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Abstract

Over the last thirty years, deep brain stimulation (DBS) has been used to treat chronic neurological 

diseases like dystonia, obsessive-compulsive disorders, essential tremor, Parkinson’s disease, and 

more recently, dementias, depression, cognitive disorders, and epilepsy. Despite its wide use, 

DBS presents numerous challenges for both clinicians and engineers. One challenge is the 

design of novel, more efficient DBS therapies, which are hampered by the lack of complete 

understanding about the cellular mechanisms of therapeutic DBS. Another challenge is the 

existence of redundancy in clinical outcomes, i.e., different DBS programs can result in similar 

clinical benefits but very little information (e.g., predictive models, longitudinal data, metrics, 

etc.) is available to select one program over another. Finally, there is high variability in patients’ 

responses to DBS, which forces clinicians to carefully adjust the stimulation settings to each 

patient via lengthy programming sessions. Researchers in neural engineering and systems biology 

have been tackling these challenges over the past few years with the specific goal of developing 

novel DBS therapies, design methodologies, and computational tools that optimize the therapeutic 

effects of DBS in each patient. Furthermore, efforts are being made to automatically adapt the 

DBS treatment to the fluctuations of disease symptoms. A review of the quantitative approaches 

currently available for the treatment of Parkinson’s disease is presented here with an emphasis 

on the contributions that systems theoretical approaches have provided to understand the global 

dynamics of complex neuronal circuits in the brain under DBS.

1. INTRODUCTION

Chronic deep brain stimulation (DBS) devices (Fig. 1) were first approved by the US Food 

and Drug Administration (FDA) in 1997 to treat tremor. Since then, DBS therapies have 

been used to treat patients with Parkinson’s disease (PD), dystonia, obsessive-compulsive 
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disorders, and epilepsy 1, 2. More recent applications of DBS include the treatment of 

refractory depression, psychiatric disorders, and neurodegenerative dementias 3–5.

In patients with advanced PD, DBS is used to ameliorate motor symptoms and reduce motor 

fluctuations while decreasing the dosages of anti-parkinsonian medications 6, 7, which leads 

to a more efficient and prolonged management of the PD symptoms 1, 2. Clinical ratings of 

motor symptoms typically improve by more than 50% in appropriately selected PD patients 
1 and this explains the increasing number of patients (8,000–10,000) who receive DBS 

surgery every year compared to patients with other neurological diseases 8.

The success of DBS, though, critically depends on the parameters defining the electrical 

pulses delivered by the pulse generator (i.e., duration, amplitude, and frequency) and must 

be carefully assigned (Fig. 1) 9. Tuning of the DBS parameters must account for the unique 

combination of symptoms that each patient presents and may require several adjustments 
10. Because of the therapeutic relevance of the stimulation parameters, current clinical 

protocols require that the DBS devices are programmed manually through multiple sessions 

over a few days or weeks. During these sessions, the range of viable parameter values 

must be carefully probed while a trained clinician (e.g., neurologist, neurosurgeon, fellow, 

occupational therapist, etc.) must evaluate the symptomatic benefits of the stimulation by 

using clinical rating scales and finally identify the most adequate parameter values 11.

The complexity and time-consuming nature of these programming protocols has promoted 

an intense research activity to devise new computational tools that may assist the clinicians 

and shorten the programming phase. In this effort, researchers in neural control and systems 

biology had an important role in pioneering closed-loop programming procedures, adaptive 

DBS solutions, and model-based control policies that may optimize the therapeutic effects of 

DBS while coping with the fluctuations of the disease symptoms. Moreover, computational 

models and systems analyses have been developed to investigate the cellular mechanisms of 

therapeutic DBS protocols and to design novel DBS technologies.

We provide here a review of the quantitative approaches that have been recently developed 

for the treatment of Parkinson’s disease via DBS, with an emphasis on the contributions 

that systems theoretical approaches have provided to understand the global dynamics of 

complex neuronal circuits in the brain under DBS. Several modeling approaches have been 

proposed to describe the brain dynamics under PD and to personalize the DBS therapy, 

e.g., see (Lowery, 2017) 12 for a comprehensive overview. Our goal here is to review the 

implications and insights that have been gained by using a systems theoretical approach in 

association with these models to analyze the neural dynamics and optimize the DBS therapy 

via model-based techniques.

2. BASAL GANGLIA AND PARKINSON’S DISEASE

Current protocols for DBS surgery in PD recommend the placement of the DBS electrode in 

either the subthalamic nucleus (STN) or the internal globus pallidus (GPi) 9, 13 in the basal 

ganglia (Fig. 1).
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The basal ganglia are a group of subcortical nuclei involved in multiple segregated circuits 

(e.g., limbic, prefrontal, motor, oculomotor loop) that modulate the cortical activity 14 

(Fig. 2a). The motor circuit is involved in the planning of movements and consists of 

multiple parallel polysynaptic loops, which are hypothesized to convey bits of information 

(independent of the other loops) about a selected motor program 15, 16. Each loop in the 

motor circuit begins with a convergent input from the premotor and sensorimotor cortices to 

the striatum (putamen region, 17) and then proceeds through different pathways to the GPi 

or the substantia nigra pars reticularis (SNr), which project to the ventrolateral thalamus and 

the brainstem. The ventrolateral thalamus is believed to process, integrate, and relay sensory 

information selectively to the sensorimotor, premotor, and motor cortices 14, 18. Other nuclei 

involved in the motor circuit are the substantia nigra pars compacta (SNc), the STN, and 

the external globus pallidus (GPe). A widely accepted functional model 19 suggests that 

there are two dopamine-mediated pathways through the BG motor circuit (i.e., the direct 

and indirect pathway, see Fig. 2a). Based on the polarities of known connections, the direct 

pathway is thought to facilitate movements while the indirect pathway is thought to suppress 

movements.

