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Abstract
In computer-aided diagnosis systems for breast mammography, the pectoral muscle region can easily cause a high false
positive rate and misdiagnosis due to its similar texture and low contrast with breast parenchyma. Pectoral muscle region
segmentation is a crucial pre-processing step to identify lesions, and accurate segmentation in poor-contrast mammograms is
still a challenging task. In order to tackle this problem, a novel method is proposed to automatically segment pectoral muscle
region in this paper. The proposed method combines genetic algorithm and morphological selection algorithm, incorporating
four steps: pre-processing, genetic algorithm, morphological selection, and polynomial curve fitting. For the evaluation
results on different databases, the proposed method achieves average FP rate and FN rate of 2.03 and 6.90% (mini MIAS),
1.60 and 4.03% (DDSM), and 2.42 and 13.61% (INBreast), respectively. The results can be comparable performance in
various metrics over the state-of-the-art methods.

Keywords Breast mammography · Pectoral muscle region segmentation · Genetic algorithm · Morphological selection

Introduction

Breast cancer is the most common cancer in women
worldwide and the second leading cause of female cancer
deaths, impacting more than 1.7 million women each year
[1]. In 2015, approximately 570,000 women died from
breast cancer, that is, 15% of all cancer deaths among
women [2]. In order to improve breast cancer survival, early
examination is a quite important strategy of prevention.
Mammography screening is the most frequently used
technique in early breast cancer examination [3].

Mammography screening is a repetitive task that is time-
consuming and exhausting. In practice, radiologists analyze
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hundreds of mammograms every day, which unavoidably
lead to a lot of false positives or false negatives. Due to
the advantages of consistency, reliability, and efficiency, the
use of computer-aided diagnosis (CAD) systems to assist
radiologists is popular. In breast CAD, segmentation of
breast tissue is a crucial pre-processing step to identify
lesions. The pectoral muscle region always appears as a
higher-intensity and triangular region in most medio-lateral
oblique (MLO) views. However, accurate segmentation of
pectoral muscle region in poor-contrast mammograms is
still a challenging task due to its similar texture and low
contrast with breast parenchyma, which can easily cause a
high false positive rate and misdiagnosis.

Many different approaches have been proposed to
tackle this problem. Straight line estimation approaches
[4–8] refine the boundary from a straight line with the
change of gray intensity. These approaches need associate
with other fine-tuned methods for pectoral muscle region
with curved boundary. Region growing approaches [9–13]
examine neighboring pixels of initial points and partition a
mammogram into multiple regions. These approaches are
sensitive to local gradient and noise, which do not always
give good performance because of rigid stopping condition.
The thresholding for edge detection approaches [14–20]
segments the mammograms into multiple regions based on
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different gray intensities. These approaches do not always
give good performance in low-contrast mammograms,
because fewer thresholds are not enough for segmenting.
Polynomial fitting [21–23] of the seed points is proposed to
improve the performance for which pectoral muscle had a
part of well contrast. These approaches more depend on the
seed points from well-contrast boundary; their segmentation
results in low-contrast regions are not stable. To our
knowledge, these existing methods usually used empirical
thresholds to detect initial boundary of pectoral muscle
region. This strategy is effective for that mammograms
with well contrast. Generally, mammogram is a type of
gray scale medical image with low signal-to-noise ratio,
and its contrast is poor. The prerequisite of using empirical
thresholds is not robust.

Based on the background in previous statement, we
propose an automatic method for pectoral muscle region
segmentation in mammograms. The novel contributions are
summarized as follows:

• An automatic method combines genetic algorithm and
morphological selection algorithm. This method can
obtain robust performance of pectoral muscle region
segmentation, especially in low-contrast mammograms.

• We employ a genetic algorithm with wavelet transform
to automatically learn multilevel thresholds for pectoral
muscle region segmentation in mammograms.

• We propose a morphological selection algorithm using
morphological features. The algorithm adequately uses
the prior characteristic of pectoral muscle in mammo-
grams and efficiently searches the optimal contour that
is close to the actual pectoral muscle region.

RelatedWork

There are many approaches have been developed for
pectoral muscle region segmentation. According to the
recent research review in this field by Mustra et al. [24],
the most commonly used approaches contain straight line
estimation, region growing, thresholding for edge detection,
and polynomial fitting. The mini MIAS [25] database is the
most used dataset, and only a few approaches evaluate all
the mammograms in this database.

Straight line estimation is a very intuitive approach. It
first estimates a straight line and then refines the boundary
from the line with change of gray intensity or gradient in
the region of interest (ROI). Kwok et al. [4, 5] presented
a straight line method to estimate the pectoral muscle
edge and refined the detected edge by cliff detection and
surface smoothing. Approximately 94% of images were
considered acceptably segmented. Ferrari et al. [6] proposed
a straight line method based on Hough transform; it is

possible to detect the longest or the brightest line in Hough
space. Ferrari et al. also proposed a different approach
using Gabor wavelets, specially designed for enhancing the
pectoral muscle edge. The average FP and FN rates were,
respectively, 0.58 and 5.77%. Kinoshita et al. [7] proposed
a straight line method based on radon domain information.
In the random domain, several suitable straight lines were
detected as candidates to represent the pectoral muscle
boundary. The average FP and FN were 8.99 and 9.13%,
respectively. Chakraborty et al. [8] presented a pectoral
muscle detection method based on average gradient and
shape features; it contains of straight line approximation and
curve smoothing. The average FP and FN pixel percentages
were 4.22 and 6.71% for mini MIAS database.

