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Abstract

Recently, there has been increased interest in using Single Nucleotide Polymorphisms (SNPs) as a 

method for detecting genes for complex traits. SNPs are diallelic markers that have the potential to 

be inexpensively produced using chip technology. It has been suggested that SNPs will be 

beneficial in study designs that utilize trio data (father, mother, child). In our previous work, we 

calculated the probability of detecting Mendelian errors at a SNP locus for a trio randomly 

selected from a population in Hardy-Weinberg equilibrium. The highest error-detection rate was 

30%. Here we investigate the error-detection rate when additional sibs are genotyped. We define 

an error to be a change from a 1 allele to a 2 allele, or vice versa. Typing one additional sib 

increases the detection rate on average by 10 – 13%. Typing two additional sibs increases the 

detection rate on average by 14-19%. The increase in the detection rate is dependent on the allele 

frequencies. Equal allele frequencies produce the lowest detection rates, independent of true error 

rates and number of offspring genotyped. Typing additional siblings not only improves error-

detection rates, but can also provide additional linkage information. In order to increase linkage 

information and error-detection rates, at least two additional siblings should be ascertained when 

available.

1. Introduction

Recently, there has been an increased interest in the use of Single Nucleotide 

Polymorphisms (SNPs) loci as a possible method for detecting genes of modest effect, i.e., 

for complex traits1. SNPs occur in large numbers across the human genome and usually 

consist of two alleles2. Statistical methods proposed for detection of genes for complex traits 

using SNPs include haplotype-relative risk tests3, and transmission-disequilibrium tests4 

(TDT). In each of these tests, the sampling frame is a family trio, consisting of a father, a 

mother, and an affected child genotyped at a locus. In the case of TDT when testing for 

linkage in the presence of association, additional affected siblings may also be used5.

One important methodologic issue concerning markers in general and SNPs in particular is 

that of errors. Buetow6 found that, in constructing high resolution human linkage maps (3 

cM or less) with highly polymorphic markers, typing errors, even at the rate of 1.5%, led to a 
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reduction of power to discriminate orders, a dramatic inflation of map length, and significant 

support for incorrect over correct orders. Shields et al.7 also determined that the introduction 

of typing errors when constructing human linkage maps led to support for incorrect orders 

and map length inflation. Terwilliger, Weeks and Ott8 showed in simulation studies for a 

multi-allelic system that misreading an allele results in overestimation of recombination 

fraction and a decrease in expected lod score. Using simulated data for a multi-allelic 

marker, Gordon et al.9 showed that errors in pedigree data can significantly reduce evidence 

for linkage in the presence of association when using a transmission disequilibrium test. 

Several authors10,11,12,13 considered the issue of errors in pedigree data, and devised 

methods for detecting such errors.

Regarding SNPs, Gordon et al.14 investigated the error-detection rate in trios by detecting 

errors through deviations from Mendel’s laws. The authors defined an error, as we do in this 

article, to be anything that causes a 1 allele to change to a 2 allele, or vice versa. Such errors 

may result from non-paternity, sample swaps in the lab, or genotyping errors. The highest 

detection rate for trios was slightly less than 31%. Given such a low detection rate, we seek 

to quantify the improvement in error-detection rates by genotyping additional siblings.

2. Materials and Methods

2.1 Detection Rate for Sib Pairs (Genotype Quartets)

For a diallelic marker with allele numbers 1 and 2, there are (up to symmetry) three possible 

genotypes: 1/1, 1/2, and 2/2. A genotype quartet is defined to be a 4-tuple of genotypes 

(Parent1 Allele 1/Parent1 Allele 2, Parent2 Allele 1/Parent2 Allele 2, Child1 Allele 1/Child1 

Allele 2, Child2 Allele 1/Child2 Allele 2) in which the set of alleles is consistent with 

Mendel’s laws. In this 4-tuple, no distinction is made between Parent1 and Parent2, or Child1 

and Child2. For example, the genotype quartets (1/2, 1/1, 1/1, 1/2) and (1/1, 1/2, 1/2, 1/1) are 

considered to be equivalent. No distinction is made between genotypes 2/1 and 1/2. Thus, 

for example, the quartet (2/1, 2/1, 2/1, 2/1) is equivalent to (1/2, 1/2, 1/2, 1/2), and so forth. 

