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Abstract
Image segmentation is one of the most common steps in digital image processing, classifying a digital image into different
segments. The main goal of this paper is to segment brain tumors in magnetic resonance images (MRI) using deep learning.
Tumors having different shapes, sizes, brightness and textures can appear anywhere in the brain. These complexities are the
reasons to choose a high-capacity Deep Convolutional Neural Network (DCNN) containing more than one layer. The proposed
DCNN contains two parts: architecture and learning algorithms. The architecture and the learning algorithms are used to design a
network model and to optimize parameters for the network training phase, respectively. The architecture contains five
convolutional layers, all using 3 × 3 kernels, and one fully connected layer. Due to the advantage of using small kernels with
fold, it allows making the effect of larger kernels with smaller number of parameters and fewer computations. Using the Dice
Similarity Coefficient metric, we report accuracy results on the BRATS 2016, brain tumor segmentation challenge dataset, for the
complete, core, and enhancing regions as 0.90, 0.85, and 0.84 respectively. The learning algorithm includes the task-level
parallelism. All the pixels of an MR image are classified using a patch-based approach for segmentation. We attain a good
performance and the experimental results show that the proposed DCNN increases the segmentation accuracy compared to
previous techniques.
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Introduction

Image processing is one the most important achievements and
commonly used engineering techniques in all areas of science,
including medical science that nowadays severely has
eclipsed diagnosis and treatment of any diseases. For
partitioning an image into multiple segments, the method of
image segmentation can be used [1]. It is used in different
applications such as medical image processing, especially in

magnetic resonance imaging (MRI) [2]. MRI is one of the
common methods for diagnosing brain tumors. Although sur-
gery is the main solution, in cases where physical activity is
not possible, radiation therapy and chemotherapy could help
too. Since MRI compared to other diagnostic modalities (ra-
diography, computerized tomography (CT) scan, etc.) is safe
and non-invasive, and on the other hand reflects the true di-
mensions of organ, its use in imaging of the brain is widely
considered. The most important considered characteristic in
precise processing of MR images is determination and sepa-
ration of borders and the edge of normal and abnormal tissues
from each other. Different algorithms have been proposed for
segmentation and invented which are able to identify the an-
atomical structure of the human body, especially the brain
more precisely. For clinical purposes, medical imaging is used
as a method for creating visual images of the interior of a body
[3]. Medical imaging includes methods such as ionizing radi-
ation, non-ionizing radiation, and nuclear radiation [4].
Nowadays, MRI as a non-ionizing radiation method is used
commonly for the diagnosis of brain tumors [5]. Since MRI is
non-invasive in comparison with other diagnostic methods
(radiography, CT scan, etc.), reflects the exact dimension of
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the organ, its application in brain imaging has attracted con-
siderable attention [6]. A glioma, as a type of tumor, is the
most common brain tumor. Life expectancy is several years
with low-grade gliomas and a maximum of 2 years with high-
grade gliomas. Although some types of tumors such as me-
ningioma can be segmented easily, some other types such as
glioma and glioblastoma cannot be easily located. The images
of these tumors and their edema are often spread with a low
contrast and Y-shape. In addition, these tumors may be any-
where in the brain, with any shape and size [7]. Since glio-
blastoma tumors tend to spread, the boundaries are often fuzzy
and difficult to separate from healthy tissues. To solve this
problem, several isotope simultaneous MR images are used
with different modalities. As the analysis of MR images is
complex and time-consuming, it is indispensable to have a
smart system helping doctors in this regard [8].

Algorithms for medical images segmentation are divided
into three categories: the first category includes low-level
techniques like application of region growing and intensity
thresholds; the second category is determined using optimiza-
tion techniques and uncertainty models. Third category has a
higher-level knowledge like priori information about the seg-
mentation process [9–11]. Deep Convolution Neural Network
(DCNN) has beenwidely used in the third category. Although,
various algorithms for segmentation have been developed and
proposed, finding a suitable algorithm for medical image seg-
mentation is a challenging task. This is due to noise, low
contrast, and steep light variations of medical images.
Tumor segmentation in MR images should be time-consum-
ing, requiring a considerable amount of memory to segment
large data. The main feature considered in the detailed pro-
cessing of MR images is the segmentation and separation of
the boundaries and edges of natural and non-natural tissues.

