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Abstract

Hallucinations characterize schizophrenia, with approximately 59% of patients reporting auditory 

hallucinations and 27% reporting visual hallucinations. Prior neuroimaging studies suggest that 

hallucinations are linked to disrupted communication across distributed (sensory, salience-

monitoring and subcortical) networks. Yet, our understanding of the neurophysiological 

mechanisms that underlie auditory and visual hallucinations in schizophrenia remains limited.

This study integrates two resting-state functional magnetic resonance imaging (fMRI) analysis 

methods – amplitudes of low-frequency fluctuations (ALFF) and functional network connectivity 

(FNC) – to explore the hypotheses that (1) abnormal FNC between salience and sensory (visual/

auditory) networks underlies hallucinations in schizophrenia, and (2) disrupted hippocampal 

oscillations (as measured by hippocampal ALFF) beget changes in FNC linked to hallucinations. 

Our first hypothesis was supported by the finding that schizophrenia patients reporting 

hallucinations have higher FNC between the salience network and an associative auditory network 

relative to healthy controls. Hippocampal ALFF was negatively associated with FNC between 

primary auditory cortex and the salience network in healthy subjects, but was positively associated 

with FNC between these networks in patients reporting hallucinations. These findings provide 

indirect support favoring our second hypothesis. We suggest future studies integrate fMRI with 

electroencephalogram (EEG) and/or magnetoencephalogram (MEG) methods to directly probe the 

temporal relation between altered hippocampal oscillations and changes in cross-network 

functional communication.
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1. Introduction

An estimated 59% of patients with schizophrenia (Sz) report auditory hallucinations (AH); 

nearly half of those reporting AHs also report visual hallucinations (VHs) (Waters et al., 

2014). To address the question of how individuals with Sz come to experience 

hallucinations, researchers have used non-invasive resting-state functional magnetic 

resonance imaging (rs-fMRI) to compare spontaneous fluctuations in the blood oxygenation 

level dependent (BOLD) signal in Sz reporting hallucinations relative to control subjects. 

Resting-state functional connectivity (rs-FC) analyses are commonly employed in 

hypothesis-driven investigations of Sz symptoms and provide an estimate of how correlated 

or “in synch” BOLD signal activation is across regions of interest. Both VH and AH are 

associated with abnormal sensory (Clos et al., 2014; Ford et al., 2015; Gavrilescu et al., 

2010; Hoffman, Ralph et al., 2012; Shinn et al., 2013; Sommer et al., 2012), striatal (Amad, 

A. et al., 2014; Hoffman, Ralph et al., 2012; Rolland et al., 2015), insular (Clos et al., 2014; 

Rolland et al., 2015), medial frontal (Amad, A. et al., 2014; Clos et al., 2014), and 

parahippocampal/hippocampal (Amad, A. et al., 2014; Clos et al., 2014; Ford et al., 2015; 

Rolland et al., 2015; Sommer et al., 2012) rs-FC. Yet, it remains unclear how these 

widespread disruptions in rs-FC give rise to hallucinations.
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The abnormal salience monitoring model proposes that hallucinations may be driven by 

abnormal functional communication between resting-state networks (e.g. anatomically 

distributed brain regions that show consistent functional co-activation at rest) (Palaniyappan 

et al., 2012; Palaniyappan et al., 2011). The salience network (SN) contains hubs in the 

anterior insula and dorsal anterior cingulate cortex, and activates in response to proximally 

salient cues — from internal changes in bodily state to demanding tasks that require 

externally-focused attention (Menon, 2015; Seeley et al., 2007). Dynamic causal modeling 

and Granger causality analyses suggest the right anterior insula regulates activation/

deactivation of the default-mode network (DMN) (Goulden et al., 2014; Sridharan et al., 

2008). The DMN is associated with internally-directed attention and self-referential 

processing (Raichle, 2015); network hubs include medial prefrontal cortex, anterior 

cingulate, precuneus/posterior cingulate cortex, and bilateral angular gyri. Improper 

monitoring of salient internal events (e.g. auditory-verbal imagery, visual images) plausibly 

generates hallucinations. Many studies have explored functional network connectivity (FNC) 

in Sz (Damaraju et al., 2014; Garrity et al., 2007; Whitfield-Gabrieli et al., 2009), yet no 

study has tested this hypothesis by examining how primary/associative sensory networks 

interact with the SN/DMN in the context of hallucinations.

A major advantage of the abnormal salience monitoring model is that it accounts for the 

distributed changes in functional communication observed in Sz reporting hallucinations. 