For consistency, the genotypes 1/2 and 2/1 shall always be referred to as 1/2. A general 
quartet is defined to be any 4-tuple of genotypes in which each person has the genotypes 1/1, 

1/2, or 2/2, without the restriction that the quartet displays Mendelian consistency. Here and 

elsewhere, the term consistency (respectively, inconsistency) implies Mendelian consistency 

(respectively, Mendelian inconsistency). Note that the set of genotype quartets is a subset of 

the set of general quartets. Also, the conjugate of a genotype quartet M (denoted M) is 

defined as the genotype quartet that results when each value of 1 in M is replace by a 2, and 

each value of 2 in M is replaced by a 1. For example, the conjugate of the quartet (1/1, 1/1, 

1/1, 1/1) is (2/2, 2/2, 2/2, 2/2), the conjugate of (1/2, 1/1, 1/1, 1/1) is (1/2, 2/2, 2/2, 2/2), and 

so forth. The list of all genotype quartets and their conjugates may be found in Table 1. An 

error in a genotype quartet is defined to be one or more changes in genotypes of the quartet. 

For example, if the original quartet is (2/2, 2/2, 2/2, 2/2) then one error is introduced into the 

quartet if one and only one of the 2 alleles is replaced by a 1 allele. It is assumed that errors 

are introduced randomly and independently into genotype quartets at a constant rate, 

denoted by α.
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For each of the fifteen quartets in Table 1, anywhere from 0 to 8 errors may be introduced. In 

the case of either 0 or 8 errors, the resulting general quartet will always display consistency. 

We calculate the probability that all errors go undetected for a collection of genotype 

quartets in which at least one error has been introduced, and denote this quantity by β. It 

follows that the detection rate is 1 - β. Using basic probability theory,

β = ∑
i = 1

8
Pr(undetected errors ∣ i errors in quartet)Pr(i errors in quartet) ⋅ (1)

The term i = 0 is not included in the sum (1) because only genotype quartets in which errors 

have been introduced are considered. If B(α; i) is defined by

B(α; i) = 8
i

αi (1 − α)8 − i,

then because error introduction is assumed to be random and independent for each allele in a 

genotype quartet, and because only those genotype quartets that contain at least one error are 

considered, the quantity Pr(i errors in quartet) in formula (1) is given by

Pr(i errors in quartet) =

8
i

αi(1 − α)8 − i

1 − (1 − α)8 = B(α; i)
∑i = 1

8 B(α; i)
. (1a)

Note that the expression B(α;i) is the probability density function, evaluated at i, 1≤ i ≤ 8, 

for a binomial distribution with constant success rate α in each of 8 independent events. 

Using basic probability theory, the quantity Pr(undetected errors | i errors in quartet) in 

formula (1) is calculated as

Pr(undetected errors ∣ i errors in quartet) = ∑
M ∈ S

Pr(N0 ∣ M, i)Pr(M), (2)

where S is the set of all fifteen genotype quartets in the first column of Table 1, N0 is the 

event that all errors in a quartet go undetected, Pr(N0 |M,i) is the probability that i errors 

introduced into a genotype quartet M go undetected, and Pr(M) is the population frequency 

of the genotype quartet M. Pr (M) is calculated using the allele frequencies p for allele 1 and 

q (= 1 – p) for allele 2, assuming that the alleles are in Hardy-Weinberg equilibrium. For 

each genotype quartet M in Table 1, Pr(M) is calculated in Table 2. For each M and each i, 
the probability Pr(N0 | M,i) is equal to the proportion of resulting quartets that, after i errors 

have been introduced, show consistency. For example, if M = (1/1, 1/1, 1/1, 1/1) and i = 1, 