The main goal of this paper is to design and to implement a
DCNN towards fast and accurate segmentation of brain MR
images. In machine learning, a Convolution Neural Networks
(CNN) is a type of feed-forward artificial neural network in
which the pattern of binding between neurons is inspired by
the mammal’s visual cortex [12]. DCNNs are a class of CNN
used as a powerful tool to help to solve visual classification
problems [13, 14]. The proposed DCNN includes five
convolutional layers and one fully connected layer in the output.
Each convolutional layer itself consists of the convolutional,
pooling, and Rectified Linear Unit (ReLU). The last fully con-
nected layer is used with a softmax classifier for the output clas-
sification. Basically, every convolution, pooling, and nonlinear
operator reduces the number of features leading to a set of useful
features from the image. In each layer, higher-level features are
produced in comparison to the previous layer. It should be noted
that if the nature of the task involved requires location informa-
tion to be preserved, the pooling results in under fitting.
Furthermore, in cases where it is necessary to establish a seman-
tic relationship between two extremely distant regions in the

image, the convolution imposes an incorrect prior assumption.
In this paper, the overlapping pooling strategy and randomly
nonlinear functions were used to enhance the segmentation ac-
curacy in the proposed DCNN compared to other related works.
In order to improve image segmentation performance, Graphic
Processing Unit (GPU) hardware cores and the task-level paral-
lelism approaches in the Caffe [15] utility were used.

This paper is organized as follows. Section 2 describes
some of the conducted related works. In BThe Proposed
DCNN^ section, the paper methodology is presented. The
BExperimental Results^ section expounds the experimental
result. Finally, the BConclusions^ section presents conclusions
and future works.

Deep Convolution Neural Network
and Related Works

In this section, a brief description of DCNN and some related
works are presented.

Deep Convolution Neural Network

The DCNNs are based on convolution. The convolution
solves the problem of having many parameters in neural net-
works using sparse connections [16]. Basically, learning-
based methods are either discriminative or generative. The
discriminative methods do not require prior knowledge in
learning, such as neural network, while generative type is
based on prior knowledge in learning [17]. DCNNs are kinds
of CNN consisting of multiple layers of convolutions. Each
layer in the DCNN performs a simple computational operation
such as a weighted sum. Unlike neural networks where each
layer is connected to all previous layers, in the DCNN, each
layer grid is connected to only a limited number of layers. In
artificial neural networks, the network architecture is such that
the neurons of each layer can be paralleled, but the successive
layers must be serially executed by the CPU memory. In the
DCNN, the entire network can be put into the GPU memory
and the hardware cores can be used to boost network speed
using deep learning tools. Due to the overlapping of neighbor
layers, local correlation is used in such networks, and multiple
and unique features are detected by weighing the layers in
each sub-layer.