Region growing approaches examine neighboring pixels
of initial points and partition an image into multiple
regions. Raba et al. [9] presented a segmentation method
using region growing algorithm. Breast orientation was
used to initial seed and a size restriction was applied to
avoid a wrong growing. After the detection process, a
morphological operation was used to refine the boundary.
It achieved approximately 98% acceptable rate in test
dataset. Nagi et al. [10] proposed a detection method using
morphological pre-processing and seeded region growing
algorithm. Chen and Zwiggelaar [11] presented a region
growing method with the seed point located close to the
border of the pectoral muscle and the breast tissue. A locally
weighted regression method was used to refine the detected
boundary; 92.8% nearly acceptable rate was achieved for
MIAS database. Maitra et al. [12] also proposed a region
growing method with three steps: contrast enhancement,
defining the rectangle to isolate the pectoral muscle region,
and seeded region growing algorithm. It achieved 95.71%
acceptable rate in MIAS database. Rampun et al. [13]
proposed a contour region growing method with two
steps. Five edge features were applied to find the initial
pectoral contour, and the actual boundary was searched via
contour region growing. It achieved 97.8% dice similarity
coefficients in MIAS database and 89.6% in INBreast
database.

The thresholding for edge detection approaches segments
the mammograms into multiple regions based on different
gray intensities. Czaplicka and Wlodarczyk [14] proposed
a thresholding method using multilevel Otsu threshold and
refinement of initial segmentation by linear regression.
Approximately 98% acceptable rate was achieved in
test dataset. Camilus et al. [15, 16] presented a graph-
cut segmentation method based on various thresholds to
determine the initial boundary. Then, Bezier curve was
applied to smooth the boundary. The mean of FP and FN
rates were 0.64 and 5.58% in test dataset, respectively. Liu
et al. [17] proposed a pectoral muscle identification method
which utilizes statistical features of pixel responses. A
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global weighting scheme was applied onto the feature image
to enhance pectoral muscle regions. Then, a preliminary
set of pectoral muscles boundary was detected from the
weighted image. The mean of FP and FN rates were 2.32
and 3.81% in test dataset, respectively. Vikhe et al. [18]
proposed a thresholding method based on intensity for
pectoral muscle boundary detection. After enhancement
was applied on the image, the boundary points from the
candidates were selected based on threshold technique.
Then, all the boundary points detected were connected
to obtain the boundary. It achieved 96.56% acceptable
rate in test dataset. Sreedevi et al. [19] proposed global
thresholding to identify pectoral muscles in combination
with edge detection and connected labeling technique;
90.06% acceptable rate was achieved in test dataset. Yoon et
al. [20] proposed a thresholding method with morphological
operations and random sample consensus (RANSAC)
algorithm. The results showed 92.2% acceptable rate in
MIAS database.

To prevent false segmentation of mammograms that have
a part of well-contrast pectoral muscle region, polynomial
fitting of the seed points is proposed to predict the
boundary in the poor-contrast part. Xu et al. [21] presented
a optimal threshold method in combination with Hough
transform and polyline fitting. After finding a optimal
threshold, they extracted points from the initial pectoral
muscle mask and performed polyline fitting in Hough space.
Mustra and Grgic [22] presented a combination method
with adaptive histogram equalization constrast enhancement
and polynomial curvature estimation on selected region of
interest. It achieved 96.56% acceptable rate in test dataset.
Chen et al. [23] proposed a shape-based detection method
for extracting the boundary of the pectoral muscle in
mammograms. This method contained three steps: shape-
based enhancement mask, shape-based growth strategy,
and cubic polynomial fitting. The results showed 97.2%
acceptable rate in MIAS database.

Some other related works applied specific method
in pectoral muscle region segmentation. Ma et al. [26]
proposed two image segmentation methods based on graph
theory: adaptive pyramids (AP) and minimum spanning
trees (MST), respectively. The AP method can obtain 3.71%
FP and 5.95% FN, The MST method can obtain 2.55% FP
and 11.68% FN. Iglesias et al. [27] provided a multi-atlas
algorithm utilized the statistical information to estimate
the pectoral muscle region. The mean of FP and FN rates
was 2.23 and 6.62% in test dataset. Oliver et al. [28]
used atlas, intensity, and texture information in probabilistic
model to segment a mammogram. Zhou [29] developed
a new texture-field orientation method that combines a
priori knowledge and local and global information for the
automated identification of pectoral muscle region. The
mean of FP and FN were 2.33 and 2.88% in test dataset.