Pr(N0 | M,i) = 4/8, or 1/2; of the eight general quartets that result from a change in one of the 

alleles, a change in any of the four parental alleles will display consistency and a change in 

any of the children’s alleles will display inconsistency.
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We now state some lemmas whose application simplifies the calculation of Pr(N0 |M,i) for 

any of the fifteen genotype quartets M in Table 1 and any i, 0 ≤ i ≤ 8. These lemmas are 

extensions of ones proved previously14. The lemmas in that reference apply to genotype 

trios, and the lemmas below follow from the observation that two genotype trios may be 

uniquely formed (corresponding to the two children) from any genotype quartet. For 

example, the quartet (1/2, 1/2, 1/1, 2/2) maps uniquely to the set of genotype trios {(1/2, 1/2, 

1/1), (1/2, 1/2, 2/2)}.

Lemma 1. For any genotype quartet M and for any i, 0 ≤ i ≤ 8,

Pr(N0 |M,i) = Pr(N0 |M,i).

Lemma 2. For any genotype quartet M and for any i, 0 ≤ i ≤ 8,

Pr(N0 |M,i) = Pr(N0 |M,8 - i).

Note that any quartet M falls uniquely into one of two categories: either M = M or not. 

There are exactly three quartets M such that M = M : (1/2, 1/2, 1/2, 1/2), (1/1, 2/2, 1/2, 1/2) 

and (1/2, 1/2, 1/1, 2/2). For the remaining twelve, we divide them into six genotype quartets 

and their conjugates, compute Pr(N0 |M,i) for the six quartets, and use Lemma 1 to compute 

this probability for the remaining six. With this information, the value Pr(undetected errors|i 
errors in quartet) in formula (2) is calculated. Using Table 2, it follows:

Σ Pr(N0 ∣ M, 1)Pr(M) = 1 2 p4 + 11 4 p3q + 33 8 p2q2 + 11 4 pq3 + 1 2 q4,

Σ Pr(N0 ∣ M, 2)Pr(M) = 5 7 p4 + 33 14 p3q + 199 56 p2q2 + 33 14 pq3 + 5 7 q4,

Σ Pr(N0 ∣ M, 3)Pr(M) = 4 7 p4 + 31 14 p3q + 185 56 p2q2 + 31 14 pq3 + 4 7 q4,

Σ Pr(N0 ∣ M, 4)Pr(M) = 16 35 p4 + 76 35 p3q + 33 10 p2q2 + 76 35 pq3 + 16 35 q4 .

(2.2a)

Applying Lemma 2, we observe that

Σ Pr(N0 ∣ M, 5)Pr(M) = Σ Pr(N0 ∣ M, 3)Pr(M),
Σ Pr(N0 ∣ M, 6)Pr(M) = Σ Pr(N0 ∣ M, 2)Pr(M),
Σ Pr(N0 ∣ M, 7)Pr(M) = Σ Pr(N0 ∣ M, 1)Pr(M) .

(2.2b)

Equations (2.2a) and (2.2b) are substituted into formula (2), which are then substituted into 

formula (1) along with the term Σ Pr(N0 |M,8) Pr(M) = 1, to determine β. In Table 4, error-

detection rates for various values of α and p are calculated, and in Figure 1, error-detection 

rates for a range of values of α and p are plotted. It follows immediately from equations 

(2.2a) and (2.2b) that the detection rate is symmetric about the line p = 0.5. This symmetry is 

seen in Figure 1 as well. Therefore, for a fixed value of α, the detection rate will be the same 

for frequencies p and 1 – p.
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2.2 Detection Rate for Genotype Quintets

In the case where three offspring are available for study, definitions from the previous 

section are extended in the natural way to speak of genotype quintets, general quintets, 

conjugates and errors. The list of all genotype quintets may be found in Table 3. To compute 

β and the detection rate 1 - β for genotype quintets, we need only change the index in 

formulas (1) and (1a) so that the sum goes to 10 (corresponding to the 10 alleles in a 

genotype quintet). Also, in formula B(α; i) and in Lemmas 1 and 2, the value 10 is 

substituted for 8 everywhere. As above, extensions of Lemmas 1 and 2 are proved using the 

observation that any genotype quintet maps uniquely to a set of three genotype trios.

