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Abstract

Polymeric unimolecular nanoparticles (NPs) exhibiting a core-shell structure and formed by a 

single multi-arm molecule containing only covalent bonds have attracted increasing attention for 

numerous biomedical applications. This unique single-molecular architecture provides the 

unimolecular NP with superior stability both in vitro and in vivo, a high drug loading capacity, as 

well as versatile surface chemistry, thereby making it a desirable nanoplatform for therapeutic and 

diagnostic applications. In this review, we surveyed the architecture of various types of polymeric 

unimolecular NPs, including water-dispersible unimolecular micelles and water-soluble 

unimolecular NPs used for the delivery of hydrophobic and hydrophilic agents, respectively, as 

well as their diverse biomedical applications. Future opportunities and challenges of unimolecular 

NPs were also briefly discussed.
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1. Introduction

Polymeric nanoparticle (NP)-based delivery systems have been extensively investigated to 

improve the diagnostic and treatment efficacy of a wide range of diseases, ranging from 

cancer [1–16] and cardiovascular diseases [17–26], to bacterial and viral infections [27–33]. 

Polymeric NPs are attractive for drug delivery applications because many polymers are 

biocompatible and biodegradable. Polymer chemistry is also very versatile, thereby making 

it possible to precisely control the molecular structure, NP morphology, and surface 

characteristics (e.g., zeta potential and ligand conjugation) of polymeric NPs. The design of 

polymeric NPs can drastically impact the safety, pharmacokinetics, pharmacodynamics, and 

ultimate in vivo fate of their payloads [6–9, 34–42].

Certain types of polymers can form NPs with a core–shell structure in aqueous media owing 

to the various types of inter/intra-molecular interactions, including electrostatic interactions, 

hydrophobic interactions, and hydrogen bonding [43–45]. A broad spectrum of payloads for 

therapeutic and diagnostic purposes have been delivered by polymeric NPs. The stability of 

the NPs, or the ability to control NP stability, is of great importance for in vivo/human 

applications. However, conventional polymeric NP systems, which mostly rely on relatively 

weak interactions as previously mentioned, often exhibit insufficient in vivo stability in 

terms of nanostructures [46–49]. Specifically, it is well-documented that dilution in the 

bloodstream, flow stress, environmental factors (e.g., pH and ionic strength), and 

interactions with serum proteins can lead to the disruption of the polymeric NPs before 

functioning [50–55]. For instance, a recent report attributed poor micelle stability to the 

failure of NK-911, a self-assembled polymeric micelle, at the early clinical stage as it bursts 

too rapidly after i.v. injection [55] Moreover, a recent study also found that more than 80% 

of the self-assembled PEG-polyester micelles dissociated within 1 h after intravenous 

administration [54].

Among all of the strategies that can be applied to address this instability issue, unimolecular 

NPs have received increasing attention because they are stable regardless of their 

concentration or the microenvironment [56]. The concept of unimolecular NPs was 

introduced in the 1990s [57–59]. Thereafter, development of the polymeric unimolecular 

NPs has been accelerated owing to their desirable characteristics as drug nanocarriers as 

well as versatile polymer chemistry [60–66]. In particular, polymeric unimolecular NPs 

formed by a single multi-arm polymer molecule containing only covalent bonds and 

exhibiting a core–shell structure are especially valuable for biomedical applications. 

Polymeric unimolecular NPs can be made from a variety of polymers. One way to classify 

unimolecular NPs is based on their chemical composition, which can be divided into two 

main categories: water-dispersible unimolecular micelles and water-soluble unimolecular 

NPs (Figure 1). Water-dispersible unimolecular micelles are typically formed by single/

individual dendritic multi-arm amphiphilic block copolymers, conferring excellent in vitro 
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and in vivo stabilities [67, 68]. Their unique hydrophobic core is of particular interest in 

delivering hydrophobic therapeutics or imaging probes. Hydrophobic agents can be loaded 

into the hydrophobic core of the unimolecular micelles through hydrophobic interactions, 

hydrogen bonding, or covalent conjugation [67–69]. Water-soluble unimolecular NPs are 

typically formed by single/individual dendritic multi-arm water-soluble block copolymers 

