence (postnatal days [p]30–35) increased drinking in female, but not male, Wistar 

rats during limited, intermittent access in mid-late adolescence (p37–51) (Wille-Bille, de 

Olmos, Marengo, Chiner, & Pautassi, 2017). In contrast, adolescent social isolation/social 

instability stress has been shown to increase subsequent alcohol consumption in adulthood in 

male, but not female, Long-Evans rats (Butler, Carter, & Weiner, 2014; Roeckner, Bowling, 

& Butler, 2017; Skelly, Chappell, Carter, & Weiner, 2015). Animals exposed to acute stress 

in adulthood also show varying results. In high alcohol preferring (HAP2) mice, restraint 

stress increased drinking in males and reduced drinking in females (Chester, de Paula 

Barrenha, DeMaria, & Finegan, 2006), whereas female B6 mice were more sensitive to the 

effects of predator odor to increase limited access drinking (Cozzoli, Tanchuck-Nipper, 

Kaufman, Horowitz, & Finn, 2014). These findings contrast with another study showing that 

despite overall greater alcohol intake in female WSC mice, there were no modulations in 

alcohol intake as a function of restraint stress in either sex (Tambour, Brown, & Crabbe, 

2008). Though female B6/129 mice drank more alcohol in both continuous access and 

binge-like (drinking-in-the-dark) conditions, only males demonstrated increases in both 

alcohol consumption and alcohol-induced increases in locomotor activity following 

exposure to unpredictable chronic mild stress (Quadir et al., 2017). Clearly, sex- and stress-

related alterations in voluntary drinking vary significantly as a function of the parameters 

used.

Only two studies have examined sex differences in the effects of stress in altering alcohol-

motivated behavior using operant self-administration and reinstatement of alcohol seeking 

techniques (Bertholomey et al., 2016; Bertholomey & Torregrossa, 2017). A number of 

studies (discussed below) have examined sex- and estrous cycle-related alterations in alcohol 

self-administration, finding enhanced drinking in females. However, investigation of 

vulnerability to “craving”-like behavior using reinstatement models is critical in addressing 

factors contributing to relapse (Bossert, Marchant, Calu, & Shaham, 2013; Epstein, Preston, 

Stewart, & Shaham, 2006). A recent study found that despite greater overall alcohol self-

administration in female Long-Evans rats, they did not show the alcohol-cue+alcohol-

primed reinstatement of alcohol seeking evident in males (Randall, Stewart, & Besheer, 

2017). In contrast, a contemporaneous study showed not only that female Sprague-Dawley 

rats displayed enhanced alcohol cue-induced and yohimbine stress-induced reinstatement of 

alcohol seeking compared to males, but that these effects were additive when cues and 

yohimbine were given in combination (Bertholomey et al., 2016). Further, alcohol drinking 

and cue-related seeking were enhanced in female, but not male, rats exposed chronically to 
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CORT in adolescence (p30–50) and tested in adulthood, suggesting that both acute and 

chronic stressors may contribute to an increased vulnerability in females. Importantly, both 

plasma CORT and estradiol (E2) levels were positively correlated with responding during 

reinstatement, indicating that physiological markers of the stress response as well as 

circulating ovarian hormones contribute to the increased sensitivity to stress-related alcohol-

motivated behavior in females (Bertholomey et al., 2016). Taken together, the impact of sex 

differences on stress modulation of alcohol drinking and seeking is inconsistent and 

complex, and substantial research is still needed to parse the role of each of the potential 

sources of sex differences on the behavioral response to stress and alcohol. Nonetheless, the 

consistent finding that females consume more alcohol than males, and tend to be more 

sensitive to stress, points to the importance of assessing overlapping stress and gonadal 

hormone systems when measuring behavioral responses to stress in males and females.