However, this network model fails to incorporate the role of the hippocampus in the 

generation of hallucinations. Across fMRI investigations of the active AH state (e.g. 

symptom-capture), the left hippocampus shows the highest likelihood of activation (Jardri et 

al., 2011). One recent study explored low frequency (<0.1 Hz) power of the BOLD signal 

across brain voxels during rest. This exploratory analysis of amplitudes of low frequency 

fluctuations (ALFF) found that Sz patients reporting VH and AH had higher ALFF in the 

left hippocampus relative to patients that reported AH (but not VH). Variability in left 

hippocampal ALFF was positively associated with reported VH severity, but was negatively 

associated with AH severity (Hare et al., 2017).

In a magnetoencephalography (MEG) symptom-capture study of AH, transient decreases in 

hippocampal theta band power (4–10 Hz) preceded reported AHs (van Lutterveld et al., 

2012). Hippocampal theta oscillations are measured in local field potentials of humans 

(Arnolds et al., 1980), and all other mammals studied to date (Green and Arduini, 1954; 

Lubenov and Siapas, 2009; Vanderwolf, 1969; Winson, 1972). Medial prefrontal neurons 

and auditory neurons in the inferior colliculus demonstrate spiking preferences at particular 

phases of the slow hippocampal theta rhythm (referred to as phase-locking) (Hyman et al., 

2011, 2010; Pedemonte et al., 1996; Siapas et al., 2005). Researchers speculate that 

hippocampal theta waves act like the conductor of an orchestra by synchronizing activation 

of distributed networks, and temporally ordering information (e.g. sensory percepts, motor 

representations, and memories) (Buzsaki, 2002; Lisman and Buzsáki, 2008). We propose 

that disrupted hippocampal oscillations destabilize normal network connections in Sz and 

might plausibly drive abnormal network connections in Sz patients with hallucinations.

The present study models the relationships between hippocampal ALFF, FNC, and targeted 

symptomology (AH and VH severity) in the resting-state brain. We first test the hypothesis 
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that altered FNC between salience and sensory networks underlies modality-specific 

hallucinations, predicting that Sz patients with VH will have higher FNC between visual and 

salience networks relative to all groups, and patients with AH will have higher FNC between 

auditory and salience networks relative to nonhallucinating Sz patients and HC.

Next, we explore the hypothesis that disrupted hippocampal oscillations destabilize normal 

functional network connections in Sz. We predict that (1) hippocampal oscillations 

(measured indirectly as ALFF within the left hippocampal cluster identified in our previous 

analysis (Hare et al., 2017) will be associated with FNC in HC; (2) Sz will lack these normal 

ALFF-FNC relationships, and (3) will have abnormal relationships between hippocampal 

ALFF and FNC. The poor temporal resolution of fMRI limits our ability to directly test the 

hypothesis that disrupted hippocampal theta oscillations beget changes in FNC. Nonetheless, 

we establish links between hippocampal BOLD signal fluctuations and FNC, providing 

preliminary (indirect) support favoring a novel hippocampal binding model that might 

explain disrupted auditory network functional communication in Sz.

2. Experimental materials and methods

2.1. Subjects

We analyzed 294 resting-state fMRI scans from the Functional Biomedical Informatics 

Research Network (FBIRN) dataset (Keator et al., 2016). Schizophrenia patients (n=141) 

and HC (n=153) were matched for age, reported gender, and handedness (Table 1). Raw 

imaging data were collected from six sites; written informed consent was obtained from all 

participants. The consent process was approved by University of California Irvine, 

University of California San Francisco, Duke University/ University of North Carolina, 

University of New Mexico, University of Iowa, and University of Minnesota Institutional 

Review Boards.

All recruited study participants were between the ages of 18 and 62. All Sz subjects were 

diagnosed with schizophrenia or schizoaffective disorder by experienced clinicians using the 

Structural Clinical Interview for DSM-IV-TR Axis I Disorders. Patients were either stable 

on antipsychotic medication or unmedicated (only 8 out of the 143 Sz subjects were not 

taking antipsychotic medication at the time of the study). Healthy controls with a first-

degree relative with an Axis I disorder or a history of major psychiatric illness were 

excluded. Exclusion for all participants included history of major medical illness, 

insufficient eyesight to see with normal acuity with MRI compatible corrective lenses, 

contraindications for MRI, drug dependence in the last five years or a current substance 

abuse disorder, an intelligence quotient less than 75.

The present study draws from the FBIRN Phase III study (see (Hare et al., 2017) (Ford et al., 

2015) (Damaraju et al., 2014)). Multiple behavioral/symptom assessments were performed 

as part of the FBIRN Phase III study including the Scale for the Assessment of Positive 

Symptoms (SAPS) (Andreasen, 1984a) and the Scale for the Assessment of Negative 

Symptoms (SANS) (Andreasen, 1984b). The protocol required that symptom assessment 

ratings be completed within one month of scanning. For a detailed description of the multi-
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phase FBIRN project including subject characteristics, imaging parameters, and behavior 

assessments see Keator et al., 2016.