Methods

Our proposed methods incorporate four steps to automat-
ically detect the pectoral muscle region: pre-processing,
genetic algorithm, morphological selection, and polyno-
mial curve fitting. The pre-processing step is proposed to
determine the skin-air boundary of breast and remove vari-
ous artifacts. The genetic algorithm can automatically learn
multilevel thresholds for the processed grayscale image
from previous step and segments the image into multiple
regions based on multilevel thresholds. The morphologi-
cal selection step employs morphological features to search
the optimal contour with respect to pectoral muscle region.
The polynomial curve fitting is proposed to smooth the
pectoral muscle boundary and predict the boundary in the
mammograms with a part of poor contrast.

Pre-processing

There are two commonly storing ways of mammograms:
analog screen-film mammography (SFM) and full-field
digital mammography (FFDM). In the case of scanned SFM
images, each image may contain various artifacts, such
as labels, markers, overexposed edges, fill area, and even
adhesive tapes. Several types of artifacts are shown in Fig. 1.

In order to determine the skin-air boundary and improve
the performance of pectoral muscle region segmentation,
an algorithm employs a opening operation [30] and Otsu’s
automatic thresholding [31] to remove artifacts on each
image.

The opening operation can remove bright objects that
are smaller than the kernel size, and restores the shape of
remaining objects. The undersized kernel size leads to poor
filtering performance and the oversized kernel size losses
the boundary details of the remain objects. Based on the
image resolution and the average size of noise points, the
kernel is set as a disk shape with radius 10 pixels for mini
MIAS database, and radius 50 pixels for DDSM [32]. In
the next step, Otsu’s automatic thresholding is applied to
generate a binary mask. Otsu’s algorithm tries to find a
threshold value which minimizes the weighted within-class
variance. Then, we choose the maximum connected domain
of Otsu’s thresholding to generate a binary mask.

Finally, a logical multiply operation is performed
between the binary mask and the original image. The
pre-processing step is applied to determine the skin-air
boundary of breast and remove various artifacts. The
example of pre-processing step is shown in Fig. 2.

Genetic Algorithm

In this section, a genetic algorithm (GA) developed by
Hammouche et al. [33] is introduced to automatically learn
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Fig. 1 Various artifacts in SFM
images

(a) mdb002 from mini MIAS (b) A1128 LEFT MLO from DDSM

multilevel thresholds for the processed grayscale image
from previous step and segment the image into multiple
regions based on multilevel thresholds. For high-resolution
grayscale image, this algorithm can employs 2D discrete
wavelet transform [34] to accelerate the learning process, by
learning the multilevel thresholds in the transformed image
with low resolution.

Assume that an grayscale image I with L =
{0, 1, ..., L − 1} gray levels is to be classified into k =
(C1, C2, ..., Ck) classes with the set of multilevel thresholds
T = {t1, t2, ..., tk−1}. If a 2D discrete wavelet transform
was performed, the length of gray levels was reduced to
Lj = L/2j , where j was the wavelet resolution level.

In this proposed genetic algorithm, a chromosome is
represented as a binary string A of size Ls , given by

Ls = (k − 1) × log2(Lj ) (1)

where (k − 1) denotes the number of multilevel thresholds.
Such as A = a0, a1, ..., aLs−1, each character ai is equal
to 0 or 1. In other words, a chromosome is a combination
of binary representation of multilevel thresholds. The initial
population of chromosomes with size P is randomly
generated with a fixed length strings (A1, A2, ..., AP ) each
string has Ls randomly generated bits. For instance, the
chromosome is a 32 bits string for the condition of Lj =
256 and k = 5; each 8 bits represent one threshold.

To determine the optimal string as well as the optimal
multilevel thresholds, the genetic algorithm fitness function
for a string was computed following Yen et al. [35], and is
given by

F(k) = ρ × (Disk(k))1/2 + (log2(k))2 (2)

where ρ is a positive weighting constant and Disk (k)

denotes the within-class variance. The optimum class

(a) (b) (c) (d)

Fig. 2 Example of pre-processing for mdb009 from mini MIAS
database. a The original image without the fill area; b the modified
image by opening operation; c the binary mask is chosen by the max-
imum connected domain after Otsu’s automatic thresholding for the

modified image; d the final image without artifacts obtained from
logical multiply operation between the binary mask and the original
image
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number k∗ and best multilevel thresholds k∗ − 1 can be
determined by

F(k∗) = min {F(k)} (3)

In the proposed genetic algorithm, the learning strategy
contains three types of genetic operations: selection,
crossover, and mutation. The evolution process, the current
population evolves to next population with the same size,
is iterated until convergence or a maximum number of
generations. The convergence condition is the change ratio
of fitness function less than a convergence threshold ε (e.g.,
ε = 0.1% ). Selection operation mimics the natural survival
of the fittest creatures. The probability of each string to
be selected to next population is proportional to its fitness
value. The crossover operation chooses two strings A′ and
A′′ of the current population. Single crossover is applied
as follows: generate a random integer number qc within
[0, Ls − 1] and create two offspring by swapping all the
characters of A′ and A′′ after position qc. The crossover
is performed with the crossover probability Pc ∈ [0, 1].
Mutation operation is an occasional alteration of a character
in a string with a low probability Pm. It generates a random
integer number qm in [0, Ls − 1] and alter the bit in this
string (i.e., 0 to 1, or 1 to 0).