Parkinson’s disease degenerates the neurons in the SNc and the consequent loss of dopamine 

alters the function of these pathways 15 (Fig. 2b) and contributes to the emergence of 

the movement disorders. A functional explanation for the effects of dopamine depletion 

on the basal ganglia was first provided by Albin and DeLong in the model 19. Based on 

anatomical and physiological considerations, they observed that there are different types of 

dopaminergic receptors in the putamen, i.e., D1-type for the direct pathways and D2-type 

for the indirect pathways, respectively, which have opposite effects on the activation of 

the striatal neurons 20. Specifically, a loss of dopamine would suppress the striatal neurons 

projecting onto the GPi and therefore inhibit the direct pathway. Conversely, a loss of 

dopamine would facilitate the activity of the neurons projecting onto the GPe, thus exciting 

the indirect pathway (Fig. 2b). A result of this dual effect would be an over-inhibition of the 

thalamus, which would corrupt the information relayed back to cortex 14, 19.

It is important to note that such arguments were originally phrased in terms of average firing 

rates of neurons. Numerous experimental studies later demonstrated that the dynamics, i.e., 

the temporal arrangement of the spikes, in the basal ganglia neurons play an important 

role in the pathophysiology of Parkinson’s disease. First, it has been shown that a severe 

deficiency of dopamine positively correlates with the formation of abnormal oscillatory 

activity, mostly confined to the beta band (13–35 Hz), throughout the entire system of the 

basal ganglia 21–29. These oscillations are suppressed by medications that target the central 

dopaminergic activity and their amplitude correlates with the intensity of the bradykinesia 

and rigidity symptoms of PD 27, 30. Furthermore, the beta activity is phasic and organized 

in long, high-amplitude bursts 31, which suggests a pervasive oscillatory synchronization 

within the entire motor circuit.

Second, studies 32, 33 quantified the ability of the neurons in the ventrolateral thalamus 

to encode sensorimotor information such as tactile stimuli and passive movements of the 

limbs under PD conditions. They reported that the selectivity of the thalamic response to 
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the stimuli significantly decreases under dopamine depletion, which may indicate a loss of 

functional segregation along the loops forming the motor circuit.

Overall, there is converging evidence suggesting that, under Parkinsonian conditions, the 

parallel loops forming the motor circuit become rhythmic and overly-synchronized, which 

consequently limits their ability to convey independent bits of information about specific 

motor programs through different, parallel pathways 15.

3. DBS THERAPY

The DBS implant consists of an electrode lead inserted in the basal ganglia (STN or GPi) 

and connected to an insulated wire (a.k.a. “extension”) that passes under the skin of the 

head, neck and shoulder and terminates at the implanted pulse generator (Fig. 1). The pulse 

generator sits inferior to the collar bone and delivers electrical stimulation to the tip of the 

electrode via the extension.

The generator delivers voltage-controlled, charge-balanced pulses with a regular pattern (i.e., 

constant inter-pulse intervals) and the typical parameter settings of voltage, pulse width, and 

frequency range from 1–3.5 V, 60–210 μs, and 130–185 Hz, respectively 34–36. In a large, 

multi-center study involving PD patients 37, Obeso and colleagues determined the mean 

stimulus parameter settings being 3 V, 82 μs, and 152 Hz for STN DBS, and 3.2 V, 125 μs, 

and 162 Hz for GPi DBS, respectively.

The ranges of voltage, pulse width, and frequency were mainly determined through 

empirical studies conducted on relatively homogenous groups of PD patients. For instance, 

Rizzoni and colleagues 36 estimated the relationship between pulse width and stimulus 

intensity (i.e., voltage) while monitoring the patients’ wrist rigidity as a hallmark for 

movement disorders. They found an inverse relationship between pulse width and voltage 

and reported that the minimum voltage value causing side effects increases as the pulse 

width decreases, thus concluding that DBS devices should be programmed with the shortest 

possible pulse duration. Moro and colleagues 34, instead, showed that the clinical benefits 

saturate above 3 V, while voltages above 3.6 V should be avoided because they result in 

an increased drain of the battery with no significant increment in the volume of neural 

elements excited. Finally, studies 35, 38 investigated the effects of the stimulation frequency 

on akinesia and rigidity in case of STN DBS. They reported that these symptoms reduce for 

frequencies above 50 Hz, the amount of symptom reduction increases almost linearly with 

the DBS frequency up to around 130 Hz, and the symptom reduction has a further small, 

nonlinear increase for frequencies from 130 Hz to 185 Hz.

The body of knowledge gained through these studies had a dual effect. On one side, it 

assisted with the formulation of the current protocols for DBS programming 10. On the 

other, it contributed to formulate hypotheses about the therapeutic mechanisms of DBS 
16, 39–41. Specifically, since the largest clinical benefits were achieved with a combination 

of high frequency, short pulse width, and high voltage, it was hypothesized that the 

mechanisms of therapeutic DBS involve replacing the pathological rhythms of the basal 

ganglia output seen in PD with a tonic, high frequency (HF) firing. This increased activity 
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would prevent neurons from modulating the activity in their neighboring structures, thus 

creating an “information lesion” in the area 16, 39–41.

The scenario, though, has rapidly changed in the last few years. First, studies 26, 40, 42 have 

shown that non-Parkinsonian neural activity is irregular and low frequency. Second, pilot 

studies 43–45 have shown that carefully-designed non-regular, low-frequency stimulation 

patterns may have clinical merits comparable to those of high-frequency, regular DBS. 

Altogether, these studies suggest that (i) therapeutic mechanisms other than the information 

lesion are possible but need further investigation, and (ii) novel, low-power DBS solutions 

can be devised. These solutions could preserve the clinical benefits of current DBS therapies 

while addressing the major limitations of the current technology, e.g., the inefficient battery 

consumption, the need for lengthy manual programming, and the widespread influence on 

nearby cognitive loops with possible adverse side effects 46–51.