2.2. Grouping of Participants

We used the same clinical subgroup sorting strategy used previously in (Hare et al., 2017) 

and (Ford et al., 2015). Sorting of the 141 Sz into clinical subgroups was achieved by 

evaluating responses to two SAPS items (Andreasen, 1984a). Item #1 asks if the participant 

“reports voices, noises, or other sounds that no one else hears,” while Item #6 asks if he/she 

“sees shapes or people that are not actually present.” Each item is scored using a 1 to 5 

rating scale (0 = not present; 1 = questionable; 2 = mild; 3 = moderate; 4 = marked; 5 = 

severe). The AH (but not VH) group (n = 42) had SAPS Item #1 scores > 1 and SAPS Item 

#6 scores of zero. The non-hallucinator group (NH, n = 60) scored zero for both items, while 

the VH group (n = 39) had SAPS Item #6 scores > 1. Due to prevalence of AH in Sz, all but 

two of the participants in the VH subgroup also reported AH (95%). For a subset of 

analyses, the VH and AH subgroups were pooled to form a hallucinating (HALL) subgroup 

reporting AH, VH or both.

2.3. Imaging

Data were acquired using five 3T Siemens TIM Trio scanners and one 3T GE MR750 

scanner using an AC-PC aligned echo-planar imaging pulse sequence (TR/TE 2 s/30 ms, flip 

angle 77°, 32 slices collected sequentially from superior to inferior, 3.4 × 3.4 × 4 mm with 

mm gap, 162 frames, 5:24 mins) to obtain T2*-weighted images. Subjects were instructed to 

lie in the scanner with eyes closed.

2.4. Data Processing

Pre-processing was performed using the Data Processing Assistant for Resting-State fMRI 

(DPARSF) toolbox which runs with the REST software (Song et al., 2011). The first two 

time frames were removed to allow for signal stabilization. Raw data underwent motion 

correction to the first image, slice-timing correction to the middle slice, normalization to 

MNI space, and spatial smoothing with an 8 FWHM Gaussian kernel. Framewise 

displacement was calculated for each image; framewise displacement differentiates head 

realignment parameters across frames and generates a 6-dimensional times series that 

represents instantaneous head motion (Power et al., 2012). To correct for confounding 

effects of head motion on the fMRI signal, we included mean framewise displacement as a 

subject-level covariate.

2.5. Group Spatial Independent Component Analysis

We performed spatial group ICA using GIFT software (Calhoun et al., 2001). One hundred 

independent component networks were obtained from the group principal component 

analysis matrix using the Infomax algorithm. The ICA algorithm was repeated twenty times 

in ICASSO and the most central result was used to ensure stability of estimation. Subject-

specific spatial maps and time courses were obtained using back reconstruction implemented 

in GIFT (Erhardt et al., 2011).
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We examined z-transformed spatial maps thresholded at z > 3 to identify artifactual RSNs 

(e.g. “ringing” motion artifacts, spatial maps with peak signal arising from CSF/white 

matter). Using the method proposed by (Allen et al., 2011), we discarded components with 

poor low frequency/high frequency power ratios, and those with stability quotients < 0.85. 

From the remaining RSNs, nine networks of interest were selected: two visual RSNS, two 

auditory RSNs, SN, anterior DMN, posterior DMN, bilateral putamen, and bilateral 

hippocampus (Figure 1, Table 2).

Subject timecourses were detrended and despiked, then filtered with a high frequency cutoff 

of 0.15 Hz prior to computing FNC correlations; FNC correlations are defined as the 

pairwise correlations between network time courses. For all FNC analyses, FNC correlations 

were transformed to z-scores using Fisher’s transformation.

2.6. Statistical Analyses

2.6.1. Group Differences—We performed a two-sample t-test (HC vs. Sz) to explore 

FNC correlations associated with Sz diagnosis. We examined changes in FNC associated 

with the general trait to experience hallucinations (AH, VH or both) with a three-group level 

ANCOVA (HALL, NH, HC); FNC associated with modality-specific hallucinations was 

explored using a four-group level ANCOVA (VH, AH, NH, HC). Age, scanning site, gender, 

and mean framewise displacement were included as covariates. Statistical significance was a 

priori specified as p < 0.05 using a false discovery rate (FDR) correction for multiple 

comparisons.

2.6.2. Symptom Severity & FNC: Regression Analyses—To test the hypothesis that 

abnormal FNC between salience and sensory networks underlies modality-specific 

hallucinations, we performed linear regression analyses of FNC. To ensure that observed 

associations between AH/VH severity and FNC were not driven or influenced by 

confounding factors, we modeled effects of nuisance covariates (age, gender, and mean 

framewise displacement; scanning site was dummy coded and modeled as a random effect). 