Related Work

In a CNNmodel, there are two nesting windows with different
dimensions, that the pixels of the internal windows are labeled
using the external window. The size of the windows is set in
such a way that it leads to optimal results [18]. In a DCNN
model, the combination of convolutional network and graph-
ical model was used to segment the MR images. Graphical
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models were added for the lack of label locality in the output
of the convolutional model [19]. The preliminary estimation
of the fragmentation was obtained in other architectures using
the CNN in the first stage, and it was added to the CNN in the
second stage as input [20]. In addition to brain imaging, a full
convolution method was used [21], acting independently of
the input image size. Different from the architecture conven-
tionally applied in computer vision, a new CNN architecture
was presented. It benefits simultaneously both local and glob-
al contextual features. In addition, this network uses a fully
connected layer as a conventional implementation, different
frommost traditional CNNs applications, allowing increase in
speed up to 40-fold. A two-phase training procedure was also
described allowing tackling the difficulties relevant to the tu-
mor labels imbalance. At last, cascade architecture was ex-
plored in which a basic CNN output as a traditional informa-
tion source is treated for a next CNN. Based on successful
techniques in-depth learning, a new method for the segmen-
tation of the brain tumor using Fully Convolutional Neural
Networks (FCNNs) and Conditional Random Fields (CRFs)
is proposed. In a coherent framework, in order to obtain the
results of segmentation, they created spatial and apparent sta-
bility. Results showed that the first position with the Dice
Similarity Coefficient metric was 0.80 for complete, 0.69 for
core, and 0.61 for enhancing regions on BRATS 20151 [22]. A
new approach for segmentation is proposed using the combi-
nation of Neural Network Abstraction Abilities. This method
is based on the Hough vote, which is a strategy that allows for
fully automated localization and segmentation of the anatomy
desired. This approach not only uses the results of the CNN
classification but also performs voting by discovering the fea-
tures produced by the deepest segment of the network [23]. In
brief, a multipath architecture was used and windows with
different dimensions and locality degrees produced different
map features that were connected to each other before the
output layer. Results showed that the first position with the
Dice Similarity Coefficient metric was 0.88 for complete, 0.79
for core, and 0.73 for enhancing regions on BRATS 20132

[24, 25]. An automatic CNN-based segmentation method
was proposed, exploring small 3 × 3 kernels in convolutional
layer. The intensity normalization application was investigat-
ed as a processing phase not routine in the techniques of CNN-
based segmentation. The proposed method was validated in
BRATS 2013, achieving the first position simultaneously con-
sidering the Dice Similarity Coefficients metric of 0.88 for
complete, 0.83 for core, and 0.77 for enhancing regions.
Furthermore, using the platform of online evaluation, the
overall first position was obtained. By applying the same
model, it participated also in the challenge of on-site BRATS
2015, and achieved the second place considering the Dice

Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the
complete, core, and enhancing regions, respectively [26]. A
local structure prediction approach was applied for 3D seg-
mentation tasks, and a method of local structure approach was
applied which evaluated systematically the various parameters
related to the anatomical structures dense annotation. In learn-
ing algorithm, a CNN is used which is known suitable for
addressing the correlation between features. In the architectur-
al model, local structural estimation and correlation between
neighbors, the labels of pixels were used for the segmentation
of brain MR images. This model used k means clustering to
create a dictionary of image patches. Finally, the method was
evaluated on the public BRATS 20143 dataset with three mul-
timodal segmentation tasks, resulting in obtaining the first
position with the Dice Similarity Coefficient metric, 0.84 for
complete, 0.75 for core, and 0.76 for enhancing regions [27].
We already used the data-level parallelism for fuzzy inference
system and the results showed that the performance improved
for different image sizes [28]. In addition, we can choose
parallel-based fuzzy C means clustering as the objective func-
tion and combining it with watershed algorithm to improve
the performance of fuzzy C means clustering [29]. Even if for
improving breast cancer detection accuracy, we proposed
Modified Fuzzy Logic (MFL) then improving the perfor-
mance of MFL algorithm using GPU platform [30]. GPU
hardware cores and the task-level parallelism approaches in
the Caffe utility were used to improve the performance of
training time. Therefore, the main limitation to each packet
size is the amount of the GPUmemory as well as larger mem-
ories and packages. While the accuracy of these recent studies
have had a lot of improvement over the conventional methods
of the past, it is important to further improve the performance
and optimize the training process.

