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A b s t r a c t An information system architecture defines the components of a system and
the interfaces among the components. A good architecture is essential for creating an Integrated
Advanced Information Management System (IAIMS) that works as an integrated whole yet is
flexible enough to accommodate many users and roles, multiple applications, changing vendors,
evolving user needs, and advancing technology. Modularity and layering promote flexibility by
reducing the complexity of a system and by restricting the ways in which components may
interact. Enterprise-wide mediation promotes integration by providing message routing, support
for standards, dictionary-based code translation, a centralized conceptual data schema, business
rule implementation, and consistent access to databases. Several IAIMS sites have adopted a
client-server architecture, and some have adopted a three-tiered approach, separating user
interface functions, application logic, and repositories.
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An Integrated Advanced Information Management
System (IAIMS)1,2 is an information system that pro-
vides health care users with the information they
need, when and where they need it.3 Because it is not
possible to supply all the needs of a health care
enterprise—administrative, clinical, scholarly, and
research—with a single computer application, any
comprehensive system will contain many compo-
nents. There are many users, and each user may play
several roles. Furthermore, users are engaged in using
many applications that have undergone various forms
of automation, ranging from word processors to com-
pletely paperless systems. The result is a multitude of
systems with redundant and conflicting data. The ob-
jective of IAIMS is to integrate these disparate systems
into a logical whole—to take something heterogene-
ous and make it function as a single coordinated sys-
tem.
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Architecture

To accomplish this difficult task, the IAIMS developer
relies on an architecture.4 An information system ar-
chitecture can be defined as a logical construct for de-
fining and controlling the interfaces and integration
of all of the components of a system.5 Put another
way, an architecture is a definition of the components
of a system, the boundaries of the components, and
the communications among them.6 There is no single
architectural view. Instead, the view will differ de-
pending on the context5: an analysis of the network
connections among several machines will be very dif-
ferent from an analysis of the data flow among the
applications.

Without an architecture, one is tempted to buy or
build whatever applications are needed and connect
them together in the most expedient way possible.
While this approach appears fast and cheap, it is tem-
porary at best. Soon the system will need to be mod-
ified, and even the smallest change will require exten-
sive effort. The cost of modifying such a system may
exceed the initial cost of putting it together.

An architecture primarily provides flexibility. It al-
lows a system to accommodate the variety of users,
roles, and processes. In a large enterprise, no single
vendor will supply all that is needed—electronic
mail, bibliographic searching, molecular modeling,
electronic courseware, clinical information systems,
etc. An architecture allows one to incorporate these
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F i g u r e 1 Layering. Application A wishes to commu-
nicate with application B. It does so by requesting ser-
vices from the layer immediately below it, which in turn
requests services from the layer below it, and so on. The
bottom layer represents the physical wiring between the
computers that run the applications. The message is
transferred to the layers below application B, and the
message percolates up. The two applications feel like
they are talking to each other (dashed line), but the com-
plex details of communication are hidden from them.
Application A is not allowed to skip layers (curved line)
because this breaks the integrity of the system.

disparate components yet still maintain their bound-
aries so that components can be swapped in and out
as vendors turn over, as users’ needs evolve, and as
technology advances.

Imagine a system where one has to replace a campus’
word processors because its network is modified. It
seems ludicrous today, but in 1987, Columbia–Pres-
byterian Medical Center (CPMC) faced this prospect.
The hospital’s centralized word processing was tied
to IBM’s System Network Architecture network pro-
tocol, and switching to an alternative protocol such as
Transmission Control Protocol/Internet Protocol
(TCP/IP) would have required replacing the word
processors and retraining the users. A good architec-
ture avoids such dependencies, making the system
flexible enough to handle change.