Role of gonadal hormones in regulating sex differences in alcohol- and stress-regulated 
behavior

Sex differences in the behavioral response to stress and alcohol can be mediated by 

chromosomal sex (genetic effect), the developmental effects of hormones on brain structure 

and function (organizational effect), and/or by the effects of circulating gonadal hormones at 

the time of stress or alcohol exposure (activational effect). Typically, the first step in 

determining the cause of sex differences in behavior is to determine if the activational effects 

of circulating gonadal hormones are sufficient to explain the observation (J. B. Becker et al., 

2005). This can be achieved using a number of different approaches, including monitoring 

estrous cycle in gonadally intact females, removing the influence of endogenous gonadal 

hormones by gonadectomy (GDX), with or without subsequent hormone replacement, 

and/or treatment with hormone receptor modulators. Numerous studies have investigated 

whether estrous cycle-related alterations in ovarian hormones (namely estradiol and 

progesterone), or plasma levels of gonadal hormones measured on the day of a behavioral 

test mediate observed differences. Others have assessed whether removal of the major source 

of testosterone in males (via castration [CAST]) or estradiol/progesterone in females (via 

ovariectomy [OVX]) diminishes sex differences observed in gonadally intact animals, and if 

specific hormone replacement can rescue sex-specific effects.

Studies investigating these questions using slightly different models have been surprisingly 

equivocal with respect to alcohol-related behavior. For example, overall alcohol self-

administration is not affected by estrous cycle phase in freely-cycling female rats 

(Bertholomey & Torregrossa, 2017; Ford, Eldridge, & Samson, 2002b; Priddy et al., 2017; 

Roberts, Smith, Weiss, Rivier, & Koob, 1998); however, the pattern of consumption differed 

in proestrus females (when estradiol levels are high) (Ford et al., 2002b) or when cycles 

were synchronized (Roberts et al., 1998). In studies targeting the activational effects of 

gonadal hormones using GDX, removal of testosterone has been shown to slightly reduce 

(Cailhol & Mormede, 2001), increase (Vetter-O’Hagen & Spear, 2011), or have no effect 

(Almeida et al., 1998) on alcohol drinking in male subjects. Conversely, removal of estradiol 

and progesterone via OVX has reduced alcohol drinking more consistently (Almeida et al., 

1998; Cailhol & Mormede, 2001; Ford, Eldridge, & Samson, 2002a; Ford et al., 2002b; 

Ford, Eldridge, & Samson, 2004; Forger & Morin, 1982), although no effects were evident 

Logrip et al. Page 8

Alcohol. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in other studies (Vetter-O’Hagen & Spear, 2011). Despite the potential confound of 

implicating both organizational and activational effects of hormones, studies in prepubertally 

GDX animals find similar results, with CAST increasing drinking in male subjects (Sherrill, 

Koss, Foreman, & Gulley, 2011; Vetter-O’Hagen & Spear, 2011), and OVX decreasing 

(Sherrill et al., 2011) or not altering (Vetter-O’Hagen & Spear, 2011) drinking in females. 

Parallel findings are evident when gonadal hormones are replaced, as administration of 

testosterone (Vetter-O’Hagen & Spear, 2011) or the androgen dihydrotestosterone (Almeida 

et al., 1998) decreased alcohol consumption in CAST males, whereas estradiol treatment 

dose-dependently increased intake in OVX females (Ford et al., 2002a, 2004), although 

others have failed to observe estradiol replacement effects (Almeida et al., 1998). Estradiol 

treatment may alter alcohol intake through enhancement of alcohol’s reinforcing properties, 

as OVX mice treated with estradiol displayed greater alcohol CPP than untreated OVX mice 

(Hilderbrand & Lasek, 2018). Despite some conflicting findings, the overall consensus is 

that testosterone is responsible for reduced alcohol drinking in males and ovarian hormones 

are responsible for increased drinking in females. However, these results can be difficult to 

reconcile as GDX, hormone replacement, and sham controls for both sexes were often not 

compared in the same study. Further, none of these studies examined the role of gonadal 

hormones in altering stress-related increases in alcohol reinforcement.