The Proposed DCNN

In the DCNNs, it is possible to obtain suitable results by in-
creasing the convolutional layers and deepening the network
using precise measures such as weight decay, dropout, and
pooling. Pooling is used to discard low-value data and reduce
dimensions in the DCNNs. It examines the neighbor layers’
activations and considers a maximum or a mean value as the
representative of each neighbor. At the final layer of the
DCNNs, a fully connected layer obtained based on high-
value features is usually used for classifying. The number of
network output layers is equal to the number of classes needed
to be identified. The proposed DCNN includes two parts:
architecture and a learning algorithm. The architecture is used
to design a network model and the learning algorithm is used

1 https://www.smir.ch/BRATS/Start2015
2 https://www.smir.ch/BRATS/Start2013 3 https://www.smir.ch/BRATS/Start2014
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to optimize the calculated parameters in the network training
phase.

Proposed Architecture

The architecture of the proposed DCNN consists of five
convolutional layers with 3 ×3 windows and one fully con-
nected layer in the output which is defined in Fig. 1. This
decision has been made according to the number of data avail-
able and the conducted tests. In the training process, the num-
ber of neurons in each layer is 70, 60, 50, 50, and 50. The size
of batches referring to the number of training data for updating
in the optimization process was 256 with eight epochs. In the
first layer of the architecture, pooling is used to maintain use-
ful information. In the second and third layers, the

normalization operation is performed online to improve the
performance of the learning algorithm. Neurons in all
convolutional layers are directly connected to the previous
layers. Output neurons in the last convolutional layer are con-
nected to a softmax layer. A softmax layer is finally added to
the model in order to create five output classes and define the
target function. This layer divides each voxel (volume pixel)
into five output classes.

Proposed Learning Algorithm

The DCNN model consists of architecture for the structure
and arrangement of model components introduced in last sec-
tion, and a learning algorithm for adjustable parameters. The
learning algorithm is depicted in Fig. 2.

In the learning algorithms, the methods used commonly to
obtain optimal parameters are gradient-based methods. In this
method, the cost function moves in the parameter space to
search for optimal values. In order to find the optimal values
of the model parameters, the combination of methods was
used, including Momentum [31], Nestrov [32], and Adam
[33]. Therefore, the strengths of each method can be used
simultaneously. Parameters that are fixed during training pro-
cess are called hyper-parameters. Different values in hyper-
parameter space is selected using random search checked
using cross validation. The best result are used to train the

Data
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60× (3× 3)
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Fig. 1 The proposed DCNN architecture
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Fig. 2 The proposed learning algorithm for DCNN
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model for getting the final results. The learning algorithm
consists of ten steps that are described as follows.

1. Step 1, Input Patches and Labels: In order to compile the
dataset for our DCNN, data augmentation technique was
used for input images. To prepare the input dataset, the
tumor pixels as one among two and the healthy pixels as
one among three were selected with their related labels.
Then, it moved voxel to voxel in the input four-layered
MR image, and the 32 × 32 pixels were extracted and
used to input data into the Caffe.

2. Step 2, N4ITK Pre-processing: The N4ITK bias correc-
tion was used for non-uniformity correction due to mag-
netic field changes.

3. Step 3, Nyul Pre-processing: Nyul’s lighting normaliza-
tion was used for intensity normalization throughout the
image.

4. Step 4, Initializing Meta-parameters: The model meta-
parameters such as learning rate, momentum coefficient,
and the coefficient of variation were initialized after
performingN4ITK and Nyul pre-processing on the input
images.

5. Step 5, Gradient Calculation: The network cost function
was calculated based on the input training data patches
(small packages). The output of the network reaches the
expected value by using gradient-based optimization
methods through multiple iterations. In order to obtain
the cost function, the cross entropy between the softmax
output and the given output was calculated and then
maximized by changing the parameters.

6. Step 6, Momentum Calculation: Momentum calculation
was used to accelerate the learning process, especially in
the face of extreme curvature surfaces and noise gradi-
ents. In this step of the gradients in the previous steps,
the running average was taken with a damping and the
motion continued in this direction.