Since nicotine use is 2–3 times higher in Sz than in the healthy population (de Leon and 

Diaz, 2005), and has been shown to significantly impact brain functional connectivity 

(Jasinska et al., 2014), we examined Spearman correlations between FNC and smoking 

status (factor with three levels: “never smoker”, “ex-smoker”, “current smoker”) in our 

sample of 294 subjects. These analyses revealed a significant association between smoking 

status and SN-STG (BA 22) FNC (rho = −0.244, p < 0.01), so smoking status was included 

as an additional covariate.

To confirm that observed effects of VH/AH severity on FNC were not driven by 

confounding effects of antipsychotic medication, we performed post-hoc regression analyses 

of FNC, including total chlorpromazine equivalents (Woods, 2003) as an additional 

covariate. We lacked information to derive chlorpromazine equivalents for 18 Sz subjects, so 

the mean value of total chlorpromazine equivalents was calculated (based on the available 

data), and interpolated for those subjects with missing data. For all analyses, confidence was 

specified as p < 0.05.
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2.6.3 Hippocampal ALFF & FNC: Regression Analyses—Voxelwise mean ALFF 

maps were computed for each subject using REST software (Song et al., 2011) as described 

in (Hare et al., 2017) The left hippocampal cluster that showed significant ALFF variation 

across VH vs. AH subgroups in Hare et al., 2017, was saved as a binary mask. Subject-

specific weighted ALFF averages within this cluster were derived from the 294 ALFF maps 

using SPM’s MARSBAR utility.

We calculated the relationship between these subject-specific hippocampal ALFF averages 

and FNC to explore whether the nature and/or strength of ALFF-FNC relationships are 

different in Sz vs. HC. Only FNC correlations that were significantly different across Sz and 

HC in the group analysis were examined in these ALFF-FNC regression analyses. First, we 

examined potential ALFF x diagnosis interactions in a linear regression analysis. Age, 

gender, mean framewise displacement, and smoking status were included as covariates; 

scanning site was modeled as a random effect.

To further probe whether the nature and/or strength of ALFF-FNC relationships are different 

in Sz vs. HC, we explored ALFF-FNC associations in separate analyses of HC and Sz. We 

modeled effects of hippocampal ALFF on FNC, controlling for confounding influences on 

FNC (age, gender, mean framewise displacement, smoking status, and random effects of 

scanning site) in the linear model. Separate regression analyses were performed in HALL 

and NH to address the question of whether abnormal ALFF-FNC associations are observed 

in Sz reporting hallucinations exclusively or were also observed in NH patients. We 

confirmed that observed associations between hippocampal ALFF and FNC were not driven 

by confounding effects of antipsychotic medication by performing post-hoc regression 

analyses, including total chlorpromazine equivalents (Woods, 2003) as an additional 

covariate. Confidence was specified as p < 0.05.

3. Results

3.1. FNC Group Differences

3.1.1. FNC Differences Between Sz Patients and HC—Relative to HC, Sz had 

higher FNC between STG (BA 22) and hippocampus, and lower FNC between (1) the two 

STG networks (BA 21, BA 41), (2) STG (BA 22) and visual cortex (BA 17), and (3) STG 

(BA 41) and SN (see Supplemental Figure 1). For clarity, locations of peak voxels of 

sensory networks are reported parenthetically.

3.1.2. FNC Differences Between Subgroups of Sz—No significant changes in FNC 

across hallucination subgroups (NH vs. HALL, NH vs. AH, NH vs. VH, VH vs. AH) 

survived FDR-correction.

3.1.3. FNC Differences Between NH and HC—Relative to HC, NH patients showed 

higher FNC between hippocampus and STG (BA 22), but lower FNC between (1) the two 

STG networks (BA 22, BA 41), (2) STG (BA 22) and visual cortex (BA 17), (3) STG (BA 

41) and visual cortex (BA 17), (4) STG (BA 41) and putamen, (5) STG (BA 41) and SN, and 

(6) STG (BA 41) and both anterior DMN and posterior DMN (Figure 2).
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3.1.4. FNC Differences Between HALL and HC—Relative to HC, HALL showed 

higher FNC between STG (BA 22) and hippocampus and between STG (BA 22) and SN, but 

lower FNC between STG (BA 22) and visual cortex (BA 17) (Figure 2).

3.2. Regression Analyses of FNC

3.2.1. Symptom Severity & FNC—We observed a significant association between AH 

severity and FNC between STG (BA 22) and SN (t = 2.3, p < 0.05); SN-STG (BA 22) FNC 

was not associated with VH severity, nor total positive/negative symptoms. This association 

between AH severity and SN-STG (BA 22) FNC remained significant when we included 

total chlorpromazine equivalents as an additional regressor in the model (t = 2.0, p < 0.05). 

There were no other significant associations between FNC correlations and symptom scores.