This invokes, however, for a deeper understanding of the dynamical interactions between 

nuclei in the cortico-basal ganglia-thalamo-cortical motor circuit (Fig. 2) in healthy and 

PD conditions, with and without DBS 9, 52. It also invokes for the development of tools to 

optimize the stimulus waveforms and patterns, to use the battery power efficiently, and to 

robustly adapt the DBS input to the patient’s neurological conditions.

4. CHALLENGES IN MODELING THE EFFECTS OF DBS

Neuronal networks in the brain communicate information about a subject’s intent, internal 

state, and external environment through electrical activity. In PD, the lack of dopamine in 

the SNc is associated with pathological dynamics in the motor-related neuronal network 

spanning the cortico-basal ganglial-thalamo-cortical circuit (Fig. 2b), including pathological 

oscillations and synchronization 15. Such dynamics are related to the manifestation of 

movement disorders including resting tremor, rigidity, and bradykinesia (slowness of 

movements) 27, 30.

DBS has been introduced to the clinical practice to interfere with pathological network 

dynamics and restore behavior 9. From a systems perspective, DBS works as an exogenous 

localized control input into the network. It injects pulses of electrical current in well-defined 

anatomical sites (e.g., STN and GPi), but its effects spread throughout the entire network. 

Therapeutic DBS operates in open-loop and is typically high in power, which – although 

generally safe for the brain tissue 53 –leads to several problems: frequent surgical battery 

replacements, adverse side effects, and lack of adaptation of the stimulation to the patient’s 

needs and symptoms’ fluctuations 54, 55. Moreover, high power stimulation does not restore 

network dynamics back to a healthy state, rather it appears to “block” certain regions 

(e.g., GPi) that are most pathological 41. Since single neurons in the brain do not have 

sustained firing at high frequency (>100Hz) and high power signals in healthy conditions 
26, 42, there is an important opportunity to restore network dynamics with low power DBS, 

thus minimizing adverse side effects and improving safety. Furthermore, since pathological 

signatures and severity may vary in different patients, there is a need for adapting the DBS 

input to the patient’s own state, thus improving the potential therapeutic impact. To design 

adaptive low power signals, though, a predictive model of the affected neuronal networks 
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is required and a mathematically suitable framework for investigating innovative stimulation 

strategies must be formulated.

The research efforts reviewed in the next few sections pursued models that may generate 

activity in healthy and diseased conditions and may characterize the influence of DBS 

applied to specific target regions in the network. Some of these models also aimed to 

be amenable to analysis and simulation and were paired with control tools for designing 

computationally efficient DBS control strategies. The construction of models that satisfy all 

these features at the same time, though, remains an open-problem for several reasons:

• System is distributed. Networks involving brain structures are an interconnection 

of large groups of neuronal populations wherein information may be corrupted 

and communicated with delays.

• Fundamental units in system are complex. Single neurons are nonlinear 

multi-input single-output continuous-valued stochastic systems whose 

electrophysiological dynamics depend on the neuron type and location, the 

interconnections with other neurons, and, the signals provided by the extra- and 

intracellular environments.

• System phenomena change nontrivially in the diseased state. Pathological 

signatures such as synchronization and prominent oscillations typically arise in 

the diseased network and corrupt information transfer. These signatures may be 

localized in the network but have a global effect, which must be captured by the 

model.

• DBS influences the system dynamics in a non-trivial way. The underlying 

mechanisms of how DBS works and how it propagates through the network are 

not fully understood. DBS changes the extracellular environment in surrounding 

structures which in turn impacts the activity of each neuron, ultimately leading 

to a network effect. Different models have tried to capture these aspects with 

various degrees of success.

• Supporting data is difficult to collect. To construct a realistic model of the 

system, in vivo recordings from an entire neural circuit in healthy and diseased 

subjects, with and without DBS applied, must be obtained. These experiments 

are extremely difficult to perform and must be done with care on animals. 

Consequently, very few laboratories in the world have collected such data.

Current models of neurons and neuronal networks are predominantly biophysically-based 

and account for several factors that influence the electrophysiology of neurons, e.g., 

processing of synaptic input in the dendritic trees, ionic basis of electrical excitability, 

process of exogenous inputs such as the DBS signal 40, 56–60. On the other hand, 

some models ignore subcellular neurophysiological data and biophysics, and represent 

the neuronal circuit as a network of phase oscillators to study phenomena such as 

synchronization 61–63. These models do not account for biophysical factors such as short 

and long-term temporal dependencies that exist in spiking activity (e.g., refractoriness, 

bursting). However, they provide insight into network dynamics and may be more amenable 

for control design than biophysically-based models. Finally, several researchers have taken 
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a purely data-driven statistical modeling approach, where the key idea is to model only 

the timing between information-carrying events captured in neuronal network activity as 

opposed to modeling the biophysical mechanisms leading to spike generation. These critical 

events are sudden spikes in the neuronal transmembrane voltage, called “action potentials” 
17, 64, which are modulated by both extrinsic factors (e.g., external stimuli, DBS signal) and 

intrinsic factors (e.g., neuron’s own spiking history and that of neighboring neurons), and 

capture temporal dependencies observed in neuronal activity.

4.1. Biophysical Models

These models comprise single neuron elements which are variations of the Hodgkin-Huxley 

(HH) model 65. The HH model is an equivalent electrical circuit (Fig. 3) of the membrane 

electrochemistry, which characterizes the membrane potential, Vm, of a neuron as a function 

of the trans-membrane ionic currents:

CmV
.
m + ∑

i
gi(V m)(V m − Ei) = Ie (1)

The reversal potential for ion i, Ei, (also known as the Nernst potential) is the membrane 

potential at which there is no net flow of ions i from one side of the membrane to 

the other, and the conductances, the gi’s, depend nonlinearly on Vm and are determined 

experimentally. Typical expressions for sodium (Na) and potassium (K) conductances in the 

HH model are gNa(Vm) = gNamaxm3(Vm)h(Vm) and gK(Vm) = gkmaxn4(Vm), respectively, 

where ṡ = (s∞(Vm) − s)/τs(Vm), s = h, m, n, and s∞(Vm), τs(Vm) are monotonic functions 

for all s. With r types of ionic currents involved, the HH model for a single-compartmental 

neuron has at least r + 1 states. The DBS signal is typically modeled as an additive 

exogenous current, Ie = IDBS, in equation (1) 40.