If the multilevel threshold values determined by GA were
obtained from a reduced histogram by a dyadic wavelet
transform, these threshold values must be expanded to their
original histogram spaces. In this case, each threshold ti was
multiplied by a factor 2j . Then, a refinement procedure was
performed to obtain more accurate multilevel thresholds.
In this procedure, compute the mean gray level mi(s) of
the class Ci, i ∈ [1, k − 1], where s denotes the time of
iteration. The value of ti (s) was updated and repeated until
convergence according to the follow equation:

ti (s + 1) = [mi(s) + mi+1(s)]/2. (4)

For previous learned multilevel thresholds, a grayscale
image can be segmented into multiple regions. Suppose the
input grayscale image is I , the output segmented image
is B, and (x, y) is the coordinate of pixel in image. The
segmentation process is applied by

B(x, y) = i × int(L/k), ∀I (x, y) ∈ [ti , ti+1) (5)

where i ∈ [0, 1, ..., k−1], the minimum and maximum gray
level are used as t0 and tk , and {t1, t2, ..., tk−1} is the set of
multilevel thresholds.

The proposed genetic algorithm and next segmentation
are summarized in Algorithm 1.

The example of this proposed genetic algorithm and
segmentation is shown in Fig. 3. The algorithm was
performed on mdb009 from mini MIAS database using
following parameters given in Table 1. The thresholds

Fig. 3 Multilevel thresholds segmentation using proposed genetic
algorithm for mdb009



J Digit Imaging (2018) 31:680–691 685

Table 1 Parameters used in proposed genetic algorithm for mdb009

Parameter Value

Thresholds 10

Population 60

Iterations 100

Selection probability 0.1

Crossover probability 0.8

Mutation probability 0.1

Wavelet transform level 0

parameter can be automatically obtained in the genetic
algorithm. For mini MIAS database, wavelet transform level
is set as 0. For DDSM and INBreast database, wavelet
transform level is set as 3 to accelerate the learning
process. Except wavelet transform level and thresholds,
the other parameters of genetic algorithm use the same
fixed configuration in the experiments. Moreover, the
parameters except thresholds are correlated with the rate
of computational convergence, the best fitness string are
identical after the convergence.

Morphological Selection

The pectoral muscle region has significant morphological
features, such as higher intensity, roughly triangular shape,
and gradually narrowing from top to bottom. In this section,
a morphological selection algorithm is proposed to search
the optimal contour of pectoral muscle region according to
significant morphological features.

The following morphological features are used in
proposed method: contour area size S, the ratio of contour
area size to breast area size Rcb, the distance of contour
centroid to axial corner D (the axial corner is decided by the
orientation of breast, e.g., the top-right corner in Fig. 3), the
ratio of contour area size to its convex hull area size Rch,
namely solidity, and the similarity of contour with inverted
right triangle L.

Table 2 The decision criterion used in filtering contours for mini
MIAS database

Feature Criterion Step Note

S ≥ 100 1 Contour area size

S×Rch max(·) 2 Product of contour area
size and solidity

Rcb ≤ 0.5 1 The ratio of contour area
size to breast area size

D min(·) 1 The distance of contour
centroid to axial corner

Rch ≥ 0.7 1 The ratio of contour area size
to its convex hull area size

L ≤ 0.2 1 The similarity of contour
with inverted right triangle

The S is used to filter too small contours (e.g., noise points). The Rcb is
used to filter too large contours (e.g., the contour of entire breast area).
The Rch is used to filter anomalous contours which have lower solidity
(e.g.,starlike contours). The L is used to filter dissimilar contours with
inverted right triangle. The D is used to find the nearest contour to
the axial corner in each binary mask. The S×Rch is used to find the
maximal contour with the trade-off between contour area size and
solidity, whose contour is selected as the optimal contour

Based on the multilevel thresholds from previous section,
a batch of binary masks can be obtained for each single
threshold; each binary mask is given by

Bi(x, y) =
{

0, I (x, y) < ti
255, I (x, y) ≥ ti

(6)

where i ∈ [0, 1, ..., k − 1], the example for mdb009 sets 10
multilevel thresholds for 11 binary masks, and the last five
masks B6(x, y) ∼ B10(x, y) are shown in Fig. 4.

A contour search for each binary mask is implemented
to find all proposal contours. Each proposal contour is a
connected domain in corresponding binary mask. Then,
morphological features are extracted for each proposal
contour. A decision criterion with two steps is proposed
to filter contours, given in Table 2. The particular values

Fig. 4 The last five binary masks B6(x, y) ∼ B10(x, y) for mdb009
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for the decision criterion are estimated from the samples
of the corresponding database. The first step is performed
in each binary mask, retaining the optimal contour in each
mask. The S is used to filter too small contours (e.g.,
noise points). Based on the noise filter kernel size in pre-
processing step (10 pixels), the minimum threshold of S is
set as its square 100. The Rcb is used to filter too large
contours (e.g., the contour of entire breast area). Based
on imaging technique of MLO mammograms, the pectoral
muscle regions reside in the top-left or top-right area and
generally occupy a smaller part of the entire breast area
(less than half). Therefore, the maximum threshold Rcb is
set as 0.5. The Rch is used to filter anomalous contours
which have lower solidity (e.g., starlike contours). The
L is used to filter dissimilar contours with inverted right
triangle. The thresholds of Rch and L are estimated by
sampling statistics of the sample counters with the 95%
confidence. The D is used to find the nearest contour to
the axial corner in each binary mask. The second step is
performed to find the optimal contour in retained contours
from the first step. The S×Rch is used to find the maximal
contour with the trade-off between contour area size and
solidity, whose contour is selected as the optimal contour.
The optimal contour of pectoral muscle region is shown
in Fig. 5.