An architecture promotes the reuse of components for
multiple purposes. If a new method to look up patient
names based on inexact matches is being imple-
mented for an admitting system, then all the clinical
applications should be able to benefit from it. A prop-
erly designed architecture allows each new project to
push the entire enterprise forward a little bit at a time.
The result is the evolution of the system with chang-
ing needs and new technology.6

Integrating a health care information system is a chal-
lenge. There are many sources of data that are often
redundant and conflicting, and there are many appli-
cations with diverging user interfaces. A good archi-
tecture provides the tools to integrate—a dictionary
for translating codes, business rules for reconciling
conflicts in data, etc.—and methods to avoid conflicts
in the first place. Merely mapping out the system in
a clear and logical way (for example, a diagram of
data flows) may point out ways to avoid data con-
flicts.

Basic Concepts

Modularity

Modularity is the architect’s primary tool. The infor-
mation system is divided into parts based on some
property: function, structure, location, purpose, etc.
The choice of property depends on the context: phys-
ical location is important for a network architecture,
but not so important for an analysis of data flow.
Communication between modules occurs through an
interface, which generally defines what a module
does, how to ask for it, and how the answer is re-
turned.

Separating a system into modules reduces its overall
complexity. What was a mass of interconnections and

dependencies becomes more orderly and comprehen-
sible. Changes to a particular function are constrained
to a single module. Other modules that use the func-
tion are isolated from the details of the change. Thus,
modules can be replaced with minimal effect on the
other modules. Problems can often be isolated to sin-
gle modules, facilitating maintenance and recovery.

Layering

Layering is an important form of modularity. The in-
formation system is divided into modules that pro-
vide similar functions or ‘‘services.’’ The modules are
arranged in a series of horizontal layers (Figure 1),
and the interactions between pairs of modules are
strictly controlled. A module may request services
from modules in the layer immediately below it, and
it may be called on to provide services for modules
in the layer immediately above it. To communicate
with other modules in the same layer, a module gen-
erally uses services from the layer below it; this hides
the details of the communication from the module.

A concrete analogy is a telephone call. A person (first
layer) picks up a telephone (second layer) and makes
a telephone call. The call is sent through a complex
switching network (third layer), but the details are
hidden from the caller, who needs only to dial a sym-
bolic telephone number to accomplish the complex
routing task. The caller talks to the recipient of the
call (also first layer) as if he or she were talking di-
rectly, but the interaction is mediated by the telephone
system.

Not all aspects of an information system can be ex-
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pressed in this way, but for those that can, layering is
a very powerful tool for reducing complexity and iso-
lating components. Layering—with its horizontal
approach—offers a cross-enterprise view of the ar-
chitecture that is not available in other forms of mod-
ularity. For example, dividing the information system
into modules by department (registration, radiology,
pharmacy, bibliographic searching, etc.) does not give
the architect a good view of the database needs of the
enterprise or how messages are passed across the en-
terprise. By dividing the departmental systems them-
selves into functional modules and then organizing
them all into enterprise-wide layers, one can get a bet-
ter view of the overall database needs and message
passing.

The benefit, however, is realized only when one ad-
heres strictly to the layered scheme. It is often tempt-
ing to circumvent the layering to achieve an imme-
diate goal. For example, if a user asks to print from a
word processor, it is quickest to attach a printer to the
personal computer, install printer drivers, and let the
word processor control the printer directly. This is
equivalent to skipping important architecture layers,
such as the printer queues and network connectivity.
As a result, when the user asks to print from a main-
frame application, there will be no easy way to accom-
modate the request. Instead, the printer will have to
be reinstalled with the proper layered support.

Network

The network is the foundation for the IAIMS, because
it provides the basic communication necessary to in-
tegrate disparate systems. The network must route in-
formation reliably, quickly, and securely. The network
must be flexible to accommodate the constant turn-
over of computers and the constant appearance of
new technology, and there must be an efficient means
to manage the network.

Fortunately, installing a network is a largely straight-
forward task. Given sufficient resources, knowledge,
and time, such an effort is likely to be successful. In-
credible options are available today, from billion-bit-
per-second networks that support advanced multi-
media applications and large campuses to wide-area
wireless networks for mobile health care workers.
There is also an incredible ability to connect network
components and software of many different types.
Decisions that were important ten years ago—Ether-
net or Token Ring, TCP/IP or Novell’s IPX—have
been rendered moot by the advancement of network
standards. These standards have allowed institutions
to incorporate networks built many years ago and to

accommodate renegade departments that insist on in-
stalling their own networks independent of the rest of
the institution. New technology is revolutionizing net-
works. The replacement of traditional networks with
network-switch technology is improving speed and
reliability (in many cases without changing wiring or
computer network adapter cards) and making it pos-
sible to define virtual local-area networks based not
on physical location but on logical organization.