These models have been extremely useful for understanding the underlying mechanisms 

driving the cellular membrane voltage and have been used to introduce novel hypotheses 

about the mechanisms of therapeutic DBS. A model by Rubin and Terman 40 first introduced 

the notion of “thalamic relay fidelity” as a potential metric of success for DBS and 

provided a qualitative explanation of the therapeutic effects of high-frequency DBS by using 

bifurcation analysis. An expansion of the model introduced by Rubin and Terman was later 

used to disentangle the contributions of local cells in the subthalamo-pallidal sub-system 

(i.e., STN, GPe, and GPi) and fibers of passage to the modulation of thalamocortical 

neurons 59 while other models of the subthalamo-pallidal sub-system 56, 57, 60 highlighted 

the cellular mechanisms that may lead to a shift in rate and pattern of neurons in the basal 

ganglia under DBS. More recently, we developed a comprehensive network model of the 

interactions between the basal ganglia, the motor cortex, and the thalamus (Fig. 4), and 

we analyzed the effects of PD and DBS on the exchange between neurons across different 

structures 58. Through numerical simulations, this model allowed to quantify the effects of 

DBS on multiple nested circuits as the frequency of stimulation increases. It demonstrated 

that high-frequency therapeutic DBS may evoke resonant effects over the cortico-basal 

ganglia-thalamo-cortical motor circuit. The model showed that the emergence of resonance 

depends on the frequency of DBS, modifies the global dynamics of the motor circuits, 
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and results in a general improvement of the metrics of functional neural activity (e.g., 

thalamic relay fidelity, power spectral content, etc.) that correlate with motor symptoms 

reduction, thus leading to the hypothesis that therapeutic DBS works by restoring the normal 

function and information processing capabilities of the motor circuit. Interestingly, this 

hypothesis overcomes the limitations of the information lesion theory 39–41, as it suggests 

that the therapeutic effects of HF DBS needs both the feedforward modulation of the 

pallido-thalamic pathway (which is accounted for by the information lesion theory) and the 

feedback modulation of the basal ganglia-cortico pathway to elicit resonance. Furthermore, 

it complements the information lesion theory as it shows that the high-frequency modulation 

of the pre-thalamic input restores the functional role of the thalamus in motor programming 

rather than leaving the thalamus in an inconsistent state. This is likely related to the nature 

of thalamocortical relay neurons, whose relay function depends on the temporal and spectral 

features of the presynaptic input 66. It has been shown in 66, in fact, that different classes 

of presynaptic temporal patterns may result in similar relay performances and that both 

high-frequency oscillatory patterns (i.e., like those generated by GPi under high-frequency 

DBS) and irregular patterns (i.e., like those generated by GPi under healthy conditions) may 

result in similar relay fidelity values in thalamocortical relay neurons.

Interestingly, equation (1) captures the point-wise relationship between ionic current 

densities and membrane potential in a single point along the neuron’s membrane 65, 67. 

Models 40, 56–60 are denoted as “single-compartment” as they assume that a point-wise 

relationship like (1) is representative of the global behavior of an entire neuron or, at least, of 

its soma, thus neglecting the effects of the inhomogeneous distribution of ion channels, the 

gradient in membrane potential along the neuron’s dendrites and axons, and the geometry of 

the DBS electrode.

Multi-compartment models 54, 68–70, instead, explicitly focus on the inhomogeneity of the 

neuron’s membrane and surrounding medium. In these models, the point-wise equation (1) 

is used as a model-unit to be repeated as many times as the number of neuron’s segments 

(a.k.a., “compartments”) to be modeled, and the compartments are interconnected according 

to the neuron’s own anatomy. Similarly, a finite-element description of the DBS electrode is 

paired with the neuron model and the anisotropy of the brain tissue is explicitly accounted 

for, thus resulting in a detailed three-dimensional representation of the interaction between 

the DBS-evoked electric field and the neuron. By encompassing a similar level of details, 

models have been used to investigate the local effects of DBS around the electrode and the 

complex electrochemical processes emerging at the interface between the DBS electrode and 

the nervous tissue as current is injected.

One caveat with the use of single- and multi-compartment biophysically-based models, 

though, is that they grow quickly in complexity as more neurons and segments are modeled, 

thus making analyses and the design of computationally efficient DBS control strategies 

intractable. Furthermore, parameters of these models are difficult to tune as they require 

intracellular measurements taken from single neurons in vitro via voltage, current or patch-

clamp techniques 65, 67. Therefore, several researchers have investigated other classes of 

models to describe and analyze the dynamics of neurons under PD conditions and DBS.
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4.2. Mean-Field Models

Mean-field models have been explored as an alternative to biophysically-based neuron 

models to simulate and analyze the neural activity around the DBS lead. Defined in 
71, these models tend to have a smaller number of state variables and equations than 

biophysically-based neuron models and capture the average electrophysiological activity 

of large, spatially-distributed ensembles of neurons, thus resulting amenable for both 

theoretical analysis and extensive simulations of large neural tissue layers.

The mean-field models proposed thus far to investigate the basal ganglia belong to the 

“neural mass” class (NM) 72, i.e., they primarily focus on the temporal dynamics of the basal 

ganglia and neglect spatial variability within each nucleus.