In very rare cases of mammograms, the pectoral muscle
regions are nonexistent. For this cases, none proposal
contour is retained after the filtering in the first step
of morphological selection. This strategy ensures the
robustness of the proposed method. The morphological
selection procedure is summarized in Algorithm 2.

Polynomial Curve Fitting

Due to the noise in the original image, the optimal
contour from morphological selection algorithm always has
a rugged boundary. In minor cases, the mammograms have
a part of well contrast and another part of poor contrast. To
tackle this problem, a polynomial curve fitting is used to
yield a smooth boundary.

Mustra et al. [22] proved that the curved boundary of
pectoral muscle region in majority mammograms can be
approximatively fitted in cubic function. Therefore, a cubic
polynomial function with four coefficients is chosen in the
proposed method, given by

y = c1x
3 + c2x

2 + c3x + c4 (7)

where y is the horizontal coordinate, x is the vertical coordi-
nate, and ci are the polynomial coefficients. Compared with
linear function or quadratic function in this case, cubic fit-
ting function has better performance without under-fitting
problem. Although higher degree of polynomial function
can also fit the curved boundary, it increases the risk of
over-fitting with overall deviation.

In order to learn the coefficients of the cubic function,
all the points in the boundary from the optimal contour are
used. It can efficiently overcome the over-fitting problem
with enough points. The result of boundary curve is shown
in Fig. 6.

Experiment

Datasets

To evaluate the performance of proposed method, we
use three different databases: mini MIAS [25] database,
DDSM [32] database, and INBreast [36] database. The
mini MIAS database is a screen-film mammography (SFM)
database, which contains 322 mammograms with resolution
of 1024 × 1024 pixels and 8 bits per pixel. The DDSM is
the largest public SFM database, it contains 2620 cases with
10480 mammograms in total. The INBreast database is a
public FFDM database in the field; it contains 201 MLO
mammograms with annotations.

The mammograms of DDSM and INBreast database
have higher image resolution, typically 4000 × 3000
and 3500 × 3000. In the DDSM database, the MLO
mammograms do not have annotations of pectoral muscle
region. We only sample 128 mammograms from DDSM
database for evaluation. Furthermore, we preferentially
select low-contrast mammograms.

The evaluation dataset contains 651 MLO mammograms
in total. The all 322 mammograms from mini MIAS
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Fig. 5 The optimal contour of pectoral muscle region for mdb009

database and the 128 MLO mammograms from DDSM
use the manual segmentation annotated by a group of
expert radiologists as ground truth. The all 201 MLO
mammograms from INBreast database use the pectoral
muscle boundary annotations as ground truth, which were
provided by INBreast database. For mammograms from
DDSM and INBreast databases, 2D wavelet transform is
employed to reduce the resolution and gray levels in the
proposed method. The wavelet transform level is set as 3 in
the experiments.

Fig. 6 Boundary curve of pectoral muscle region and breast tissue for
mdb009

Quantitative Evaluation

To quantitatively evaluate the performance of the proposed
method, we use the following metrics: FP rate, FN rate,
Jaccard similarity coefficient, Dice similarity coefficient,
and Hausdorff distance.

Suppose that D is the set of pixels in detected region and
R is the set of pixels in ground truth region. Sd is the set of
detected boundary points and Sr is the set of ground truth
boundary points. These metrics are given by

FP = |D ∪ R| − |R|
|R| (8)

FN = |D ∪ R| − |D|
|R| (9)

Jaccard = |D ∩ R|
|D ∪ R| (10)

Dice = 2 × |D ∩ R|
|D| + |R| (11)

H(Sd, Sr) = max(h(Sd, Sr), h(Sr, Sd)) (12)

where |·| refers to the number of pixels of that region and
‖·‖ is the Euclidean distance between two point. h(Sd, Sr)

and h(Sr, Sd) are given by

h(Sd, Sr) = max
pd∈Sd

( min
pr∈Sr

‖pd − pr‖) (13)

h(Sr, Sd) = max
pr∈Sr

( min
pd∈Sd

‖pr − pd‖) (14)

More details of the proposed metrics are presented in
[37–41].