Proceeding as above and using the quantities from Table 3, we compute:

Σ Pr(N0 ∣ M, 1)Pr(M) = 2 5 p4 + 27 10 p3q + 155 40 p2q2 + 27 10 pq3 + 2 5 q4,

Σ Pr(N0 ∣ M, 2)Pr(M) = 28 45 p4 + 11 5 p3q + 1229 360 p2q2 + 11 5 pq3 + 28 45 q4,

Σ Pr(N0 ∣ M, 3)Pr(M) = 3 5 p4 + 473 240 p3q + 1387 480 p2q2 + 473 240 pq3 + 3 5 q4,

Σ Pr(N0 ∣ M, 4)Pr(M) = 46 105 p4 + 129 70 p3q + 935 336 p2q2 + 129 70 pq3 + 46 105 q4,

Σ Pr(N0 ∣ M, 5)Pr(M) = 8 21 p4 + 151 84 p3q + 349 126 p2q2 + 151 84 pq3 + 8 21 q4 .

(2.3a)

As above, note that

Σ Pr(N0 ∣ M, 6)Pr(M) = Σ Pr(N0 ∣ M, 4)Pr(M),
Σ Pr(N0 ∣ M, 7)Pr(M) = Σ Pr(N0 ∣ M, 3)Pr(M),
Σ Pr(N0 ∣ M, 8)Pr(M) = Σ Pr(N0 ∣ M, 2)Pr(M),
Σ Pr(N0 ∣ M, 9)Pr(M) = Σ Pr(N0 ∣ M, 1)Pr(M),
Σ Pr(N0 ∣ M10)Pr(M) = Σ Pr(N0 ∣ M, 0)Pr(M) = 1 .

(2.3b)

These equations are used to compute the detection rate for any randomly selected genotype 

quintet from a population in Hardy-Weinberg equilibrium. As in the case of genotype trios14 

and genotype quartets above, the detection rate 1 - β is symmetric about the line p = 0.5. In 

Table 4, error-detection rates for various values of α and p are presented. In Figure 2, error-

detection rates for a range of values of α and p are plotted.

3. Results

In Table 4, error-detection rates for various error rates and allele frequencies when typing 

genotype trios (one child), quartets, and quintets are presented. Detection rates for trios were 

presented previously14. The main result is that typing additional siblings increases the 

detection rate by at least 9%. By computing the average detection rate for each sampling 
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type (trio, quartet, and quintet), it may be seen that typing quartets or quintets increases the 

detection rate on average by 13% or 19% respectively when one allele frequency is 0.1. For 

equal allele frequencies, the change in sampling types increases the detection rate on average 

by 10% and 14% respectively.

This increase in detection rate holds for all error rates and allele frequencies. These results 

are displayed in Figures 1 and 2, which plot the detection rates for a range of true error rates 

from 1% to 30% and for allele frequencies (one allele) from 0.02 to 0.98. Note that detection 

rates are symmetric about the plane p = 0.5.

The second result is that, independent of the sampling type, detection rates are always the 

lowest when allele frequencies are equal (see Figures 1 and 2). However, the graphs indicate 

that the detection rates converge to a common detection rate, independent of allele 

frequencies, as the true error increases. This result holds for all sampling types.