NM models have been extensively used to investigate the initiation of band-limited (e.g., 

beta-band) neural oscillations in the basal ganglia. Gillies and Willshaw 73, 74 proposed the 

following model template to describe the interaction between the average field potentials in 

the basal ganglia:

τnx.n = − xn + ∑
j

αj nσj n xj + Ie, n(t) (2)

where n is a generic nucleus in the basal ganglia (i.e., n = STN, GPe, etc.), xn is the average 

field potential in the nucleus n, and σj→n(xj) is a sigmoidal function that relates the average 

field potential xj in the nucleus j to the average firing frequency of the neurons in the nucleus 

n. Ie,n(t) provides a lump description of noise and external, non-specific inputs to the nucleus 

(e.g., input from secondary projections), and it can be expanded to include the DBS input. 

Finally, time constant τn and parameters αj→n must be estimated from data.

This model template was adopted in 74 to investigate the dynamics of the STN-GPe system 

and to show that oscillations consisting of bursts of high-frequency activity repeated at 

a low rate can be induced by increasing the inhibition of the GPe, which is typically 

observed in PD. Similarly, Modolo and colleagues 75 modified this model template to 

investigate the population effects of STN DBS and, through numerical simulations, they 

showed that low-frequency DBS (i.e., ≤ 20 Hz DBS) causes a phase-locking between the 

existing low-frequency pattern of the STN-GPe system and the DBS frequency, which 

determines an enhancement of the burstiness and synchrony across the STN. Vice versa, HF 

DBS gradually decreases the burstiness of the STN activity and promotes tonic oscillations, 

whose frequency saturates to 100 Hz.

Finally, Pavlides and colleagues 76 extended the modeling framework (2) to include 

the projections between the STN-GPe system, striatum, thalamus, and cortex. Through 

numerical simulations, they showed that pathologic, widespread beta-band oscillations can 

equally originate in the motor cortex or the STN-GPe system and then resonate throughout 

the basal ganglia. This modeling result is interesting because it suggests that the beta-band 

oscillations could be an emergent property of the entire motor circuit rather than a localized 

phenomenon. This would help to explain why the application of DBS in virtually any 
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structure along the motor circuit can eventually modulate the power of beta oscillations and 

deliver some amelioration of the symptoms of Parkinson’s disease.

A different approach to NM modeling was taken instead in 77. In this study, the stochastic-

based dynamic causal modelling (DCM) framework 78 was used to investigate the spectral 

properties of large neural ensembles in the basal ganglia. Specifically, a DCM was fitted 

on measurements of auto- and cross-power spectra from the local field potentials of the 

STN, GPe, cortex, and striatum in a rodent model of PD. The model parameters were then 

analyzed to determine the effects of dopamine depletion on the connectivity between nuclei. 

Through this effort, authors demonstrated that chronic dopamine depletion reorganizes the 

motor circuit, i.e., it increases the effective connectivity between the cortex and the STN and 

decreases the connectivity from the STN to the GPe. Moreover, this study complements the 

results in 76 as it shows that, upon dopamine depletion, the effective connectivity along the 

indirect pathway may be relevant to the resonation of the beta-band oscillations.

Although amenable for computational and theoretical studies, these models often present 

limitations for control applications, as they typically focus on a single biomarker (e.g., beta-

band oscillations) estimated under stationary conditions. However, recent experiments 31, 79 

indicate that band-limited oscillations may equally emerge under healthy and PD conditions, 

are non-stationary, and may be modulated in frequency and pattern by the execution 

of movements. Overall, this suggests that multiple biomarkers should be simultaneously 

considered.

4.3. Oscillator Network Models

The dynamics of periodically spiking neurons has also been modeled with a network of 

phase oscillators, where each oscillator represents the phase of the membrane voltage, V, of 

a single neuron 61–63. A population of N interacting phase oscillators subject to stimulation, 

Sj, and to random forces, Fj, obeys

θ
.
j = ω − K

N ∑
k = 1

N
sin (θj − θk) + ωj(t)Sj(θj) + Fj(t) (3)

where θj denotes the phase of the j-th phase oscillator. All oscillators have the same 

eigenfrequency ω and are globally coupled with strength K > 0. The impact of an electrical 

stimulus depends on the neuron’s phase and is modeled by a 2π-periodic function such as 

Sj(θj) = Icos(θj) with intensity parameter I. Fj(t) characterizes random forces modeled as 

Gaussian white noise 62, 63.

The study of large scale networks of oscillator models (3) has raised significant interest 

in the control theory and systems biology communities 80. In PD, the emergence of 

pathological oscillations and synchronization in the 10–30Hz range in the STN, GPi, 

and cortex 24, 42 has inspired the use of oscillator networks to investigate the transition 

from a normal, desynchronized state to an abnormal, hyper-synchronous state. Perhaps 

more importantly, the theoretical framework provided by the oscillator model (3) has 

been highly amenable to design novel DBS patterns and closed-loop, adaptive DBS 
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paradigms. Early contributions by Tass and colleagues have suggested that DBS may be 

used to periodically reset the STN neurons and thus achieve a de-synchronized state 62, 63. 

Furthermore, they suggested that local field potentials from the DBS electrode may be 

a proxy for the abnormal synchronization in the STN and that, by using the local field 

potentials as feedback variable in a closed-loop-controlled DBS configuration, it is possible 

to desynchronize the STN neurons through low-amplitude, non-pulsatile DBS currents 81, 82.

The idea of using DBS to reset a hyper-synchronized state has been further explored 

in recent years by introducing the notion of phase-response-curve (PRC). In a series of 

computational studies 83–85, Mohelis, Netoff, and colleagues have investigated metrics to 

characterize the level of synchronization in a large population of neurons and have proposed 

a closed-loop programming paradigm to maximally desynchronize the STN neuronal 

activity in PD patients. An example of the resultant model predictions is reported in Fig. 

5.

One caveat with the model (3), though, is that precisely measuring the level of 

synchronization in a large population of neurons may be challenging with the currently 

implanted DBS electrodes, which may limit the practical application of the proposed 

methods 84. Several studies have proposed local field potentials as a reliable proxy of the 

network activity 86, 87 but the variability of the field potential amplitude and frequency 

content across patients may hamper the translation of the proposed solutions.