Results

All mammograms are obtained from MLO view, and
the pixel resolutions of each database are 200, 50,
70 μm respectively. For the 322 mammograms from
mini MIAS database, the results of pectoral muscle
region segmentation can be classified into three categories:
successful, acceptable, and unacceptable. The result is rated
as successful if the segmentation result is matched to the
real boundary exactly or nearly exactly. If minor pixels near
the real boundary are mis-segmented, the result is rated as
acceptable. Based on the recommendations of a group of
expert radiologists, we employ the following quantitative
criterions of classification. For unacceptable results, the
FP rate or the FN rate of detected pectoral muscle region
is greater than 0.2. For acceptable results, one of the FP
rate and the FN rate is in the range of 0.1 to 0.2; the
other one is less than 0.1. For successful results, the FP
rate and the FN rate are less than 0.1. Otherwise, the
result is rated as unacceptable. The detection results of
our proposed method for 322 mammograms from mini
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Table 3 The detection results of 322 mammograms from mini MIAS
database

Category Number Percentage Criterions

Successful 291 90.37 FP ≤ 0.1 and
FN ≤ 0.1

Acceptable 21 6.52 min(FP, FN) ≤ 0.1 and
0.1 < max(FP, FN) ≤ 0.2

Unacceptable 10 3.11 FP > 0.2 or
FN > 0.2

A total 96.89% of the results were successful or acceptable. The
quantitative criterions of these categories is the most common criterion
from related literature

MIAS database are listed in Table 3; 291 mammograms are
segmented out the pectoral muscle region successfully and
21 mammograms are acceptable. Therefore, a total 96.89%
of the results are successful or acceptable. The rest of 10
mammograms are classified into unacceptable.

Our proposed method also presents competitive perfor-
mance of metrics that are comparable with the state-of-the-
art methods; the overall quantitative results for the proposed
method are shown in Table 4. The quantitative results of
mini MIAS database are counted from all 322 mammo-
grams; the quantitative results of DDSM and INBreast
are counted from 128 MLO mammograms and 201 MLO
mammograms respectively.

For mini MIAS database, the proposed method achieves
average 2.03 ± 2.24% FP rate, 6.90 ± 10.07% FN rate,
91.25 ± 10.48% Jaccard similarity coefficient, 94.96 ±
8.55% Dice similarity coefficient, and 8.15 ± 8.77 mm
Hausdorff distance. For DDSM database, a 2D discrete
wavelet transform is employed to reduce computational
complexity, the wavelet is set as ′coif 3′ with level 3 [42].
The proposed method achieves average 1.60 ± 1.86% FP
rate, 4.03±2.31% FN rate, 94.48±2.19% Jaccard similarity
coefficient, 97.15 ± 1.16% Dice similarity coefficient,
and 6.77 ± 5.68 mm Hausdorff distance. For INBreast
database, a 2D discrete wavelet transform is also employed

Table 4 Average quantitative results of evaluation dataset

Metric Mini MIAS DDSM INBreast

FP (%) 2.03 ± 2.24 1.60 ± 1.86 2.42 ± 6.22

FN (%) 6.90 ± 10.07 4.03 ± 2.31 13.61 ± 17.05

Jaccard (%) 91.25 ± 10.48 94.48 ± 2.19 84.61 ± 18.15

Dice (%) 94.96 ± 8.55 97.15 ± 1.16 89.10 ± 16.54

Hd (mm) 8.15 ± 8.77 6.77 ± 5.68 17.28 ± 23.75

The number of mammograms from each database are 322, 128, and
201 respectively. All metrics are presented in the form of mean
with standard deviation(μ ± σ ). Hd is Hausdorff distance. The pixel
resolutions of each database are 200, 50, and 70 μm respectively

as DDSM database. The proposed method achieves average
2.42 ± 6.22% FP rate, 13.61 ± 17.05% FN rate, 84.61 ±
18.15% Jaccard similarity coefficient, 89.10±16.54% Dice
similarity coefficient, and 17.28 ± 23.75 mm Hausdorff
distance. The evaluation results on mini MIAS database
and DDSM database are competitive. Because the INBreast
database contains many abnormal MLO mammograms,
such as abnormal pectoral muscle position and incorrect
boundary annotation, the evaluation results on INBreast
database are restricted.

The state-of-the-art methods for comparison in the
literature are shown in Table 5. It should be noted that the
results of the comparative methods may be evaluated on
different datasets and different evaluation metrics. Many
studies quantitatively evaluated their methods based on
private ground truth (e.g., used visual assessment by a
group of expert radiologists). It is difficult to make a
direct comparison between various methods. To minimize
these deviation, we principally make a comparison between
studies which used mini MIAS database with similar
metrics. As shown in Table 5, most of the studies did not
evaluate their methods on all 322 of the mammograms
in mini MIAS database. For a small dataset with 84

Table 5 Qualitative comparison

Authers Dataset Results

Ferrari et al. [6] 84� FP = 0.58%, FN = 5.77%
Hd = 3.84 mm

Kinoshita et al. [7] 540 FP = 8.99%, FN = 9.13%
Hd = 12.45 mm

Chakraborty et al. [8] 80� FP = 4.22%, FN = 6.71%
Hd = 7.71 mm

Camilus et al. [16] 84† FP = 0.85%, FN = 4.88%
Hd = 3.85 mm

Liu et al. [17] 318� FP = 2.32%, FN = 3.81%
Hd = 3.47 mm

Rampun et al. [13] 322† FP = 2.30%, FN = 4.70%
Jaccard = 94.9%,
Dice = 97.9%

Ma et al. [26] 84� FP = 3.71%,
FN = 5.95%(AP)
FP = 2.55%,
FN = 11.68%(MST)