At low error rates, a significant difference is observed between detection rates for extreme 

allele frequencies (one allele has frequency ≤ 0.05) and equal allele frequencies, regardless 

of the sampling type. To explain this observation, consider genotype quartets. When allele 

frequencies are extreme, then the majority of quartets sampled will have both parents 

homozygous for the same allele. Without loss of generality, let us assume that the 1 allele at 

a SNP locus has allele frequency greater than 0.95. Then the majority of the quartets are of 

the form M = (1/1, 1/1, 1/1, 1/1). When error rates are very low, the majority of quartets with 

errors will have only one error introduced. A way to reach this conclusion quantitatively is to 

evaluate formula (1a) for small values of α. When i in formula (1a) is greater than 1, the 

probability is approximately 0. It follows that the detection rate for extreme allele 

frequencies and small true error rates is approximately 1 - Pr(N0| M,1) = 1 – 1/2 = 1/2, or 

0.50 (Table 2).

By comparison, for the case of equal allele frequencies, all genotype quartets M appear with 

probability Pr(M) >> 0 (Table 2). When α is small, the detection rate is approximately 1 - Σ 
Pr(N0 |M,1) Pr(M). Note that Pr(N0 |M,1) > 1/2 for all genotype quartets M, with the 

exception of the quartets (1/1, 1/1, 1/1, 1/1) and (2/2, 2/2, 2/2, 2/2), and for the quartet M = 

(1/2, 1/2, 1/2, 1/2), Pr(N0 |M,1) = 1, so that in computing the sum, the detection rate for 

equal allele frequencies is considerably less than 0.5. The same reasoning applies for trios 

and quintets.

4. Discussion

In this article, an analytic solution to SNP error-detection rates in nuclear families is 

provided. For quartets (two sibs) or quintets (three sibs), the detection rate is quantified as a 

function of the true error rate at a SNP locus in Hardy-Weinberg equilibrium and the allele 

frequency of one of the alleles. It is shown in our analysis that genotyping at least two 

additional siblings, when available, provides a considerable improvement in error-detection 

rates, on the order of 14%-19%. The authors therefore recommend that researchers who are 

analyzing SNP data consider results of these formulas (Table 4) when designing linkage and 

association studies.
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There is an added benefit to genotyping additional siblings, even if unaffected. Such siblings 

can provide information for linkage studies. For example, in studying quantitative 

phenotypes with a recurrence risk of 75%, Risch and Zhang15 showed that extreme 

discordant sib-pairs may provide a significant amount of linkage information.

In addition, genotyping additional siblings, even if unaffected, is typically much less 

expensive than ascertaining an additional family with an affected child. While it is true that 

collection of additional families increases power to detect linkage in the presence of 

association, allowing errors to go undetected in pedigree data can reduce power to detect that 

linkage9, potentially negating the effects of the additionally ascertained families. Also, errors 

in data can make statistical tests like the TDT invalid by increasing the type I error rate16.

It is important to recognize that our formulas calculate the probability that a family is 

brought to the researcher’s attention because of inconsistency. Our method does not suggest 

the most likely location of the error. Ehm et al.11 presents a likelihood method for 

determining typing errors in pedigree data displaying consistency, while other authors12, 13 

present methods for determining (statistically) incorrect genotypes in pedigree data 

displaying inconsistency. These methods are implemented in freeware programs (see 

Electronic Database Information).

Regarding ascertainment, we assume that the locus studied is in Hardy-Weinberg 

equilibrium. However, for most studies, families are ascertained on the basis of disease. 

While it is true that the detection rates for SNP loci in linkage disequilibrium with a disease 

locus will differ from the results presented in Table 4, our recommendations regarding 

genotyping of additional siblings are still relevant. As previously shown14, for low error 

rates there is a theoretical maximum error-detection rate of 33% when sampling trios, 

independent of linkage disequilibrium between marker and locus, ascertainment scheme, or 

allele frequencies at the marker locus. This detection rate can be improved only by 

genotyping additional siblings, if consistency is used as the sole check for errors.
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Figure 1. 
Error-Detection Rate for quartets as function of allele frequency and true error rate
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Figure 2. 
Error-Detection Rate for quintets as function of allele frequency and true error rate
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Table 1.