[70, 71]. The cores of the water-soluble unimolecular NPs are usually polyelectrolytes (e.g., 

cationic or anionic polymers), which can be used to encapsulate hydrophilic payloads (e.g., 

nucleic acids, peptides, small proteins, metal-based drugs, etc.) via electrostatic interaction, 

hydrogen bonding, chelation, and/or ion–dipole interactions [70–72]. For biomedical 

applications, the shells of the unimolecular NPs are commonly formed by poly(ethylene 

glycol) (PEG) or other types of hydrophilic polymers (e.g., polyzwitterions) to provide good 

water dispersity, reduce opsonization during circulation in the bloodstream, and improve 

biocompatibility [68]. Both nanoplatforms have diverse applications.

This review focuses on the recent progress of the design and application of core–shell 

structured polymeric unimolecular NPs for various biomedical applications. Different types 

of polymeric unimolecular NPs and their diverse applications are highlighted. Future 

opportunities and challenges related to unimolecular NPs are also discussed briefly.

2. Types of Core–Shell Structured Unimolecular Nanoparticles

2.1. Water-Dispersible Unimolecular Micelles

Unimolecular micelles can be engineered using various types of organic NPs including 

dendritic polymers (e.g., hyperbranched polymers (HBPs) and dendrimers) and brush 

polymers as the initiating central core for the multi-arm amphiphilic block copolymers 

(Figure 1). Although inorganic NPs (e.g., Au NP, quantum dots, CuS NPs, and upconversion 

NPs) have also been employed as the central core of unimolecular micelles [73–79], those 

are beyond the scope of this review.

2.1.1 Unimolecular Micelles Based on Dendritic Polymers—Both HBPs and 

dendrimers are highly branched, three-dimensional dendritic macromolecules [80]. Their 

globular and dendritic architectures endow them with unique properties including abundant 

functional groups, intramolecular cavities, non/low entanglement, and low viscosity. HBPs 

and dendrimers differ in that dendrimers have regular structures, while HBPs have irregular 

structures [81, 82]. Dendrimers are synthesized step-by-step in an iterative fashion, while 

HBPs are typically synthesized via a one-step process [83]. Both HBPs and dendrimers have 

been widely used to fabricate unimolecular micelles.

2.1.1.1 Unimolecular Micelles Based on Hyperbranched Polymers: Hyperbranched 

polyesters are an attractive class of HBPs because they are biodegradable and biocompatible, 

which is extremely important if these molecules are to be used for drug delivery or other 

biological applications [84, 85]. Boltorn™ (e.g., H30 and H40) is one of the most studied 

hyperbranched polyesters, and its monomer unit is 2,2-bis(methylol) propionic acid [86, 87]. 

Because of its biodegradability, biocompatibility, globular architecture, and abundant 

functional groups, Boltorn hyperbranched polyesters have received a lot of attention in the 

design of nanoplatforms, including unimolecular NPs. Since H40 itself is hydrophobic, 
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when conjugated directly with PEG, it can also be used to encapsulate hydrophobic drugs 

[88]. However, due to the extremely small size (~3 nm) of H40, the drug (e.g., paclitaxel) 

loading level of H40-PEG unimolecular micelles is limited to less than 0.3 wt.% [88]. To 

significantly enhance the drug loading content, we and others reported H40-based 

unimolecular micelles formed by multi-arm amphiphilic block copolymers H40-polyester 

(e.g., poly (l-lactide) (PLA) and polycaprolactone (PCL))-poly(ethylene glycol) in aqueous 

media (Figure 2) [61, 89–96]. For example, H40 with –OH terminal groups was used as the 

macroinitiator to synthesize H40-PLA via ring-opening polymerization (ROP), followed by 

PEG conjugation via esterification [89, 90]. The H40-PLA formed a hydrophobic functional 

core for hydrophobic drug encapsulation, while the hydrophilic PEG shell provided the 

unimolecular micelles with good water dispersity. These core–shell structured unimolecular 

micelles can be a stable drug nanocarrier with a much higher drug loading level (for 

instance, ~12 wt.% for doxorubicin (Dox) [89] and ~33 wt.% for 5-fluorouracil (5-FU) 

[90]).