4.4. Statistical Models

An alternative to the parametric models presented in the previous sections is provided 

by non-parametric, data-driven models estimated from spike trains recorded in PD 

patients during the DBS surgery or animal models of Parkinsonism. One of the most 

amenable mathematical formulations for spike trains is provided by point processes 88, 89. 

Combined with generalized linear models and maximum likelihood estimation methods, 

point processes provide a modular modeling framework to capture higher order statistical 

properties of spike trains 90–92, quantify the effects of exogenous stimuli (e.g., sensorimotor 

feedback, DBS, etc.) on the spiking patterns of neurons 93, and reconstruct the functional 

connectivity between neurons in large networks 94.

A point process model (PPM) generalizes the rate of a Poisson process to one that is history 

dependent, and can characterize the relative contribution of intrinsic factors (e.g., spike 

history effects) and extrinsic factors (e.g., behavior, DBS, etc.) on the probability that a 

neuron will spike at any given time 89, 90. Formally, a point process is a series of 0–1 random 

events that occur in continuous time. For a neural spike train, the 1s are individual spike 

times and the 0s are the times at which no spikes occur. To define a PPM of neural spiking 

activity, we consider an observation interval (0, T] and let (t) be the number of spikes 

counted in (0, t] for t ∈ (0, T]. The PPM is then completely characterized by its conditional 

intensity function (CIF) λt defined as

λt(ℋt) = limΔ 0
P(N(t + Δ) − N(t) = 1 ∣ ℋt)

Δ (4)
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where ℋt denotes the history of spikes and any other variable that impacts spiking 

propensity up to time t (t is not included) and ℘ is probability. It follows from (4) that 

the probability of a single spike in a small interval (t, t + Δ] is approximately ℘ (spike in (t, 
t + Δ]|ℋt ≅ λt(ℋt)Δ.89 For any realization of these processes, the sample path likelihood for 

the interval (t0, T],

ℒ = exp ∫t0

T
log λu(ℋu) dN(u)_∫t0

T
λu(ℋu)du (5)

can be computed and used for static parameter estimation and model comparison91. Because 

the CIF completely characterizes a spike train, defining a model for the CIF defines a model 

for the spike train 88, 89.

In recent years, we proposed the use of point process models to characterize the response 

of neurons to DBS and account for certain features of neuronal firing like refractoriness, 

bursting and oscillations. In a series of seminal studies on the statistical properties of STN 

neurons from PD patients and primates, Sarma and colleagues 95–99 used point process 

models to discriminate healthy versus pathological discharge patterns, and quantify the 

effects of exogenous sensory stimuli on the subthalamic activity. A schematic of PPM 

for STN neurons under DBS is reported in Fig. 6. Filters ℱ1 and ℱ2 are linear and 

estimated from spike trains collected in PD patients or primates. Parameters in ℱ1 and ℱ2 

are estimated by using the maximum likelihood method while the order and mathematical 

structure of the filters is chosen by maximizing the goodness-of-fit on the available data. 

Model parameters in ℱ1 and ℱ2 are then used to quantify the effects of exogenous 

sensory stimuli on the neuronal spiking pattern and to infer intrinsic neural dynamics like 

refractoriness, bursting, and rate oscillations.

A similar PPM-based approach was later applied to spike trains collected across the entire 

motor circuit (i.e., GPi, GPe, striatum, ventral and medial thalamus, motor, and sensory 

cortices) in non-human primates both before and after developing Parkinsonism, with and 

without STN DBS 100–105. The analysis showed that, on average, neurons in different brain 

regions have similar responses to the DBS pulse, which may be a consequence of activating 

multiple neuronal circuits simultaneously, but the efficacy 106 of such response is generally 

low at non-therapeutic DBS frequencies. As the stimulation frequency increases, though, 

the efficacy significantly improves and reaches a peak value for DBS frequencies around 

130Hz, which is a highly therapeutic frequency for non-human primates 107. Furthermore, 

the analysis revealed that increments of the stimulation frequency are associated with 

increments in neural entrainment and complexity, i.e., ensembles of neurons under the same 

DBS input would spike in a more similar manner over time and the discharge patterns would 

be highly nonstationary. Overall, these results indicate that neurons across the entire cortico-

basal ganglia-thalamo-cortical circuit may have an increased capability of transferring and 

processing information under DBS, which would compensate for the loss due to PD 108.
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5. OPTIMIZING DBS THERAPY

All the modeling approaches presented thus far have contributed to investigate the cellular 

effects of electrical stimulation, to analyze the pathophysiology of PD, and to formulate 

novel hypotheses about the source of therapeutic merit for high-frequency regular DBS. 

These approaches have also resulted in numerical simulators of the cortico-basal ganglia-

thalamo-cortical motor circuit with various degrees of complexity, resolution, and accuracy.

Simulators based on multi-compartment biophysically-based neuron models have been 

primarily used as computational testbeds to evaluate novel DBS pulse waveforms, electrode 

geometries, and stimulation modalities, e.g., current-versus voltage-controlled stimulation, 

unipolar-versus bipolar-stimulation, etc. 54, 109–113. Perhaps more interestingly, these models 

have been used to optimize the DBS therapy at the level of individual patients by combining 

numerical simulations and medical imaging, Fig. 7. First, the detailed models of DBS 

electrode and neurons are used to carefully estimate the volume of neural tissue that is likely 

activated by a DBS pulse train. Then, the estimated volume is overlapped with reconstructed 

3-D images of the patient’s brain. Finally, the overlap between the estimated volume and 

the image-based reconstruction of the STN (for subthalamic DBS), GPi (for pallidal DBS), 

or ventrolateral thalamus (for thalamic DBS) is maximized. The maximization problem is 

solved by using convex optimization and machine-learning tools, and is formulated either 

at the time of DBS surgery 114, 115, i.e., when the trajectory of the electrode in the brain is 

planned and the final electrode position must be chosen, or at the time of DBS programming 
116–121, i.e., when the electrode has been already implanted and the DBS pulse settings must 

be programmed.