3.2.2. Hippocampal ALFF & FNC: HC vs. Sz—We observed significant diagnosis x 

ALFF interactions on (1) FNC between STG networks (BA 41 and BA 22) (t = −2.9, p < 

0.01) and (2) SN-STG (BA 41) FNC (t = −3.0, p < 0.01). To ensure that observed effects 

were not driven by outliers, we re-ran regression analyses after omitting four subjects that 

had weighted hippocampal ALFF averages exceeding 4 standard deviations from the mean. 

The diagnosis x ALFF interaction on SN-STG (BA 41) FNC remained significant (t = −3.0, 

p < 0.01) while the diagnosis x ALFF interaction on FNC between STG networks (BA 41 

and BA 22) did not remain significant (t = −1.8, p = 0.08).

In HC, hippocampal ALFF was positively associated with FNC between (1) STG (BA 22) 

and hippocampus (t = 4.2, p < 0.001), and negatively associated with FNC between (2) the 

two STG networks (BA 41, BA 22) (t = −3.1, p < 0.01), and (3) STG (BA 41) and SN (t = 

−2.4, p < 0.05). In Sz, hippocampal ALFF was positively associated with SN-STG (BA 41) 

FNC (t = 2.2, p < 0.05). This observed association between left hippocampal ALFF and SN-

STG (BA 41) connectivity remained significant (t = 2.2, p < 0.05) when total 

chlorpromazine equivalents were introduced as an additional covariate in the model.

3.2.3. Hippocampal ALFF & FNC: HALL vs. NH—There were no associations 

between hippocampal ALFF and FNC in NH patients. In HALL patients (n = 81), 

hippocampal ALFF was associated with FNC between the STG (BA 41) and SN (t = 2.1, p < 

0.05). When we included chlorpromazine equivalents as an additional covariate in the 

regression analysis, the observed association between hippocampal ALFF and SN-STG (BA 

41) connectivity remained significant (t = 2.1, p < 0.05).

4. Discussion

This analysis shows higher STG-SN FNC in Sz linked to the trait of experiencing AH. 

Furthermore, it identifies disrupted patterns of auditory network FNC in Sz and suggests a 

potential mechanism that may drive these FNC disturbances: hippocampal ALFF. To 

contextualize these results, we highlight FNC differences in Sz vs. HC before discussing the 

results of our targeted investigations of AH/VH.

Since convergent evidence from studies examining rs-FC, brain structure, genetics, and 

neurotransmitters support the hypothesis that Sz is a disorder of brain dysconnectivity 
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(Friston et al., 2016), we anticipated that Sz would show widespread differences in cross-

network communication. Significant increases and decreases in FNC were observed in Sz 

patients (Supplemental Figure 1), consistent with results from a prior analysis using this 

dataset (Damaraju et al., 2014). In both studies, Sz had lower FNC between sensory 

networks, and higher FNC between subcortical and sensory networks. In the present 

analysis, we observed STG-hippocampal hyperconnectivity in patients (Supplemental Figure 

1); Damaraju et al. did not include a hippocampal network and observed sensory-thalamic 
hyperconnectivity in Sz patients. While Damaraju et al. investigated FNC linked to Sz 

diagnosis, a central aim of this study was to identify targeted markers of hallucinations in 

Sz.

Prior findings support the hypothesis that abnormal salience monitoring underlies AH 

(Palaniyappan et al., 2012; Palaniyappan et al., 2011). Reported AH severity correlates 

negatively with FC within the SN (between SN hubs and intrinsic FC of the right anterior 

insula) (Manoliu et al., 2014; Pu et al., 2012). In addition, SN hubs showed increased FC 

with dorsomedial prefrontal cortex in patients with AH relative to NH patients (Alonso-Solís 

et al., 2015). While these studies delineate links between SN dysfunction and AH, changes 

in SN functional communication are also linked to diverse behaviors and clinical outcomes 

(see Menon, 2015, Figure 14; Palaniyappan et al., 2013, Supplemental Figure S3).

In this study, we find that hallucinating patients (98% reporting AH, 48% reporting VH), but 

not NH patients, had higher FNC between STG (BA 22) and SN relative to HC. Regression 

analysis revealed that SN-STG (BA 22) FNC was associated with AH severity (and not VH 

severity nor global assessments of positive/negative symptoms). This targeted association 

between AH severity and SN-STG (BA 22) FNC provides support favoring the hypothesis 

that disrupted FNC between SN and associative-auditory cortex underlies AH in Sz.

We predicted that patients with VH would have higher FNC between visual and salience 

networks relative to all groups. Our failure to detect this anticipated effect could be driven 

by low statistical power (i.e. only 39 Sz patients reported VH), but might also be interpreted 

as evidence favoring rejection of the hypothesis that abnormal SN-visual FNC underlies VH 

in Sz.