All this is possible only with a solid network archi-
tecture. The primary organizational tool for networks
is the International Standards Organization Open Sys-
tems Interconnection (OSI) network layers, shown in
Table 1. This famous example of layering isolates net-
work components and provides well-defined inter-
faces between levels.

Table 1 n

International Standards Organization Open
Systems Interconnection Network Layers
Network Layer Example

7. Application File transfer protocol
6. Presentation EBCDIC to ASCII conversion
5. Session Communications channel
4. Transport End-to-end communications
3. Network Routing
2. Link Adapter cards, frames of

bits
1. Physical Wiring

An alternative view of the architecture, which is or-
thogonal to the layers, is based on modules and sub-
modules. The enterprise is divided into campuses,
then buildings, vertical risers, lobes on floors, and
nodes. High-speed networks are provided at the bot-
tlenecks (for example, the campus backbone, which
links a campus’ buildings). The result is a more man-
ageable network and the ability to isolate network
problems to limited physical locations.

The main challenge in installing a network is planning
for the future, both for expansion within the enter-
prise and for advancement of newer, faster protocols
and equipment.7 Keeping clear divisions among the
OSI layers is the key tool planners have. Whereas the
closets and conduits in a building are expected to last
for the life of the building, the network wiring (phys-
ical layer in Table 1) may last five to ten years, and
the network electronics (link and network layers) may
last three to five years. By keeping the layers inde-
pendent of each other, the network wiring may sur-
vive several generations of network electronics.
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F i g u r e 2 Application integration. There are several ap-
proaches to application integration (top to bottom): A, ter-
minal emulation; B, interfacing; C, interfaced with a cen-
tral repository; D, merged; and E, homogeneous. (See
text for definitions.)

Application Integration

A network provides basic connectivity, but it is only
the foundation for a much more complex system. True
communication—exchange of information between
high-level entities—requires additional infrastructure
(servers, standards) and applications. It is this higher
level that holds the greatest IAIMS challenge:
integration.8 – 10 This includes the ability to access any
application from any location at any time, a consistent
user interface, and a coordinated conceptual database.
Modularity and layering are standard approaches to
promote flexibility, but they do not ensure integration.
Several approaches to application integration are
shown graphically in Figure 2.

Terminal Emulation

Getting many applications to work from a single
desktop computer used to be a challenge, but the ad-
vancement of standards and terminal emulation soft-
ware have made the task much easier. Applications
that use the World Wide Web, X-Windows, or termi-
nal interfaces (such as Digital Equipment’s vt100 or
IBM’s 3270) can be accessed from any platform. For
example, one can run a mainframe registration sys-
tem, UNIX-based electronic mail, and a Web-based
clinical information system from the same desktop
computer. Only those applications that are tied to a
particular desktop platform are problematic, and even
some of those can be run on other platforms through
emulation (for example, Microsoft Windows on
UNIX).

In this approach, the integration really occurs in the
user’s head. An electronic mail message with patient
information has no link to the clinical information sys-
tem. Duplicate data must be entered into many ap-
plications, and there may be contradictions among the
applications. Nevertheless, this form of integration is
essential because it will never be possible to tie every
application together, and it may not be necessary if
the logical interaction is minimal.

Interfaced System

In an interfaced system, pairs of applications share
data. Applications run essentially unchanged—usu-
ally with terminal emulation—but either in real time
or in batches, the applications send information to
each other. This approach requires a small or moder-
ate amount of work. One must agree on what will be
transferred, a data-transfer protocol, coding schemes,
and how the transfer will occur.