List of all genotype quartets and their conjugates

Genotype Quartet M Conjugate Genotype Quartet M

(1/1, 1/1, 1/1, 1/1) (2/2, 2/2, 2/2, 2/2)

(1/1, 1/2, 1/1, 1/1) (2/2, 1/2, 2/2, 2/2)

(1/1, 1/2, 1/1, 1/2) (2/2, 1/2, 2/2, 1/2)

(1/1, 1/2, 1/2, 1/2) (2/2, 1/2, 1/2, 1/2)

(1/1, 2/2, 1/2, 1/2) (2/2, 1/1, 1/2, 1/2)

(1/2, 1/2, 1/1, 1/1) (1/2, 1/2, 2/2, 2/2)

(1/2, 1/2, 1/1, 1/2) (1/2, 1/2, 2/2, 1/2)

(1/2, 1/2, 1/1, 2/2) (1/2, 1/2, 2/2, 1/1)

(1/2, 1/2, 1/2, 1/2) (1/2, 1/2, 1/2, 1/2)

(1/2, 1/2, 1/2, 2/2) (1/2, 1/2, 1/2, 1/1)

(1/2, 1/2, 2/2, 2/2) (1/2, 1/2, 1/1, 1/1)

(1/2, 2/2, 1/2, 1/2) (1/2, 1/1, 1/2, 1/2)

(1/2, 2/2, 1/2, 2/2) (1/2, 1/1, 1/2, 1/1)

(1/2, 2/2, 2/2, 2/2) (1/2, 1/1, 1/1, 1/1)

(2/2, 2/2, 2/2, 2/2) (1/1, 1/1, 1/1, 1/1)
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Table 2.

Conditional probability that a quartet M displays consistency if i errors are introduced, 1 ≤i ≤4

Quartet = M Pr(M) Pr(N0|M,i)

i=1 i=2 i=3 i=4

(1/1, 1/1, 1/1, 1/1) P4 1/2 5/7 4/7 16/35

(1/1, 1/2, 1/1, 1/1) P3q 7/8 15/28 15/28 4/7

(1/1, 1/2, 1/1, 1/2) 2p3q 5/8 17/28 31/56 19/35

(1/1, 1/2, 1/2, 1/2) p3q 5/8 17/28 4/7 18/35

(1/1, 2/2, 1/2, 1/2) 2p2q2 1/2 1/2 4/7 22/35

(1/2, 1/2, 1/1, 1/1) 1/4 p2q2 3/4 17/28 15/28 19/35

(1/2, 1/2, 1/1, 1/2) p2q2 3/4 9/14 31/56 17/35

(1/2, 1/2, 1/1, 2/2) 1/2 p2q2 1/2 9/14 4/7 4/7

(1/2, 1/2, 1/2, 1/2) p2q2 1 9/14 1/2 18/35

(1/2, 1/2, 1/2, 2/2) p2q2 3/4 9/14 31/56 17/35

(1/2, 1/2, 2/2, 2/2) 1/4 p2q2 3/4 17/28 15/28 19/35

(1/2, 2/2, 1/2, 1/2) pq3 5/8 17/28 4/7 18/35

(1/2, 2/2, 1/2, 2/2) 2pq3 5/8 17/28 31/56 19/35

(1/2, 2/2, 2/2, 2/2) pq3 7/8 15/28 15/28 4/7

(2/2, 2/2, 2/2, 2/2) q4 1/2 5/7 4/7 16/35

Pac Symp Biocomput. Author manuscript; available in PMC 2018 September 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

GORDON et al. Page 13

Table 3.