7. Step 7, Updating Parameters: In this step, graded gradi-
ents were updated as model parameters. Each parameter
has its own learning rate. Therefore, the learning rate for
parameters with a large partial derivative history was
rapidly reduced and minimal reductions were observed
for parameters with a small partial derivative record.
Overall, the algorithm finds better calibration speeds
when faced with gentle slope directions

8. Step 8, Network Testing: The data were mixed and 75%
were used for training, 15% for validation and 10% for
testing. After the formation of the DCNN and prepara-
tion of the expected input and output data, it is necessary
to test the network.

9. Step 9, Checking Stop Condition: The vector of network
parameters was updated as gradient descent. In addition,
the global learning rate was reduced according to a
schedule.

10. Step 10, Final Test: Final test has done in this step. There
should be a continuous monitoring of the model perfor-
mance accuracy for validation data, and the training pro-
cess is terminated in order to prevent over-fitting, if the
accuracy is not improved by an epoch. It is noteworthy
that the convergence rate increases by 10% when calcu-
lating the gradient for a class using the GPU and task-
level parallelism.

Experimental Results

In this section, evaluation of the proposed DCNN architecture
and learning algorithm are presented.

Number of Layers, Kernels, and Neurons

At first, three convolutional layers and one fully connected
layer were chosen for the proposed network architecture.
Increasing convolutional layers led to change in Dice
Similarity Coefficient metric. In the experimental results, we
increased and decreased the number of convolutions and
trained the model again. The results are presented in Table 1.
Increasing the number of convolutions causes the model Dice
Similarity Coefficient metric to drop because of over fitting.
Also, a decrease of the number of convolutions causes the
model Dice Similarity Coefficient metric to drop because of
the decrease in expressive power of the model. On the other
hand, increasing number of layers have no tangible changes in
the results, this may be because of the size of input patches and
the amount of their information content. And finally, decreas-
ing number of layers causes the expressive power of the model
to decrease, that in turn causes a drop in Dice Similarity
Coefficient metric. Due to the five convolutional layers, the
model accuracy for the input images was improved up to 0.90,
0.85, and 0.84 for complete, core, and enhancing regions. In
the experiments, the efficient number of parameters equals
five convolutional layers and one fully connected layer. The
accuracy remained constant after increasing the layers. There
was no change in the Dice Similarity Coefficient metric of the

Table 1 The results of increasing and decreasing of convolutions

The action Dice Similarity Coefficient
metric

Complete Core
Enhancing
regions

The base model 0.90 0.85 0.84

10% increase of number of convolutions 0.84 0.83 0.81

10% decrease of number of convolutions 0.88 0.80 0.79
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network performance after increasing the fully connected
layers. After conducting the tests, the pooling layer was
proved to be useful in the first convolutional layer and subse-
quent layers. In the first layer, useful information is main-
tained due to the overlapping of the convolutional layers.

The most informative features are extracted through five
layers of convolution and nonlinearity in the network. Low-
level features are extracted using initial layer and high-level
features are extracted using deeper layers. The number of neu-
rons in each convolution layer depends on two factors. The
first factor is the size of kernel of convolution that in turn
depends on width, height, and number of kernels in previous
layer. The second factor is the number of kernels in present
layer. The kernels dimensions are three in DCNN design. On
the other hand, the number of kernels in our design follows the
best practice in deep networks that says by going deeper in the
network, the size of feature maps are decreased and the num-
ber of kernels are increased. The important point here is that
because of memory and computational constraints and threat
of over fitting, the number of kernels cannot be increased
more than a limit that is usually obtained through cross vali-
dation. Softmax layer is a generalized logistic regression that
can support multiple classes directly, without having to train
and combine multiple binary classifiers. The idea is quite sim-
ple: when given an instance x, the Softmax regression model
first computes a score for each class k, then estimates the
probability of each class by applying the Softmax function
to the scores. The scores here is the outputs of DCNN just
before the Softmax layer computes the exponential of every
score, and divides the results by the sum of all the exponen-
tials. In this way, the output of Softmax layer is between 0 and
1 and can be interpreted as an estimation of the probability that
the instance belongs to each classes. This instance calculated
using Equation (1) whichK is the number of classes and s(x) is
a vector containing the scores of each class for the instance x.
σ(s(x))k is the estimated probability that the instance x belongs
to class k given the scores of each class for that instance.