Our analyses exploring the relation between hippocampal ALFF and FNC were motivated 

by theoretical and methodological shortcomings of prior analyses. First, although numerous 

studies report links between abnormal hippocampal function and hallucinations, the 

hippocampus remains absent from dominant models of hallucinations including abnormal 

salience monitoring theories (Menon, 2015; Palaniyappan and Liddle, 2012), and abnormal 

self-monitoring (forward modeling) theories (Frith, 1996). Second, while many fMRI 

studies have examined the neural basis of hallucinations in Sz, fewer studies have used 

MEG/EEG to examine neurophysiological changes that occur on a millisecond scale.

A rare MEG symptom-capture study found that transient decreases in hippocampal theta 

band power (4–10 Hz) preceded reported AHs (van Lutterveld et al., 2012). Slow theta 

oscillations are thought to play a key role in temporally coordinating local network 

oscillations in the faster gamma range (> 30 Hz) (Lisman and Buzsáki, 2008). Fast gamma 
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cycles in local networks can couple to the same theta phase, providing a means for cross-

network functional communication. The precise phase and timing information provided by 

slow theta rhythms may be essential for coordinating and synchronizing activity across 

distributed networks (Buzsaki, 2002; Lisman and Buzsáki, 2008). In line with this view, we 

hypothesized that abnormal hippocampal theta oscillations in Sz disrupt normal brain FNC.

Due to fMRI’s poor temporal resolution, we were unable to directly test the hypothesis that 

abnormal hippocampal theta oscillations beget changes in brain FNC. Our finding that 

hippocampal ALFF was associated with different FNC correlations in Sz and HC provides 

preliminary, indirect support favoring this hypothesis. In HC, hippocampal ALFF was 

positively associated with FNC between (1) hippocampus and STG (BA 22), and negatively 

associated with FNC between (2) BA 41 and BA 22 auditory networks, and (3) STG (BA 

41) and SN. These findings suggest that the hippocampus may regulate auditory FNC in 

healthy subjects. In Sz, we observed an abnormal positive association between hippocampal 

ALFF and SN-STG (BA 41) FNC; this association was observed only in Sz reporting AH 

and/or VH (no significant association was observed in NH). Our findings (summarized in 

Figure 3a) support a hippocampal binding model of FNC in which abnormal hippocampal 

oscillations in Sz disrupt normal auditory FNC and beget abnormal functional 

communication between salience and primary-auditory networks (Figure 3b).

A recent dynamic causal modeling study examined interactions between the left 

hippocampus, DMN, SN and an executive network in Sz actively experiencing AH 

(Lefebvre et al., 2016). Hallucination transition periods (e.g. periods of transition from no 

reported AH to reported AH) were associated with disruptions to all network connections, 

while active AH periods were associated with left hippocampal input to the SN. The authors 

speculate that AH are the result of misattributing salience to auditory memory fragments that 

are brought into consciousness (Copolov et al., 2003).

Our findings are consistent with this hypothesis, but allow us to glean further insight into the 

mechanisms that drive salience misattribution. Proper functional communication between 

hippocampal, salience and auditory networks facilitates our ability to recall auditory 

memories, tag them as salient, and bring them into consciousness at will. In the case of 

volitional recall, one anticipates bringing an auditory memory into consciousness, and 

recognizes it as self-generated. We would expect the phenomenology associated with this 

type of event to be different from the phenomenology associated with SN-auditory (BA 22) 

hyperconnectivity that drives abnormal attribution of salience to auditory images, which are 

brought into consciousness at random. The Sz patient would not anticipate the auditory 

image(s) being brought into consciousness, and might conclude that the conscious percept 

was generated by an alien source. In this respect, our SN-auditory hyperconnectivity theory 

of AH may provide an account of why AHs feel alien.

Finally, our findings link up with neurochemical hypotheses of Sz. One model proposes that 

hyperactive phasic midbrain dopaminergic responses stem from a loss of inhibitory 

regulation of hippocampal pyramidal neurons (Grace and Gomes, 2018). Phasic 

dopaminergic signaling plays an essential role in encoding motivational/behavioral salience 

(Bromberg-Martin et al., 2010). The SN contains network hubs in dopamine-rich midbrain 
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regions (e.g. ventral tegmental area, substantia nigra) (Seeley et al., 2007), and may rely on 

these phasic signals to orient our attention to threats, rewards, and other salient cues. This 

neurochemical hypothesis predicts that abnormal hippocampal activity may lead to abnormal 

tracking and monitoring of salient stimuli in Sz, which is consistent with our findings.