Iglesias et al. [27] 80 FP = 2.23%, FN = 6.62%
Hd = 23.96 mm

Zhou [29] 637 FP = 2.33%, FN = 2.88%
Hd = 3.45 mm

Oliver et al. [28] 149† Dice = 83%

Chen et al. [23] 84� FP = 1.02%, FN = 5.63%
Hd = 3.53 mm

It should be noted that the results of the comparative methods may be
quantitatively evaluated based on private ground truth. � denotes these
images from mini MIAS database, † denotes these images from MIAS
database
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mammograms, Ferrari et al. [6] achieved average 0.58%
FP rate, 5.77% FN rate, and 3.88 mm Hausdorff distance;
Camilus et al. [16] achieved average 0.85% FP rate, 4.88%
FN rate, and 3.85 mm Hausdorff distance; Ma et al. [26]
achieved average 3.71% FP rate and 5.95% FN rate using
AP method and average 2.55% FP rate and 11.68% FN
rate using MST method; Chen et al. [23] achieved average
1.02% FP rate, 5.63% FN rate, and 3.53 mm Hausdorff
distance. For a whole dataset with all mammograms, Liu et
al. [17] achieved average 2.32% FP rate, 3.81% FN rate, and

3.47 mm Hausdorff distance; Rampun et al. [13] achieved
average 2.30% FP rate, 4.70% FN rate, 94.9% Jaccard
similarity coefficient, and 97.9% Dice similarity coefficient.
Our proposed method produced a comparable performance
over the state-of-the-art methods.

Examples of pectoral muscle region segmentation results
from each database are shown in Fig. 7 with ground
truth. We plot the ground truth(red) on the segmented
mammograms which have been removed the estimated
pectoral muscle regions. Mammograms (a) ∼ (e) are

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 7 Examples of pectoral muscle region segmentation results from
each database. The ground truth boundaries are plotted in red on the
segmented mammograms which have been removed the estimated

pectoral muscle regions. Mammograms (a) ∼ (e) are sampled from
mini MIAS database, (f ) ∼ (j) are sampled from DDSM database,
and (k) ∼ (o) are sampled from INBreast database
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Fig. 8 The samples with
acceptable and unacceptable
results. The upper row shows the
original mammograms, and the
under row shows the
segmentation results. a The
acceptable sample mdb003 with
over-segmented pectoral
muscle; b the acceptable sample
mdb032 with under-segmented
pectoral muscle; c the
unacceptable sample mdb061, it
is unacceptable because pectoral
muscle region and breast
parenchyma have uniform gray
intensity around the truth
boundary; d the unacceptable
sample mdb123, it is
unacceptable because pectoral
muscle region has abnormal
split line

(a) (b) (c) (d)

sampled from mini MIAS database, (f ) ∼ (j) are sampled
from DDSM database, and (k) ∼ (o) are sampled from
INBreast database. The proposed method achieves excellent
performance in each example mammograms.

With further analysis for the acceptable and unacceptable
results from mini MIAS database, there still remain
limitations of the proposed method. Primarily, since the
genetic algorithm is based on overall image gray intensity,
it is difficult to segment the overall image into local regions
appropriately in vary rare cases (e.g., pectoral muscle region
and breast parenchyma have uniform gray intensity, or
strong white Gaussian noise). Secondly, the morphological
selection algorithm used some prior knowledge as filtering
criterion; it may lead to poor performance for rare cases
which did not conform to ordinary experience, such as
pectoral muscle region in abnormal position of image,
or irregular shape. Several samples are shown in Fig. 8.
To overcome these limitations, we plan to employ local
adaptive filtering methods to enhance mammograms and
employ more robust features to filter contours in our future
work.

Conclusions

We propose a new method for automatic pectoral muscle
region segmentation in MLO views of mammograms.
The proposed method combines genetic algorithm and

morphological selection algorithm, incorporating four steps:
pre-processing, genetic algorithm, morphological selection,
and polynomial curve fitting. The genetic algorithm is used
to learn multilevel thresholds and segment the mammogram
to multiple regions. The morphological selection algorithm
is used to search the optimal contour of pectoral muscle
region based on morphological features. The proposed
method was evaluated on different databases (mini MIAS,
DDSM, INBreast) with a total of 651 mammograms. The
results of various metrics show that our proposed method
achieved a comparable performance over the state-of-the-art
methods in the literature.