p̂̂k ¼ σ s xð Þð Þk ¼
e−sk xð Þ

∑K
i¼1e−si xð Þ ð1Þ

A 5 × 5 and a 7 × 7 convolutions can be constructed by two
and three consecutive 3 × 3 convolutions, respectively. 3 × 3
kernels were used in all of the convolutional layers. In the test
conducted by increasing kernel dimensions to 5 × 5 or 7 × 7,
the model Dice Similarity Coefficient metric was reduced.
This decision was made due to the relatively large number
of parameters available compared to the available data. Each
convolutionwith a 3 × 3 kernel covers a 3 × 3window of input
image pixels, which is named as the receptive field. By se-
quencing convolutions, the receptive field gradually increases
so that two pixels add in each layer of each dimension to the
receptive field. In this way, we have a five convolutional

network with a receptive field 3 + 2 × 4 = 11. The experimen-
tal result shows this receptive field is sufficient to detect the
tumor area in MR images.

When the kernel size is multiplied by two, the number of
neurons of the kernel is multiplied by four. So the computa-
tional complexity of the training and inference time are pro-
portional to square of kernel size. To calculate dice similarity,
we calculate model prediction that can be obtained using in-
ference. So dice similarity computation complexity is propor-
tional to square of kernel size. The smaller the dimensions of
the kernels, the smaller the numbers of parameters, preventing
over-fitting. In addition, another advantage of using small ker-
nels is to reduce the computational load time.

By increasing the number of neurons to 25, the Dice
Similarity Coefficient metric of the model reaches 0/75.
Given the number 50 for neurons in all layers, Dice
Similarity Coefficient metric is obtained at 0/80. Due to the
lower number of parameters in the last three layers, the reduc-
tion of neurons in these layers leads to a change in efficiency.
The number of neurons in the convolutional layers are 70, 60,
50, 50, and 50, and the number of neurons in the fully con-
nected layer is equal to 11,250 × 150. The results were obtain-
ed without the precise adjustment of the meta-parameters. At
first, number of neurons for all layers were fixed 70. As the
number of neurons increases, no appreciable change occurs in
the accuracy of the model, and only the computational load
time increases. Because of the lower number of parameters in
the last three layers, decreasing neurons in these layers led to
efficient change in accuracy. In order to prevent the saturation
of the neurons and accelerate the updating of the parameters,
ReLU was used in all layers. In addition, to prevent the syn-
chronization of neurons and to create an implicit hybrid clas-
sification, the dropout technique was employed.

Batch and Epoch Sizes

The batch size refers to the number of training data for an
update in the optimization process. The size selection directly
affects the computational cost and the update uncertainty. In
the case of using smaller batches, more noise would be creat-
ed, but when the error function has many local minimums, the
presence of noise on the gradient prevents the algorithm from
being stuck in shallow regions. On the other hand, large
batches cause more operations in parallel, helping to improve
convergence speed. Therefore, in order to obtain the optimal
batch size, a balance must be created. In the present study, the
optimal size was 256.

In the network training, the number of epochs was eight,
since the network accuracy does not change with an increased
number. By finalizing the meta-parameters on the input im-
ages and recording the network performance accuracy in the
training procedure, the cost function is illustrated in Fig. 3. As
can be observed, the network cost at the end of the 7th epoch
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after 7000 iterations decreased, and no change occurred after
that and the cost remained constant.