Conditional probability that a quintet M displays consistency if i errors are introduced, 1 ≤i ≤ 5

Quintet = M Pr(M) Pr(N0|M,i)

i=1 i=2 i=3 i=4 i=5

(1/1, 1/1, 1/1, 1/1, 1/1) P4 2/5 28/45 3/5 46/105 8/21

(1/1, 1/2, 1/1, 1/1, 1/1) 1/2 p3q 9/10 3/5 29/60 16/35 3/7

(1/1, 1/2, 1/1, 1/1, 1/2) 3/2 p3q 7/10 5/9 59/120 19/42 29/63

(1/1, 1/2, 1/1, 1/2, 1/2) 3/2 p3q 3/5 8/15 59/120 33/70 28/63

(1/1, 1/2, 1/2, 1/2, 1/2) 1/2 p3q 3/5 8/15 61/120 16/35 19/42

(1/1, 2/2, 1/2, 1/2, 1/2) 2 p2q2 2/5 19/45 13/30 52/105 65/126

(1/2, 1/2, 1/1, 1/1, 1/1) 1/16 p2q2 4/5 2/3 29/60 3/7 29/63

(1/2, 1/2, 1/1, 1/1, 1/2) 3/8 p2q2 4/5 3/5 61/120 16/35 26/63

(1/2, 1/2, 1/1, 1/1, 2/2) 3/16 p2q2 3/5 7/15 29/60 33/70 10/21

(1/2, 1/2, 1/1, 1/2, 1/2) 3/4 p2q2 4/5 31/45 31/60 91/210 3/7

(1/2, 1/2, 1/1, 1/2, 2/2) 3/4 p2q2 3/5 29/45 1/2 7/15 55/126

(1/2, 1/2, 1/1, 2/2, 2/2) 3/16 p2q2 3/5 7/15 29/60 33/70 10/21

(1/2, 1/2, 1/2, 1/2, 1/2) 1/2 p2q2 1 31/45 1/2 46/105 56/126

(1/2, 1/2, 1/2, 1/2, 2/2) 3/4 p2q2 4/5 31/45 31/60 91/210 3/7

(1/2, 1/2, 1/2, 2/2, 2/2) 3/8 p2q2 4/5 3/5 61/120 16/35 26/63

(1/2, 1/2, 2/2, 2/2, 2/2) 1/16 p2q2 4/5 2/3 29/60 3/7 29/63

(1/2, 2/2, 1/2, 1/2, 1/2) 1/2 pq3 3/5 8/15 61/120 16/35 19/42

(1/2, 2/2, 1/2, 1/2, 2/2) 3/2 pq3 3/5 8/15 59/120 33/70 28/63

(1/2, 2/2, 1/2, 2/2, 2/2) 3/2 pq3 7/10 5/9 59/120 19/42 29/63

(1/2, 2/2, 2/2, 2/2, 2/2) 1/2 pq3 9/10 3/5 29/60 16/35 3/7

(2/2, 2/2, 2/2, 2/2, 2/2) q4 2/5 28/45 3/5 46/105 8/21
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Table 4.

Detection Rate 1 - β for Trios, Quartets and Quintets with various values of true error rate α and various allele 

frequencies p at diallelic locus.

Frequency p of one Quartets allele = .1 Frequency p of Quartets one allele = .5

True error rate Trios* Quintets Quintets Trios
* Quintets Quintets

.0010 .3032 .4352 .5064 .2501 .3361 .3706

.0050 .3025 .4337 .5045 .2506 .3370 .3718

.0100 .3017 .4319 .5022 .2512 .3380 .3732

.0200 .3001 .4284 .4978 .2525 .3400 .3762

.0500 .2960 .4193 .4856 .2562 .3467 .3859

.1000 .2909 .4081 .4705 .2622 .3586 .4039

.2000 .2862 .4017 .4631 .2732 .3841 .4441

.3000 .2865 .4117 .4825 .2820 .4084 .4830

*
see Reference 14, Table 4

Pac Symp Biocomput. Author manuscript; available in PMC 2018 September 21.


	Abstract
	Introduction
	Materials and Methods
	Detection Rate for Sib Pairs (Genotype Quartets)
	Detection Rate for Genotype Quintets

	Results
	Discussion
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