The benefit is reduced redundant data entry as appli-

cations share data. But because there is no centralized
control, the possibility of conflicting data still exists.
For example, an application may share a patient ad-
dress with other applications, obviating the need to
reenter the data. But if one of the recipient applica-
tions already has a different address, there is no guar-
antee how it will treat the new one: save it, ignore it,
or keep both.

An additional disadvantage is the difficulty of creat-
ing an application such as result review or an auto-
mated decision support that relies on data derived
from many different applications. It must be inter-
faced to all the source applications, and it must either
query them in real time, reducing performance, or
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keep a copy of all the relevant information locally. If
there is more than one such review application, then
each one must either query source applications or
keep its own copy.

Interfaced System with a Central Repository

One can achieve better integration for a similar
amount of work by interfacing applications to a cen-
tral repository rather than to each other. A central re-
pository does not necessarily imply a single physical
database or even a single database management sys-
tem. Instead, it is a conceptual entity. What makes it
‘‘central’’ is the presence of a unified data schema that
ensures that there is a single conceptual place for
every data element and there are business rules that
map out what is to be done when there is a conflict.
For example, what should be done if an application
tries to store a patient address that differs from the
existing one? The answer may depend on the source
of the existing data, the reliability of the storing ap-
plication, the difference between the addresses, etc.
Enforcing the unified data schema and business rules
is accomplished through ‘‘mediation,’’ which is dis-
cussed further in the next section.

If the central repository does happen to be a single
physical database, then queries for display and deci-
sion-support applications can be implemented very
efficiently. The central repository need not hold
everything. For example, a laboratory system need
not share detailed specimen information if no other
application in the system needs it.

For those systems that are not focused around data,
it may make more sense to talk about a centrally-co-
ordinated interface rather than a central repository.
For example, one would not try to put overlapping
bibliographic knowledge bases into a central reposi-
tory, but one might use a common information-re-
trieval engine to coordinate a search.

Merged System

A merged system (also known as an ‘‘integrated’’ sys-
tem) is one in which disparate applications have been
modified so that they appear to be one system. For
each pair of applications that communicate, this ap-
proach requires extensive changes to at least one of
them. An example is building a front-end tool for an
existing back-end transaction-processing application.
The front-end tool may use automated terminal em-
ulation (‘‘screen scraping’’) to mimic the actions the
user would perform in the back-end application. The
user sees only the more sophisticated front-end tool,
hiding a potentially clumsy application in the back

end. While this method results in a well-integrated
system, it is difficult and creates dependencies among
the modules. It is therefore usually reserved for spe-
cific limited situations.

Homogeneous System

If an entire system can be built as a single complex
application, then many of the integration issues will
be eliminated. It is unlikely that the breadth of IAIMS
can be achieved in a single application, however.
Some groups have implemented portions of IAIMSs
in homogeneous environments with good results,11

but the efforts took many years. A good deal of ven-
dor software does exist today, and a homogeneous ar-
chitecture cannot exploit it without using one of the
other methods above.

Assessment

Terminal emulation and interfacing are important
tools, but they do not achieve full integration. Merged
and homogeneous systems achieve integration, but
they are not feasible across an enterprise. It appears
that interfacing with a central repository, or at least a
centrally-coordinated interface, is the best current ap-
proach to enterprise-wide integration.

Mediation

Client–Server

The client–server approach refers to the organization
of a system into a set of information services that are
provided by servers and a set of clients that use those
services. Servers often act as clients to other servers.
The division is a conceptual one, and it is possible to
run a client–server application on one computer.
Most often, however, the client refers to the user-in-
terface application running on a local workstation,
and the server refers to the database and perhaps ap-
plication logic that run on one or more separate phys-
ical servers. Typical services include a clinical reposi-
tory, transaction processing, knowledge resources,
and security functions. The separation of client from
server allows one to concentrate on one area of the
system at a time. For example, the clinical worksta-
tion12,13 can be designed separate from the servers that
support it.

There are many ways to break an application into cli-
ent and server modules. If the bulk of the application
logic sits in the client, then this is referred to as a
‘‘thick’’ client. If the client contains only what is nec-
essary to run the user interface and the application
logic sits on the server, then this is referred to as a
‘‘thin’’ client.
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F i g u r e 3 Client-mediator-server layering. An enter-
prise-wide mediator layer coordinates the interaction be-
tween clients and servers. It provides a common concep-
tual data schema, message and code translation, and
monitoring.