Datasets and Evaluation Criteria

The data used in the study were extracted from the BRATS
20164 Challenge, including four MRI modalities named spin-
lattice relaxation (T1), spin-spin relaxation (T2), spin-lattice
relaxation contrasted (T1c), and attenuation inversion recov-
ery (FLAIR). The dataset consists of 230 brain images and
448,000 patches of size 32 × 32 are extracted random from the
dataset that each patch has label of the central pixel of extract-
ed patch. So the training data of the proposed DCNN consist
of 448,000 patches and their corresponding labels. In this way,
if the batch size is 256 the number of iteration per each epoch
will be 1750. In order to prevent over-fitting in the learning of
multi-million parameters of this network, the data augmenta-
tion technique was used in the dataset. In the existing training
DCNNs, there are usually three input channels requiring the
adjustment of meta-parameters such as learning rate, small
size of batches, and weight decay rate. However, the input
images in this model are four-channel. Finally, the proposed
DCNN classifies each voxel according to a dangerous level in
five different classes. The classes are shown in the following
order based on the dangerous level in different colors,
respectively:

• Normal Tissue (gray)
• Edema (green)
• Non-enhanced tumor (blue)
• Necrosis (red)
• Enhanced tumor (yellow).
For each class, there are two binary maps, one obtained by

the model (P) and the other by the consensus of experts (T)
available in the dataset. Therefore, the Dice Similarity
Coefficient metric is calculated according to Eq. (2) using
the model output. In other words, this metric is the ratio of
the overlapping region to the average region specified by the

model and the expert. The criterion of correctness for segmen-
tation of MR images usually is presented as dice similarity.
But to calculate the accuracy, Eq. (3) can be used. In the Dice
Similarity Coefficient metric, P represents the model predic-
tions, T represents the ground truth labels, and A is all the
binary map. By using 2-norm in calculating the moment and
applying the Nesterov technique in calculating the gradient
resulted in the best outcomes, indeed accuracy of 91.1 per-
centage.

Dice P;Tð Þ ¼ P⋀Tj j
Pj j þ Tj jð Þ=2 ð2Þ

Accuracy of proposed learning algorithm P;Tð Þ

¼ P⋀Tj j þ A−Pð Þ⋀ A−Tð Þj j
Aj j ð3Þ

Platform and Results

With regard to the considerable training time in most related
works, we used GPU hardware to reduce this time. The ex-
perimental platform based on NVIDIA GeForce series
GeForce GTX 1080 Ti with 11G RAM, 4584 cores and
Linux Ubuntu operating system were used in the experiment.
Deep learning tools with task-level parallelism in the Caffe
have been used, reducing the training time from 168 to
110 h. Task-level parallelism caused the nodes existing in each
layer to be formed as patches with the dimensions of 32 × 32,
considered as the network input.

Table 2 depicts the accuracy of the Dice Similarity
Coefficient metric for the complete, core, and enhancing areas
on the image dataset of BRATS using the proposed DCNN in
comparison to some related works. As the table’s last row
reveals the proposed DCNN, accuracy is more than other pre-
vious techniques.

The results in Table 2 compare Dice Similarity Coefficient
metric in complete, core, and enhancing regions. As can be
seen, the proposed DCNN provides better results for com-
plete, core, and enhancing regions. This is because in the
proposed DCNN, only one pooling layer is used and normal-
ization layers are used in second and third layers. This helps
the learned features in middle layers be approximately inde-
pendent of each other and be more informative.

Table 3 depicts some MR images of four different modal-
ities (a) T1, (b) T2, (c) T1c, and (d) FLAIR and outputs of the
segmented class in e column. The results in e (output) column
of Table 3 show that the other regions are surrounded by non-
enhancing core that is shown in blue. Also necrosis is central
and other regions grow around it.