Solutions 114–121 offer several advantages. First, they may assist clinicians during the DBS 

programming sessions and eventually reduce the duration of such sessions. Moreover, the 

proposed approaches can be advantageous as the number of contacts on a DBS electrode 

increases, thus enhancing the ability to customize the DBS-evoked electric field. Finally, 

the optimization process results in a patient-specific DBS program that can be applied in 

open-loop with no change to the current hardware, i.e., pulse generator and lead, Fig. 1. 

Possible limitations, instead, include the elevated computational cost of the optimization 

routines and multi-compartment model simulations, the cost for the integration of image 

processing and computational models, and the cost for gathering and harmonizing data 

from multiple sources at different stages of the DBS surgery, e.g., pre-surgery imaging, 

intraoperative recordings, etc.

Simulators based on single-compartment neuron models, instead, have been used in two 

distinct DBS design problems. One problem is the offline optimization of the DBS pattern, 

i.e., the goal is to design an optimal DBS pulse train that may be delivered in an open-loop 

configuration. Studies 44, 122 paired a model of the subthalamo-pallidal subsystem40 with 

a genetic algorithm to optimize the DBS temporal pattern. In both studies, the goal of 

the optimization procedure was to maximize the relay reliability index 40, which measures 

the relay capability of the thalamocortical recipients of the subthalamo-pallidal subsystem. 

Results indicated that low-frequency, non-regular DBS patterns can (i) significantly improve 

the thalamic relay reliability over the baseline value under PD conditions and (ii) provide 
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results like therapeutic, high-frequency, regular DBS. Moreover, Brocker and colleagues 44 

tested these optimized DBS patterns on both PD patients and rodent models of PD. Results 

showed that (1) the optimized DBS patterns were effective in the treatment of bradykinesia 

and tremor, i.e., two of the most impairing motor symptoms of PD, and (3) the average 

improvement in clinical ratings under DBS correlates well with the increments in relay 

reliability measured in the model under the same DBS input. Overall, these results suggest 

that non-periodic, low-frequency DBS patterns may be as effective as high-frequency, 

regular DBS but – to efficiently design such patterns – metrics must be introduced to 

quantify the effects of DBS on the dynamics of the cortico-basal ganglia-thalamo-cortical 

motor circuit.

The second problem involving single-compartment neuron models is the closed-loop 

regulation of DBS. Studies 123–129 have investigated potential feedback variables and model-

based control strategies for DBS. A common trait of these studies is the focus on the pallido-

thalamic interface, i.e., the synaptic currents from the GPi to thalamus are considered a 

proxy for the thalamic relay reliability and used as feedback variables. Different techniques 

have been proposed to design the controller (e.g., PID124, model-predictive control 126, 

linear control 129, nonlinear control 128, etc.) and to estimate the synaptic input to thalamus 

by processing extracellular field potentials in the GPi. Despite the variety of control design 

techniques, though, all these studies aim to attenuate aberrant oscillations in the pallido-

thalamic interaction, which has been suggested to deteriorate the thalamic relay reliability 
66, and to restore a more normal activity across the cortico-basal ganglia-thalamo-cortical 

circuit. Furthermore, all the proposed solutions include a reference signal for the closed-

loop scheme and design such signal off-line by simulating the single-compartment neuron 

models under non-PD conditions. Results from these studies consistently indicate that a 

non-pulsatile, non-periodic, low-amplitude DBS input can produce the same effects on the 

neural circuit as high-frequency DBS pulse trains while using a fraction of the energy 

required by the DBS pulse trains. Similar conclusions are derived in three studies 87, 129, 130 

where the pulsatile nature of the DBS input is preserved, and the control strategy aims to 

adapt the amplitude and frequency of the DBS pulse train.

Overall, the main advantages of the proposed control solutions are (i) to impose a desired 

pattern to the neural activity while using a fraction of the power of current DBS programs 

and (ii) to adapt the stimulation to the actual state of the neurons in the cortico-basal 

ganglia-thalamo-cortical circuit. These results were later confirmed in PD patients 131, 132 

and indicate that a closed-loop DBS therapy may be more energy-efficient and robust 

to motor fluctuations than open-loop DBS. Despite the success in early studies, though, 

model-based closed-loop DBS is still under investigation. The advantages in robustness, 

adaptivity, and energy-efficiency, in fact, are paired with the need for more sophisticate pulse 

generators, fast signal processing algorithms, and more computational power. Furthermore, 

the design of the reference signal is critical for the control performance and may cause 

unintended interference between the DBS input and neural dynamics that are completely 

unrelated to the PD condition 79.
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6. CONCLUSIONS

Significant progress has been made in understanding and optimizing DBS in the last 

few years using systems approaches. Numerous models at different levels of detail and 

complexity have contributed to isolate potential factors to the therapeutic merit of high-

frequency, regular DBS. Computational models have also fueled the investigation of novel, 

irregular and low-frequency DBS programs, thus leading to the important conclusion that 

the set of therapeutic DBS programs is overall larger than initially hypothesized. New tools 

and methods are therefore necessary to search this set and to systematically identify the 

most adequate DBS program for each patient. Furthermore, there is a growing interest in 

using these models to predict the therapeutic outcomes of novel electrode geometries. With 

the possibility of fabricating multipolar electrodes with a growing number of contacts, there 

is an opportunity to finely shape the electric field applied to the stimulation target and 

therefore models are required to carefully evaluate different contact configurations. Finally, 

the ability to model complex neuronal networks that span several brain nuclei offer a unique 

opportunity to evaluate novel stimulation targets, i.e., to simulate the effects of DBS on 

the neural circuits when the DBS electrode is placed in novel sites in the brain. These 

model-assisted therapies would help clinicians identify the most effective DBS location and 

program for each class of dominant motor symptoms and would lead to the development of 

quantitative criteria for planning the most adequate DBS surgery for each patient.