Table 2 n

Mediator Layers
Mediator Layer Example

Message handling Parse HL7
Translation Translate codes
Routing Send a copy to a research database
Monitoring Run rules against the data
Access Modules to store data

Originally, dedicated terminals acted as very thin cli-
ents because the applications ran entirely on servers.
As personal computers gained favor, there was a
strong push to put as much application logic as pos-
sible on the client, making it a thick client. The goal,
in part, was to exploit all the extra processing power
contained in the personal computers. Practical expe-
rience revealed that deployment and maintenance of
these thick client applications were very costly and
cross-platform development was difficult, leading to
a swing back toward thin clients.

The development of the World Wide Web14 demon-
strated the effectiveness of thin clients. The Web
browser is a thin client that performs only user-inter-
face tasks, and the bulk of the application sits on a
Web server. Its success is due in part to its platform-
independent network-wide nature, which reduces de-
ployment and maintenance costs. The current Web
browser provides excellent display capabilities, but its
data-entry and application logic abilities are limited
due to its Common Gateway Interface (CGI) protocol,
which is stateless15 and somewhat slow. New Web cli-
ent programming languages such as JAVA represent
an attempt to use thicker clients without the high de-
ployment and maintenance costs.

Client–Mediator–Server

The client–server approach primarily encourages
modularity and reuse of services, but a collection of
clients and servers does not make an integrated sys-
tem. Different servers may call the same data element
different names, and they may hold contradictory
data.

Cross-enterprise coordination can be achieved only
through an entity that acts across the enterprise. Fig-
ure 3 shows a ‘‘mediator’’ layer that arbitrates all in-
teractions between clients and servers. This mediator
layer provides the tools to map individual data sche-
mata and vocabularies to one conceptual enterprise-
wide model, and it insulates clients and servers from
changes in each other.16 (The mediator layer can be
seen as just another server in the client–server archi-
tecture, but Figure 3 emphasizes that it mediates all
interactions.) The interactions between clients and
servers are carried out by passing messages to each
other, and the mediator can be seen as a message filter.

The mediator layer itself may be divided into layers
(Table 2).17 These layers may be arranged into an ‘‘on-
ion skin’’ of concentric circles, which emphasizes that
not all messages need to pass down through all the
layers.17 For example, for a particular message, the
mediator may simply need to route the raw message

to other servers without further translation or pro-
cessing.

Standards and Message Handling

For the multiplicity of applications to communicate,
there must be a common language for messages or a
means for translation. The mediator facilitates both
these methods.

Messaging standards18 such as Health Level Seven
(HL7)19 define the syntax of the message: whether the
data are character or binary, how fields are delineated,
etc. For standards such as HL7 that are specific to
health care, the definition and organization of the
fields are also specified. For example, there is a spe-
cific location and format for the patient’s name. No
one standard covers all areas in a health care enter-
prise, so choosing a consistent set of standards is an
important architecture task. Wherever possible, appli-
cations that comply with those standards are chosen.

Unfortunately, messaging standards are incomplete.
One must still interpret what each field means, what
codes to put in, and what fields to ignore. There is
often more than one way to specify the same infor-
mation. Therefore, even for those applications that use
the same standard (and certainly for those that use
different standards), it is necessary to perform some
form of translation. The mediator parses each message
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into fields, moves data among fields to accommodate
differing interpretations of the standard, and trans-
lates among coding schemes (see below).

Dictionary

No one coding scheme satisfies all the requirements
of an enterprise. In some cases, different departments
use different coding schemes for the same informa-
tion: many systems are purchased and have prede-
fined codes, and many departments are unwilling to
give up their traditional codes. For example, the lab-
oratory system may refer to the patient’s gender with
different codes than a patient registration system.