There are several limitations of this cross-sectional analysis. We scanned subjects at one 

point in time, and don’t know how neural function changed in patients over the course of the 

disorder, and whether observed FNC effects reflect chronic dispositions. In this study, we 

were interested in identifying trait markers of AH/VH, but, we expect that symptoms 

fluctuate over the course of the illness; those in the NH group reported neither VH nor AH at 

the time of the scan, but they might have reported VH and/or AH at earlier time(s). These 

realities should be considered when developing inferences from these data. Second, patients 

had chronic schizophrenia; all but eight patients were taking antipsychotic medication at the 

time of the study. This precluded our ability to control for extraneous effects of antipsychotic 

medication on FNC by performing separate analyses of patients on medication and those not 

taking medication. Post-hoc analyses of FNC showed that observed associations with FNC 

(e.g. symptom-FNC, ALFF-FNC) remained significant after modeling effects of total 

chlorpromazine equivalents. Particular antipsychotic treatments such as clozapine have been 

shown to influence brain areas related to default mode (Gillespie et al., 2017; Mouchlianitis 

et al., 2016). We lacked detailed drug information to explore these targeted effects, so this 

limitation must be acknowledged.

Due to AH prevalence in Sz, we were unable to study VH independent of AH (95% of 

patients reporting VH also reported AH). However, our results allow us to glean insight into 

why AHs are roughly twice as prevalent as VH in Sz. Patients reporting neither AH nor VH 

show widespread decreases in STG network connectivity relative to HC (Figure 2), 

suggesting that STG network connectivity is especially vulnerable to disruption in all Sz 

patients (including those that do not report hallucinations). Future studies should explore the 

mechanisms that underlie normal STG functional network communication in healthy 

subjects to better understand how functional communication with STG networks becomes 

disrupted in Sz.

Finally, low frequency BOLD signal fluctuations (<0.1 Hz) are associated with changes in 

local field potentials (van Lutterveld et al., 2012), which are driven by voltage-dependent 

neural oscillations, but also by summed synaptic activities of local networks, fast action 

potentials, and neuron-glial interactions (Buzsáki et al., 2012). Thus, our findings suggest 

important links between altered hippocampal activity and abnormal FNC in Sz. We 

speculate that disrupted hippocampal theta oscillations may disrupt functional 

communication between auditory and salience networks in Sz patients reporting 

hallucinations, but alternative hypotheses of AH could be proposed. In line with the dynamic 

causal modeling analysis findings (Lefebvre et al., 2016), abnormal coupling between 

hippocampal oscillations and SN oscillations may give rise to the active AH state. Our 

findings suggest that disturbed oscillatory coupling between salience and auditory networks 

may play a role in the generation of AHs.
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To date, these hypotheses have not been tested. In general, very little is known regarding SN 

oscillations and their functional/behavioral significance. One study found that reduced 

insular thickness in Sz was associated with inefficient resetting of frontal theta oscillations 

(Palaniyappan et al., 2012), while another study reported that Sz patients had abnormally 

high beta oscillations in the insula in response to task-irrelevant stimuli (Liddle et al., 2016). 

Future studies of SN oscillations need to be performed to refine our understanding of how 

the SN communicates with other functional networks in healthy subjects, and how disrupted 

SN oscillations may give rise to various symptoms such as hallucinations.

In sum, our findings raise a number of interesting hypotheses and provide indirect support 

favoring our proposed hippocampal binding hypothesis of AH. Innovative fMRI methods are 

currently being developed that explore FNC dependence on different spectral frequency 

modes of the BOLD signal (Yaesoubi et al., 2017). Future studies should use a combination 

of methodological approaches (including combined EEG/MEG + fMRI approaches) to 

explore frequency-dependent coupling between salience, hippocampal and sensory 

networks, and directly test the hypothesis that disrupted hippocampal theta oscillations beget 

changes in functional network communication in Sz.
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Figure 1. Networks
Nine networks were selected based on their putative involvement in the generation of 

auditory and visual hallucinations. Different colors (green/purple) depict distinct resting-

state networks. Top left: two visual networks; bottom left: two auditory networks; middle: 

subcortical networks (hippocampus in purple, putamen in green); top right: default mode 

network (anterior shown in green and posterior shown in purple); bottom right: salience 

network. All spatial maps were thresholded at Z > 3.
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Figure 2. Altered Superior Temporal Network Connections in Hallucinating and 
Nonhallucinating Patients
Warm (yellow/red) colors depict areas of increased network connectivity in patients while 

cool (blue) colors depict network connectivity that is decreased in patients relative to 

controls. Relative to healthy subjects, both patient groups show significantly increased 

connectivity between the STG and hippocampus; hallucinators show elevated connectivity 

between STG and salience network, while nonhallucinating patients show widespread 

decreases in STG network connectivity. All significant group differences occur with STG 

networks (outlined in blue rectangles). VIS: visual networks; SC: subcortical networks; 

STG: superior temporal gyri; DMN: default mode network; SN: salience network.
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Figure 3. Abnormal Hippocampal Activity and Functional Communication Between Salience 
and Auditory Networks in Schizophrenia
(A) Reported VH and AH severity are associated with left hippocampal ALFF (Hare et al. 