The proposed modeling frameworks have been often paired with model-based control 

techniques to design and evaluate closed-loop adaptive DBS strategies. The effort in 

designing control strategies for DBS has led in recent years to promising solutions that 

may help cope with the fluctuations of the PD conditions and neural variability. These 

solutions, though, still require further analysis to avoid unintended interactions with brain 

functions that are not affected by PD. Furthermore, the development of these solutions poses 

novel engineering challenges and design constraints on the stimulation devices, for which 

a thorough costs/benefits analysis is still required. Finally, these solutions are still in their 

early stages and need to translate from pre-clinical testing phases to clinical trials. This 

explains why the empirical evidence of the promised benefits is at the moment encouraging 

but still limited.
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SIDEBAR

Parkinson’s disease (PD) is the second-most common neurodegenerative disorder in the 

United States after Alzheimer’s disease. Prevalence of PD is estimated around 0.3% of 

the general population, with rates increasing to 1–2% and 4–5% for individuals over 

age 65 and 85, respectively. Major motor symptoms of PD include bradykinesia (i.e., 

slowness of voluntary movements), rigidity, tremor, and postural instability. The severity 

of these symptoms increases as the disease progresses. Current treatments help alleviate 

symptomatic effects, but no available treatments have been proven to cure or slow disease 

progression. DBS is typically recommended to PD patients who are still responsive to 

anti-PD medications but have developed medication-induced dyskinesia. On average, 

patients undergoing the DBS surgery are at relatively advanced stages of the disease, 

with severe motor complications and a mean disease duration of 12 to 15 years. By 

adding DBS therapy, these late-stage PD patients may better manage the dyskinesia and 

other motor complications, reduce their dosages of anti-PD medications by 30–50% on 

average, and overall prolong the management of PD symptoms.
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Figure 1. 
Schematic of the chronic deep brain stimulation implant and devices for the treatment of 

Parkinson’s disease. An electrode is surgically implanted either in the subthalamic nucleus 

(STN) or the internal globus pallidus (GPi) and connected to an implanted pulse generator 

through subcutaneous wires. The pulse generator is programmed to deliver charge-balanced, 

voltage-controlled electric pulses. Typical duration of the anodic part of each pulse is 60–90 

μs and pulse amplitude is 2–3V. Image reproduced from (Hickey & Stacy, 2016) 2 under the 

Creative Commons Attribution License (CC BY).
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Figure 2. 
A–B) Classic model of the basal ganglia in healthy (A) and parkinsonian (B) conditions. 

Cortex provides excitatory glutamatergic projections to the putamen (a part of striatum), 

which sends GABAergic inhibitory projections to the GPi and the SNr by two pathways: 

the “direct circuit” (putamen-GPi) and the “indirect circuit” (putamen-GPe-STN-GPi/SNr). 

Dopamine from the SNc facilitates striatal neurons in the direct pathway and inhibits 

those in the indirect pathway. In Parkinson’s disease (B), dopamine depletion causes hyper-

activity along the indirect circuit and hypo-activity along the direct circuit. Green, red, 

and black arrows denote excitatory (i.e., glutamatergic), inhibitory (i.e., GABAergic), and 

dopaminergic projections, respectively. Thick and thin-dashed arrows indicate hyper- and 

hypo-activity, respectively. Legend: VL = ventrolateral; GPe (GPi) = external (internal) 

globus pallidus; STN = subthalamic nucleus; SNr (SNc) = substantial nigra pars reticulata 

(pars compacta).
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Figure 3. 
Electrical equivalent circuit model of neuron with sodium (Na) and potassium (K) ion-

channels and leakage current (L).
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Figure 4. 
Example of single-compartment network model of the motor circuit from 58. a–d) Statistical 

features of the simulated spike trains are compared to those of single unit spike trains 

collected in animal models of PD in vivo both before and after inducing parkinsonian motor 

symptoms. Data refers to motor cortex (a), ventrolateral thalamus (b), GPi (c), and putamen 

(d), respectively. Numerical simulations were designed to mimic the experimental setup 

used to collect the data. Results from numerical simulations were averaged over 600 neuron 

models per nucleus and closely reproduced the experimental data. Further description of 

the statistical features, source of the experimental data, and data collection procedures is 

reported in 58.
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Figure 5. 
Example of phase response curve (PRC) estimated from a population of STN neuron 

models. a) Spike density preceding (solid blue) and following (green) a single DBS pulse. 

Each spike density is fit separately with a 34 Hz sine wave (dashed lines). b) A plot of 

the population-average phase change versus the phase at the DBS pulse onset. Gray dots 

indicate the intensity of neural oscillations in the band 13–30 Hz at the time of each DBS 

pulse. Figure modified with permission from 83.
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Figure 6. 
Schematic of point-process model with a generalized linear structure and dependency of past 

spiking history and an exogenous sensory stimulus.
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Figure 7. 
Example of integration of pre-surgical imaging and multi-compartment modeling to estimate 

the volume of activated tissue in a PD patient. Solution proposed by McIntyre and 

colleagues 133. A–B) Stereotactic coordinate system relative to the patient imaging data (A) 

and atlas representations of anatomical nuclei. Yellow and green volumes are the thalamus 

and STN, respectively. The blue line represents the planned surgical trajectory of the DBS 

electrode. C–D) Stereotactic location (C) and final placement (D) of the DBS electrode, 

respectively. Yellow, green, and red dots indicate thalamic cells, STN cells, and SNr cells, 

respectively. Purple cylinders represent the electrode contacts. E) Volume of tissue activated 

during therapeutic DBS (red volume). Figure reproduced with permission from 133.
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