A previous report (described above) found that plasma estradiol levels positively correlated 

with the degree of cue+yohimbine-induced reinstatement in females (Bertholomey et al., 

2016), suggesting that estradiol might be responsible for the increased alcohol seeking 

observed in females, relative to males. This finding is consistent with similar studies 

examining estradiol enhancement of cocaine seeking (Feltenstein, Henderson, & See, 2011; 

Larson, Roth, Anker, & Carroll, 2005). Thus, a subsequent study determined the effects of 

GDX, with or without hormone replacement, relative to sham-GDX controls, on both 

operant self-administration of alcohol and cue+yohimbine-induced reinstatement of alcohol 

seeking (Bertholomey & Torregrossa, 2017). Consistent with previous findings, females 

self-administered significantly more alcohol than males, and GDX increased self-

administration in males and decreased self-administration in females, relative to gonadally 

intact sham surgery controls. Furthermore, replacing estradiol in females increased alcohol 

self-administration, while testosterone replacement reduced self-administration in males, 

relative to sham levels of responding. While circulating hormone levels could shift the 

degree of alcohol self-administration within sex, GDX in both sexes was not sufficient to 

eliminate sex differences, as OVX females still self-administered significantly more alcohol 

than GDX males. Therefore, the activational effects of hormones cannot fully explain sex 

differences in alcohol self-administration. Unlike alcohol-reinforced self-administration, 

neither GDX nor hormone replacement significantly altered cue+yohimbine-induced 

reinstatement of alcohol seeking, although estrogen receptor antagonists tended to reduce 

seeking in gonadally intact female rats. Therefore, differences between males and females in 

this alcohol craving-like response does not appear to be mediated by the activational effects 

of hormones. Nonetheless, it is possible that within sex, circulating hormones modulate 

individual differences in the degree of reinstatement, as suggested by prior correlational 

findings, but that the range of reinstatement response is greater in females regardless of 

hormonal state. Together these studies indicate that while hormone supplementation can 
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alter parameters of alcohol self-administration, adult GDX does not directly modulate the 

motivation to work for alcohol in an operant setting, in contrast with some findings 

discussed above for alcohol drinking in a free-access setting. Future studies will need to 

investigate how either organizational or genetic effects of sex alter neurodevelopment in a 

way that leads to increased risk for alcohol-motivated behaviors, such as alcohol seeking and 

drinking, as well as stress-induced craving in females. Identification of these mechanisms 

may lead to improved, sex-specific treatments for AUDs.

Clinical laboratory and epidemiological studies of sex differences in stress in addiction

Limitations exist in assessing treatment options in females given the need to better 

understand the molecular bases of sex differences in stress-alcohol interactions. However, 

components of the stress response – including HPA axis and adrenergic system activity – 

represent common targets implicated by both preclinical and clinical studies as possible 

points of differentiation between the sexes. Human studies have shown neuroadaptations in 

the HPA axis with chronic drug and alcohol abuse, as well as emotional changes during 

abstinence, which impact responses to stress and increase the risk of relapse (Back et al., 

2005; Fox, Hong, Siedlarz, & Sinha, 2008; Fox & Sinha, 2009; Sinha et al., 2006). Evidence 

from clinical surveys and daily clinical assessments of drug craving indicate that both stress- 

and cue-induced drug craving states frequently lead to continued drug use and relapse 

(Bradley, Phillips, Green, & Gossop, 1989; Epstein, Marrone, Heishman, Schmittner, & 

Preston, 2010; Epstein et al., 2009; Hodgins, el-Guebaly, & Armstrong, 1995; Kowalczyk et 

al., 2015; Marlatt & Gordon, 1985; Preston et al., 2009; Wallace, 1989). The studies 

presented herein demonstrate evidence of sex differences in these HPA axis 

neuroadaptations, as assessed in human laboratory studies, as well as sex differences in 

treatment efficacy of medications targeting this stress pathophysiology. Because 

investigation of sex differences in AUD has been somewhat sparse, even at the clinical level, 

studies described herein demonstrate sex differences in mechanisms that may similarly drive 

craving and relapse in both alcohol- and cocaine-dependent individuals, to identify putative 

targets for future preclinical studies.