2017), while AH severity is associated with salience-auditory (BA 22) FNC. In 

schizophrenia, there is a loss of normal relationships between hippocampal ALFF and FNC 

found in healthy subjects (red arrow). In hallucinating (HALL) patients, there is an abnormal 

positive association between hippocampal ALFF and FNC between salience and auditory 

(BA 41) networks (green arrow). (B) These results favor an abnormal hippocampal binding 

model in which disrupted hippocampal oscillations beget a loss of normal FNC in 

schizophrenia patients, and may drive abnormal FNC between salience and auditory 

networks. ALFF: amplitudes of low frequency fluctuations; AH = auditory hallucination; 

FNC = functional network connectivity; VH = visual hallucination
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Table 1

Participant Demographic and Clinical Information

AH (n=42) VH (n=39) NH (n=60) HC (n=153)

Demographic Info

  Age 37.8 (11.9) 37.1 (11.4) 40.0 (11.8) 37.8 (11.4)

  Gender 32 (m), 10 (f) 30 (m), 9 (f) 43 (m), 17 (f) 108 (m), 45 (f)

  Handedness (r/l/a) 36 (r), 5 (l), 1 (a) 32 (r), 5 (l), 2 (a) 60 (r), 0 (l), 0 (a) 83 144 (r), 7 (l), 2 (a)

  Smoking Status 19 (s), 23 (n) 19 (s), 20 (n) 24 (s), 36 (n) 14 (s), 139 (n)

  Socioeconomic Status subject*a 50.8 (13.1) 51.2 (13.6) 50.2 (12.7) 33.5 (12.7)

  Socioeconomic Status caregiver*b 33.8 (14.8) 35.4 (14.1) 37.6 (14.6) 30.4 (14.7)

Subject Motion

  Mean Framewise Displacementc 0.44 (0.3) 0.42 (0.3) 0.35 (0.2) 0.29 (0.2)

Patient Population

  Duration of Illness 18.0 (11.0) 16.9 (12.5) 17.0 (11.4) n/a

  Chlorpromazine equiv.(CPZ Woods)d 401.1 (443.1) 335.4 (294.6) 367.9 (356.2) n/a

  Total PANSS*e 57.7 (12.6) 63.6 (13.5) 54.2 (13.1) n/a

  PANSS-positive*e 16.6 (4.5) 17.8 (4.1) 13.0 (4.1) n/a

  PANSS-negative 13.7 (5.3) 15.3 (6.1) 13.9 (4.8) n/a

  Total SAPS*f 25.1 (13.3) 40.0 (17.4) 12.1 (12.3) n/a

  Total SAPS adjusted for 2 hallucination items*g 21.8 (12.8) 33.9 (16.5) 12.1 (12.3) n/a

*
Group ANOVA is significant at p=0.05

a
AH, VH, and NH groups all significantly different than HC (Bonferroni post-hoc, p<0.01)

b
NH vs. HC significantly different (Bonferroni post-hoc, p<0.01)

c
AH vs. HC significantly different (Bonferroni post-hoc, p<0.01); VH vs. HC significantly different (Bonferroni post-hoc, p = 0.018).

d
We only had this information for a subset of patients; percent reporting = 87.2%

e
VH vs. NH significantly different (Bonferroni post-hoc, p<0.01)

f
AH vs. NH and VH vs. NH both significantly different (Bonferroni post-hoc, p<0.01)

g
all post-hoc comparisons are significantly different (Bonferroni post-hoc, p<0.01)
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Table 2

Nine Networks: Characteristics of Spatial Maps

Location of Peak Voxel
in Group Aggregate
Spatial Map

MNI
coordinates of
peak voxel

Other Regions Included in Z-
thresholded Aggregate Spatial
Map (Z > 3)

Network 1 Right Calcarine/Cuneus BA 17 [9, −84, 9] Superior/Middle Occipital (BA 18), Precuneus/PCC (BA 30)

Network 2 Middle Occipital BA 18 [27, −96, 0] Precuneus, Calcarine (BA 17)

Network 3 Right Putamen [30, −3, 0] Cerebellum, Anterior Lobe/Vermis

Network 4 Left Hippocampus BA 20 [−30, −9, −18] Parahippocampal Gyri, Left/Right Amygdala, Anterior Cerebellum 
(Dentate)

Network 5 Left Superior Temporal BA 41 [−42, −33, 15] Opercular/Insular Cortex; Superior Temporal (BA 22)

Network 6 Right Superior Temporal BA 22 [60, −18, −6] Middle Temporal (BA 6, 21)

Network 7 Medial Frontal (Interhemispheric) BA 
9

[0, 51, 39] Superior Frontal (BA 32)

Network 8 Left Precuneus BA 23 [−6, −54, 27] Left/Right Angular Gyrus (BA 39); Medial Frontal (BA 10)

Network 9 Left Insula [−30, 24, −6] Dorsal Anterior Cingulate, Middle Cingulate (BA 32); Medial 
Frontal (BA 9)
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