Table 4 presents the confusion matrix showing the results
of this phase. As a particular table layout, confusion matrix
allows performance visualization of a supervised learning

Fig. 3 The cost function of the model in the training procedure

4 https://www.smir.ch/BRATS/Start2016
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algorithm. The instance in each actual class is represented by
each row, and the instance in a predicted class is represented
by each column of the matrix. Specifically, in this application,
there are five rows and columns that represent different sub-
structures of glioma namely normal tissue (0), edema (1), non-
enhancing core (2), necrotic (3), and enhancing core (4). The
confusion matrix summarizes the results of testing the pro-
posed DCNN. In other words, each pixel in a volume should
be classified to one of the five labels and according to the
result; the number in corresponding column is incremented
by one.

In Table 4 the result of prediction of center pixel test
patches are presented. We have 52,355, 6013, 42,671,
8447 and 10,709 patches of normal tissue, edema, non-
enhanced tumor, necrosis, and enhanced tumor, respec-
tively, as test set. Each column shows the result for
patches of one of these classes. The patches of edema
hardy can be mistaken as normal and mistaking it as
enhanced tumor is more probable. This a similar reason-
ing can be stated for other columns. The result shown
that non-enhanced and normal tissue can be predicted
with higher precision.

Table 2 The comparison of the measured accuracy of the proposed DCNN with some related works for MRI segmentation

Reference Dataset
(http://www.
braintumorsegmentation.org/)

Dice Similarity Coefficient metric Methods

Complete Core Enhancing
regions

[22] BRATS 2015 0.80 0.69 0.61 Back propagation algorithm

[24, 25] BRATS 2013 0.88 0.79 0.73 Parallel path + two-stage learning and architecture

[26] BRATS 2013 0.88 0.83 0.77 3 × 3 kernels and ReLU functions with leakage
BRATS 2015 0.78 0.65 0.75

[27] BRATS 2014 0.84 0.75 0.76 Local structural estimation +K means clustering

# BRATS 2016 0.90 0.85 0.84 The proposed DCNN

Table 3 Some MR images of four different modalities (a) T1, (b) T2, (c) T1c, and (d) FLAIR and outputs of the segmented class in e column

Image Segmentation Results

e (output)d (FLAIR)c (T1c)b(T2)a (T1)
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Conclusions

In this paper, a DCNN was proposed for more accurate and
faster segmentation of the brainMR images to help physicians
in the diagnosis and treatment of brain tumors. The purpose
was to separate damaged tissues, despite their low-contrast
and Y-shaped structure in segmentation images, as well as to
resolve the imbalance in the training dataset. In order to im-
prove network performance, a pooling layer was used to sum-
marize the information, and a ReLU was used to create a
nonlinear layer. At the same time, the connection of the
convolutional layers was established so that the potential for
network parallelism would be high after forming independent
paths. The experimental results showed the accuracy of the
complete, core, and enhancing regions for BRATS 2016 in the
Dice Similarity Coefficient metric is 0.90, 0.85, and 0.84 re-
spectively. Due to the considerable training time in the
DCNN, GPU hardware was employed for load balancing,
exploiting task-level parallelism, and improving the perfor-
mance. The DCNN architecture was conducted using the
CAFFE. Nodes in each convolutional layer were patch-
based with the task-level parallelism technique. The perfor-
mance of the training phase was improved. Given that the
number of labeled specimens in dataset is low, it is not possi-
ble to design models with greater depth for segmentation,
since models with more depth would have more parameters
leading to over-fitting in the conditions of data deficit. On the
other hand, because of the limited memory space and the
number of parallel GPUs, the use of higher-volume data is
difficult to handle. With the advancement of GPUs and the
use of libraries that distribute processing across multiple
GPUs and multiple machines, this problem can be addressed.

For future works, the formation of three auxiliary paths will
be possible in order to accommodate local and global features
in the input image segment, and it then will be added to the
fully connected layer with the main path. In the first auxiliary
path, 15 × 15 kernels with 15 image jumps can be considered.
Additionally, in the second and third paths, the average and
maximum pooling of 30 × 30 can be used. The outputs of
these auxiliary paths before the fully connected layer can be
used in classification and segmentation by entering the main
path at the same time.
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