The mediator translates among these coding schemes
using a dictionary (vocabulary)20,21 during message
processing. The dictionary defines all the known
codes in the enterprise and contains a means for map-
ping among the codes. The task is straightforward
when there is a one-to-one correspondence between
coding systems (for example, for gender), but there is
often no simple translation (for example, for diag-
noses), and the result can be ambiguous or distorted.
In the latter case, data are often stored in the central
repository according to the original codes, and when
data are sent to applications that use different codes,
the closest match possible is given.

The dictionary may be a simple set of translation ta-
bles or a more complex structure such as a semantic
network.21 By supporting hierarchical classification
and semantic links, a semantic network can facilitate
other mediator tasks such as routing, decision sup-
port, and dictionary maintenance. For example, if a
pulmonary researcher wants to collect all the pulmo-
nary test results for a set of patients, it may be nec-
essary only to specify a class called ‘‘Pulmonary
Tests’’ rather than to name each test separately.

Routing

The mediator routes messages among applications
based on the origins and contents of the messages. For
example, rather than have the laboratory system de-
termine where its results should be sent, it merely in-
dicates that the message comes from the laboratory.
The mediator contains the tables and rules that deter-
mine where the message should be routed. Typical
destinations for messages include a central repository,
a research database, and ancillary systems. In this
way, data sources are insulated from the destinations,
and there is a single point of control for the routing
of messages.

The mediator may forward messages to a clinical
event monitor.22 Based on the message and relevant

data in the repository, the event monitor can generate
its own messages and carry out actions. It may be
used to remind or alert health care providers to clin-
ically important situations, and it may be used to en-
force an enterprise’s business rules.

Data

The organization of the enterprise’s codes, textual
data, images, etc., in the central repository (be it real
or virtual) is known as the data schema (also referred
to as the data model).23,24 The data schema gives an
overall view of the enterprise’s data, facilitating un-
derstanding and management. It provides a structure
for adding new types of data and a means for uncov-
ering duplicate and ambiguous values in the reposi-
tory.

The data schema must have exactly one definition for
each unique data element. If two patient address
fields are found, for example, something must be
done to resolve them. Both addresses may be kept
only if they are defined as being different in some
way: one may be designated ‘‘primary’’ or ‘‘current,’’
and the other ‘‘secondary’’ or ‘‘expired.’’

A data schema and repository cannot fix bad data.
Systems need to be organized and deployed so that
given data elements are collected once from the per-
sons most likely to have accurate information.6,25 The
data must then be shown to all relevant parties, and
there must be the ability to correct the information
when mistakes are found.

Database Access

Queries and updates to actual physical databases may
be mediated16 through data-access modules,26 which
insulate the rest of the system from the details of da-
tabase access. Data-access modules were essential at
CPMC26 when a variety of databases (relational DB2,
hierarchical IMS, and indexed file VSAM) were used
to store clinical data. Data-access modules provided a
single application-programming interface. When da-
tabase management systems were replaced and data
had to be migrated to new databases, most of the
changes occurred in data-access modules rather than
in the applications. Application changes were not
eliminated, however, because of some essential differ-
ences among the database management systems and
because the migration was used as an opportunity to
improve the interface or data schema.

If a single database type (for example, relational) or
even a single database vendor is used, then one may
rely on a standard such as Structured Query Lan-
guage (SQL) to mediate access to the database. Un-
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fortunately, SQL is not well standardized (embedded
versus function call, extensions, etc.); it requires de-
tailed knowledge of the organization of the database
(that is, not just health concepts, but database table
and view organization); and it is not suited to com-
plex queries that can be embedded in data-access
modules (for example, the ability to retrieve the last
ten items from a group is difficult in SQL).

Object-oriented technologies and standards such as
Common Object Request Broker Architecture* and the
Andover Initiative27 promise to provide mediator ser-
vice within a consistent object framework.28 The ob-
ject-oriented approach ensures modularity through
encapsulation and data abstraction. Use of classifica-
tion and inheritance can facilitate maintenance. A con-
sistent view of data as objects eliminates artificial dis-
tinctions introduced by implementation issues in
other systems. (For example, rather than defining data
fields and the content elements in different ways, both
are considered objects.)