Exposure to stress as well as drug and alcohol cues consistently increases drug craving and 

stress-related arousal in individuals with SUD (Sinha, Catapano, & O’Malley, 1999; Sinha, 

Fuse, Aubin, & O’Malley, 2000; Sinha et al., 2003). Treatment-engaged patients with AUD 

show enhanced and persistent stress- and cue-induced alcohol craving and anxiety following 

one month of abstinence, accompanied by dysregulation of the physiological response to 

stress (Fox, Bergquist, Hong, & Sinha, 2007; Fox et al., 2009; Sinha et al., 2009). These 

patients also displayed higher severity of alcohol and other drug abuse, with elevated stress- 

and cue-induced craving, heightened anxiety and HPA axis dysregulation compared to those 

with less alcohol abuse severity (Fox et al., 2005). Furthermore, all AUD patients were 

prospectively followed for 90 days with up to 70% having relapsed. After accounting for 

baseline variations in demographics, drug use, and clinical variables, multiple indices of 

stress system dysregulation and altered emotional state – namely, stress- and cue-induced 

alcohol craving, higher basal cortisol, suppressed stress-induced cortisol and ACTH 

responses, and high levels of cortisol/ACTH ratio during neutral-relaxed state – predicted 
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future time to alcohol use (Blaine, Milivojevic, Fox, & Sinha, 2016; Sinha, Fox, et al., 

2011).

While HPA arousal corresponds to relapse, SUDs are characterized by blunted stress-

induced HPA axis activity, an effect that disproportionately affects women. Women with 

cocaine use disorder (CUD) exhibited significantly lower ACTH, cortisol and blood pressure 

responses following exposure to personalized stress, drug-cue, and neutral imagery, as 

compared to CUD men (Fox et al., 2006), yet both CUD and healthy control females 

reported significantly higher levels of anxiety and sadness following stress exposure, relative 

to males (Fox et al., 2008). Patients with AUD similarly display HPA axis alterations, as 

well as sexual dimorphism in the interaction between alcohol use and stress. In a population 

of individuals diagnosed with AUD, PTSD, or comorbid AUD and PTSD, sex differences 

were observed in HPA axis markers both at baseline and in response to the cold pressor task 

(Brady et al., 2006). Across all three groups, females showed significantly lower levels of 

ACTH compared to males. Moreover, females in either the AUD or the PTSD group showed 

greater ACTH blunting in response to stress compared to males in the matching diagnostic 

groups. Collectively, these findings suggest that stress and drug cues increase craving and 

anxiety, and that chronic drug use is associated with an altered HPA axis response to stress, 

marked by basal hyperactivity and blunted phasic response to stress, that is more severe in 

females. While it remains unknown whether HPA axis dysfunction predisposes individuals 

to SUDs or develops consequent to the SUD, these states have been shown to potently 

predict relapse, suggesting that improved understanding of the molecular mechanisms 

triggering these adaptations are important preclinical avenues of investigation to identify 

better treatments and reduce relapse in both sexes. Conversely, knowledge about medication 

responses in clinical trials addressing stress-alcohol interactions will provide additional 

indicators of sex differences that must be further elucidated by preclinical investigations.

Medications targeting stress pathophysiology and sex differences in addiction

Given the dysregulation of HPA axis responses in SUD, as well as the role of stress as a 

trigger for craving and relapse, pharmacologically targeting craving and stress-related HPA 

axis dysfunction could improve treatment and reduce relapse rates in SUD patients 

(Milivojevic & Sinha, 2017). As significant sex differences have been observed in SUD-

related adaptation of these pathways, however, special attention must be paid to the 

development of sex-specific treatment targets. Whereas much experimental evidence has 

focused on treatments in male-only or male-biased populations, studies investigating 

multiple medications aimed at improving the HPA axis dysregulation found in SUDs in sex-

balanced populations have yielded some sex-specific effects. In particular, targeting the 

adrenergic system via inhibition of postsynaptic (α1) or activation of presynaptic (α2) 

adrenoreceptors (AR) has been more effective as a treatment in females than in males. In 

preliminary studies of AUD patients in early abstinence, the α1-AR antagonist prazosin was 

found to reduce stress-induced alcohol craving and negative emotions, while reducing basal 

cortisol levels and increasing stress-induced cortisol responses (Fox et al., 2012). Similarly, 

in early abstinent CUD and AUD individuals, the α2-AR agonist guanfacine was found to 

reduce cue-induced craving, decrease baseline cortisol levels and normalize stress-induced 