References

1. Stewart B, Wild CP, et al (2017) World cancer report 2014, Health
2. World Health Organization Breast cancer (2017). [Online]. Avail-

able: http://www.who.int/cancer/prevention/diagnosis-screening/
breast-cancer/en/

3. World Health Organization, et al. (2014) WHO position paper on
mammography screening. World Health Organization

4. Kwok S, Chandrasekhar R, Attikiouzel Y Automatic pectoral
muscle segmentation on mammograms by straight line estimation
and cliff detection. In: Intelligent Information Systems Confer-
ence, The Seventh Australian and New Zealand 2001. IEEE, 2001,
pp 67–72

5. Kwok SM, Chandrasekhar R, Attikiouzel Y, Rickard MT:
Automatic pectoral muscle segmentation on mediolateral oblique
view mammograms. IEEE Trans Med Imaging 23(9):1129–1140,
2004

http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/
http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/


J Digit Imaging (2018) 31:680–691 691

6. Ferrari RJ, Rangayyan RM, Desautels JL, Borges R, Frere AF:
Automatic identification of the pectoral muscle in mammograms.
IEEE Trans Med Imaging 23(2):232–245, 2004

7. Kinoshita SK, Azevedo-Marques PM, Pereira RR, Rodrigues
JAH, Rangayyan RM: Radon-domain detection of the nipple and
the pectoral muscle in mammograms. J Digit Imaging 21(1):37–
49, 2008

8. Chakraborty J, Mukhopadhyay S, Singla V, Khandelwal N,
Bhattacharyya P: Automatic detection of pectoral muscle using
average gradient and shape based feature. J Digit Imaging
25(3):387–399, 2012

9. Raba D, Oliver A, Martı́ J, Peracaula M, Espunya J (2005)
Breast segmentation with pectoral muscle suppression on digital
mammograms. Pattern Recognition and Image Analysis, pp 153–
158

10. Nagi J, Kareem SA, Nagi F, Ahmed SK Automated breast profile
segmentation for ROI detection using digital mammograms. In:
2010 IEEE EMBS conference on biomedical engineering and
sciences (IECBES). IEEE, 2010, pp 87–92

11. Chen Z, Zwiggelaar R A combined method for auto-
matic identification of the breast boundary in mammo-
grams. In: 2012 5th International Conference on Biomedical
Engineering and Informatics (BMEI). IEEE, 2012, pp 121–
125

12. Maitra IK, Nag S, Bandyopadhyay SK: Technique for prepro-
cessing of digital mammogram. Comput Methods Prog Biomed
107(2):175–188, 2012

13. Rampun A, Morrow PJ, Scotney BW, Winder J (2017) Fully
automated breast boundary and pectoral muscle segmentation in
mammograms. Artificial Intelligence in Medicine

14. Czaplicka K, Włodarczyk H., et al: Automatic breast-line and pec-
toral muscle segmentation. Schedae Informaticae 2011(20):195–
209, 2012

15. Camilus KS, Govindan V, Sathidevi P: Computer-aided identifi-
cation of the pectoral muscle in digitized mammograms. J Digit
Imaging 23(5):562–580, 2010

16. Camilus KS, Govindan V, Sathidevi P: Pectoral muscle identifi-
cation in mammograms. J Appl Clin Med Phys 12(3):215–230,
2011

17. Liu L, Liu Q, Lu W: Pectoral muscle detection in mammograms
using local statistical features. J Digit Imaging 27(5):633–641,
2014

18. Vikhe P, Thool V: Intensity based automatic boundary identifi-
cation of pectoral muscle in mammograms. Proc. Comput. Sci.
79:262–269, 2016

19. Sreedevi S, Sherly E: A novel approach for removal of pectoral
muscles in digital mammogram. Proc. Comput. Sci. 46:1724–
1731, 2015

20. Yoon WB, Oh JE, Chae EY, Kim HH, Lee SY, Kim KG
Automatic detection of pectoral muscle region for computer-
aided diagnosis using MIAS mammograms. BioMed research
international, 2016

21. Xu W, Li L, Liu W A novel pectoral muscle segmentation
algorithm based on polyline fitting and elastic thread approaching.
In: 2007 The 1st international conference on bioinformatics and
biomedical engineering, 2007. ICBBE. IEEE, 2007, pp 837–
840

22. Mustra M, Grgic M: Robust automatic breast and pectoral
muscle segmentation from scanned mammograms. Signal Process
93(10):2817–2827, 2013

23. Chen C, Liu G, Wang J, Sudlow G: Shape-based automatic
detection of pectoral muscle boundary in mammograms. J Med
Biol Eng 35(3):315–322, 2015

24. Mustra M, Grgic M, Rangayyan RM: Review of recent advances
in segmentation of the breast boundary and the pectoral muscle in
mammograms. Med Biol Eng Comput 54(7):1003–1024, 2016

25. Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C, Ricketts
I, Stamatakis E, Cerneaz N, Kok S, et al. The mammographic
image analysis society digital mammogram database. In: Exerpta
Medica. International Congress Series, vol 1069, 1994, pp 375–378

26. Ma F, Bajger M, Slavotinek JP, Bottema MJ: Two graph
theory based methods for identifying the pectoral muscle in
mammograms. Pattern Recogn 40(9):2592–2602, 2007

27. Iglesias JE, Karssemeijer N: Robust initial detection of landmarks
in film-screen mammograms using multiple FFDM atlases. IEEE
Trans Med Imaging 28(11):1815–1824, 2009
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