Implementation

A number of vendors provide interface engines (also
called data hubs or message routers) that include mes-
sage parsing, field translation, simple code transla-
tion, and message routing. They do not generally sup-
port complex dictionaries, good data schema tools, or
decision support.

It has been recognized that moving from a monolithic
system to a client–server architecture is generally as-
sociated with increased cost due to increased com-
plexity. The comparison, however, may be similar to
comparing paying for a telephone to running next
door to talk to a neighbor. If all one wants to do is
talk to the next-door neighbor, then a telephone will
not be cost effective. The benefit is only seen when
one realizes that calls can be made around the world.
Similarly, a monolithic architecture may in fact be
cheaper for a simple system, but a client–server ar-
chitecture allows one to build a larger, more diverse
system than is possible with a monolithic architecture.

Security and Recovery

Authenticating who a user is and authorizing the user
to access a particular application are complex tasks in
a large enterprise due to the numbers of systems and
users and the frequent turnovers of both.29 Ideally,
each user should have a single identifier and pass-
word, but there is no single solution that covers the
full range of operating systems, network protocols,

*http://www.omg.org/corbamed.

and applications that can appear in an enterprise. Sys-
tems that have centralized security servers such as
Kerberos30 and several commercial products are ex-
panding, and operating-systems vendors are includ-
ing more security function within their products, so
security tasks should become easier over time. Addi-
tional functions that need to be addressed are the en-
cryption of information as it flows over the network
and keeping track of software and information-re-
source licensing.

One of the most powerful patient-privacy tools is the
audit log,31 – 34 which records who looked at what
when. Knowledge that actions are being audited ap-
pears to act as a deterrent against infractions of pri-
vacy. The log serves as a permanent record in case a
patient ever complains of a breach of privacy, and the
log can be surveyed automatically to detect such
breaches.

Recovery from hardware and software failures is
largely accomplished through redundancy at the net-
work, server, and application levels. The more ways
a backup system differs from the original, the more
likely it will work when needed. For example, two
identical result-display systems are likely to fail si-
multaneously and therefore offer little security against
failure. On the other hand, using an ancillary labora-
tory system as a backup for a centralized result-dis-
play system offers security against many types of fail-
ures.

While the presence of duplicate data elements under-
mines the integrity of a system, replication of data
does not. There must be a single conceptual location
for each element, but the element may be physically
stored (replicated) in many places. Replicated data
can improve performance (caching), help isolate ven-
dor systems (by allowing an application to maintain
its own database), and protect against data loss. For
replication to work without becoming duplication,
each physically stored item must map to an element
in the central conceptual data schema, there must be
a means to synchronize copies, and when synchroni-
zation fails, there must be a procedure to resolve con-
flicts (for example, one copy may be designated the
primary one).

IAIMS Architecture

Clinical Example

To demonstrate the concepts enumerated above, Fig-
ures 4 and 5 show the architecture of a hypothetical
IAIMS with a strong clinical focus. While this archi-
tecture does not represent a particular institution, it
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F i g u r e 4 Modular view of a clinical IAIMS architec-
ture. Rectangles represent system modules, ovals repre-
sent databases and knowledge bases, and lines represent
the flow of messages. (See text for module definitions.)

F i g u r e 5 Layered view of a clinical IAIMS architecture.
The same system as in Figure 4 is depicted here with a
layered view. Rectangles represent modules and media-
tors. Heavy lines and the dotted line indicate the flow of
messages. (See text for module definitions.)

was drawn from several institutions with similar ar-
chitectures.9,35,36

Figure 4 presents a modular view of the system. There
is a physical central repository, and all access to it is
mediated; the mediator relies on a central dictionary
(dict). Ancillary systems such as laboratory and
admit–discharge–transfer (ADT) send data to the da-
tabase and receive data from other systems through
the mediator. When data are stored, the mediator trig-
gers the event monitor, which makes decisions based
on a set of rules. Providers enter orders through the
order-entry system and review results through the re-
sult-review system. A library browser uses a query
engine to retrieve information from a number of re-
sources, including MEDLINE (ML) and a drug-infor-
mation knowledge base (dr). The query engine also
relies on the central dictionary (dict), and the result-
review system uses the query engine to present rele-

vant information resources with the clinical results.