cortisol responses (Fox et al., 2012). However, population sizes in these preliminary studies 
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precluded the performance of sufficiently powered sex-specific analyses. Subsequent 

investigations in a larger population of individuals with comorbid CUD and AUD 

demonstrated that guanfacine significantly reduced cocaine craving, alcohol craving, 

anxiety, and negative emotion following exposure to stress, drug/alcohol cue and neutral 

conditions; however, in this population, guanfacine’s effects were significant only in 

females, not males (Fox, Morgan, & Sinha, 2014). Guanfacine has also demonstrated 

enhanced efficacy vs. placebo to improve CUD/AUD females’ cognitive performance on a 

Stroop task under neutral, stress, and drug cue conditions (Milivojevic, Fox, Jayaram-

Lindstrom, Hermes, & Sinha, 2017). Importantly, this effect was not observed in men. 

Together these studies not only implicate the adrenergic system as a medication target to 

treat females more successfully than males, but also highlight the need for preclinical 

investigations to elucidate sex differences in stress- and alcohol-induced adrenergic circuit 

adaptations that may underlie this differential treatment efficacy.

Given the a priori sex difference in hormone status that likely impacts neuronal activity, as 

discussed above, elevating progesterone levels has been explored as a therapeutic approach 

that may generate a sexually dimorphic response. Relative to placebo treatment, 

progesterone administration reduced cue-induced craving and cortisol responses in 

treatment-seeking men and women with comorbid CUD and AUD, in addition to improving 

prefrontal inhibitory function, as measured by the Stroop task (Fox, Sofuoglu, Morgan, Tuit, 

& Sinha, 2013). While main treatment effects were observed regardless of sex, progesterone 

treatment provided the added benefit of decreasing ratings of negative emotion and 

increasing ratings of relaxed mood following stress exposure in women but not men (Fox et 

al., 2013). One metabolite of progesterone that may produce different treatment responses in 

males and females is the neuroactive steroid allopregnanolone (ALLO). ALLO is found in 

higher concentrations in the female mouse brain, but increased after alcohol drinking only in 

male mice (Finn et al., 2004). In humans, the plasma concentration of ALLO was increased 

following severe intoxication in both females and males (Torres & Ortega, 2003, 2004). 

ALLO is a potent allosteric enhancer of gamma aminobutyric acid type A receptor 

(GABAA) activity (Porcu & Morrow, 2014) that may differentially regulate alcohol intake 

by sex, with greater sensitivity shown in male vs. female mice (Ford, Beckley, Nickel, Eddy, 

& Finn, 2008; Sinnott, Phillips, & Finn, 2002). To assess the role of ALLO in progesterone’s 

treatment effects, CUD/AUD individuals who received progesterone were grouped by their 

baseline ALLO levels. The high ALLO group showed reductions in craving, improved 

cognitive performance, reduced basal cortisol and increased phasic cortisol in response to 

stress in all subjects, compared to the low ALLO group, with no sex differences observed 

(Milivojevic, Fox, Sofuoglu, Covault, & Sinha, 2016). Together these studies suggest 

elevation of neuroactive steroids like ALLO may represent a biomarker of treatment efficacy 

in men and women, warranting future preclinical and clinical research into steroids like 

ALLO that may be useful biomarkers for long-term treatment efficacy in both sexes.

Conclusion

AUD, although currently more prevalent in males, afflicts both sexes, and the gender gap in 

disease prevalence is narrowing. Yet preclinical studies including females, which provide a 

fuller understanding of brain mechanisms underlying these disorders, continue to lag far 
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behind the vast body of literature focusing solely on male subjects. The data reviewed above 

demonstrate significant sex differences in the impact of stressors on AUD in both preclinical 

animal models and human studies. Importantly, observed sex differences in the brain 

mechanisms supporting alcohol-stress interactions, in the behavioral impact of past stress on 

alcohol use, and in drug treatment efficacy highlight the need for continued pursuit of 

knowledge in the preclinical realm to understand the neural basis of sex differences in stress 

responses and alcohol use, so that better therapeutic approaches may be developed for both 

sexes.
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