Figure 5 shows a layered view of the same system. A
‘‘three-tiered’’ architecture is shown, consisting of the
display clients that carry out user-interface functions,
the active servers that carry out application logic, and
the passive servers that hold data and knowledge
bases. Between each two consecutive tiers is a layer
that mediates interactions. The bottom mediator layer,
in particular, relies on the central dictionary (dict).

At the top is the workstation (workstn), which pro-
vides the least common denominator for presenting
applications to the user. A legacy ADT system does
not follow the layers of the architecture because it in-
cludes the user interface, application logic, and the
database as a monolithic whole. It is therefore shown
as crossing all the layers except the workstation itself,
which provides terminal emulation. Data from the
ADT system are stored in the clinical repository
through the mediator layer. (This is an example of in-
terfacing with a central repository.)

When data are stored in the repository, the mediator
triggers the event monitor (event mon), which makes
decisions based on data in the repository and clinical
rules (rule); the connection to the latter is shown as a
dotted line. A user-interface application for the clinical
event monitor administrator (EM) is also shown. Data
are shown to providers through the results-display
application, which has two parts: the results user in-
terface (results) and the results application logic (re-
sults logic). Similarly, the order-entry application is
divided into the user interface (orders) and the trans-
action processing (orders TP). When providers write
orders, they review results through the order-entry
application. To avoid redundant software, the order-
entry application reuses the results application logic.

The dictionary and rule knowledge base are main-
tained through their corresponding servers (rule S
and dict S) and authoring tools (edit and brw). The
library browser (lib) uses a query engine to access
MEDLINE (ML) and a drug-information knowledge
base (dr). The results-display application also uses the
query engine to link information resources to clinical
results.

The two architectural views are complementary. The
modular view stresses the functional requirements of
the system as a whole, and it is relatively invariant to
implementation. For example, systems built decades
ago had similar architectural views.11 The layered
view stresses the implementation of the system, and
it has changed significantly over time. Nevertheless,
many groups have now adopted an approach similar
to this one.9,35,36
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The publications of funded IAIMS sites were re-
viewed. Planning issues—which are of primary
importance—received much greater emphasis than
did architecture, and few sites have published details
of their information systems architectures. Neverthe-
less, a number of conclusions can be drawn from the
literature.

Of 12 sites that gave some mention of architecture,9,35 – 45

seven had a stronger clinical care focus9,35 – 37,39,42,44 and
five had a stronger library focus,38,40,41,43,45 including
curriculum, continuing education, and information re-
trieval. (The assessment of clinical versus library focus
was made for the publication that covered architec-
ture. The sites themselves may have a dual focus,39,46

and some sites have changed focus over time.37,47)

All 12 sites stressed the importance of the network to
the IAIMS, making it clear that this is an essential
component. Seven sites specifically mentioned that
they were using a client–server architecture.9,35 – 37,39,41,43

With the deployment of the Web, it is likely that all
are now using some form of client–server architec-
ture. More interesting is the fact that four of the seven
had a clinical focus and three had a library focus. It
therefore appears that client–server architecture is im-
portant regardless of the IAIMS focus.

Three sites mentioned the use of a central repository,
be it physical or conceptual.9,35,36 All three had a clin-
ical focus. Although the number of sites reviewed is
small, it appears that the use of a central repository
is more important for a clinically-focused IAIMS. The
issue for an IAIMS focused on information resources
is more likely to be coordinating information re-
trieval40,41 rather than trying to put resources in one
repository.

Conclusion

Building an integrated, flexible information system is
a difficult undertaking that is achievable only with a
good architecture. Use of modularity, layering, cli-
ent–server separation, and mediation permits the
swapping of components in a system that still acts as
an integrated whole. IAIMS sites appear to be con-
verging on similar methods, and the advancement of
technology and standards is making the task easier.

The author thanks Soumitra Sengupta, Stephen Johnson, Wil-
liam Stead, and Paul Clayton for their advice and support.
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