Zhang et al. also synthesized a temperature and pH dual-responsive unimolecular micelle 

based on H40 via reversible addition-fragmentation chain transfer (RAFT) polymerization 

[97]. The inner block was thermo-responsive poly(N, N-diethylacrylamide) (PDEAAM) and 

the outer shell was pH-sensitive cationic poly(2-(dimethylamino)ethyl methacrylate) 

(PDMAEMA). The size of the unimolecular micelles changed in response to both pH and 

temperature, which can be used for drug and gene delivery with a controlled release manner.

Hyperbranched polyglycerol (HPG) [98] is a type of water-soluble HBP that exhibits good 

biocompatibility and a low viscosity, prompting its use in drug nanocarrier systems. For 

example, a unimolecular micelle composed of an HPG core conjugated with diblock 

copolymer polycaprolactone-PEG (HPG-PCL-PEG) via amidization was reported [99]. 

These unimolecular micelles showed superior skin permeation of the entrapped payloads 

compared to the conventional cream formulation. Moreover, their good stability, low 

cytotoxicity, and ease of scaled-up production make them a promising nanoplatform for 

topical drug delivery.

2.1.1.2 Unimolecular Micelles Based on Dendrimers: Dendrimers are nano-sized, 

radially symmetric molecules with a well-defined, homogeneous, and monodispersed 

structure consisting of tree-like arms or branches [100]. It was first developed by Vögtle et 

al. in 1978 under the name of cascade polymers [101, 102]. Dendrimers can be prepared by 

the convergent or divergent synthesis approach [103, 104]. For the convergent strategy, it 

begins from the synthesis of dendrons that will eventually become the dendrimer shell. A 

dendrimer structure is then formed by coupling several dendrons to a multifunctional core 

[103, 104]. In contrast, the divergent strategy initiates growth at the core of the dendrimer 

and continues outward by the repetition of coupling and activation steps [103, 104]. So far, 

over 100 different dendrimers have been realized. Several of the most commonly referenced 

dendrimers include polyamidoamine (PAMAM) [105], poly(L-lysine) (PLL) [106], 

polyamide [107], polyester (PGLSA-OH) [108], and polypropylenimine (PPI) dendrimers 

[109]. The high level of control over the synthesis process gives dendrimers a perfect 

branching structure with a compact molecular structure, a high number of functional groups, 

and predictable properties. Due to these unique characteristics, tremendous progress on the 
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development of dendrimers for a wide range of biomedical applications has been witnessed 

in recent years [110–113]. Unimolecular micelles formed by dendrimer-based multi-arm star 

amphiphilic block copolymers have also been reported.

PAMAM dendrimers are the most common class of dendrimers suitable for many 

applications [114]. The original primary amino groups (–NH2) on the surface of PAMAM 

have been modified into other functional terminals, such as –OH and –COOH, thereby 

allowing for versatile chemistry to form unimolecular micelles [115–121]. For example, we 

utilized an –OH functionalized generation 4 (G4) PAMAM (PAMAM-OH) dendrimer to 

grow amphiphilic block copolymer poly(L-lactide)-PEG (PAMAM-PLA-PEG) [115]. The 

resulting dendritic multi-arm amphiphilic block copolymer can form stable unimolecular 

micelles as a drug nanocarrier with a typical drug loading content around 20 wt.% [122]. 

Moreover, because of the ease of surface modification, the unimolecular micelle can be 

tailored with targeting ligands and imaging probes for multifunctionalities. Other types of 

polyesters (e.g., PCL and polyvalerolactone (PVL)) were also used as the hydrophobic 

segments in PAMAM-based unimolecular micelles [119–121].

2.1.2. Unimolecular Micelles Based on Brush-Shaped Polymers—Brush-shaped 

polymers are a special category of synthetic macromolecules with multiple side chains/

polymers stemming from a polymer backbone [123–125]. There are three main strategies to 

synthesize brush-shaped polymers: “grafting through”, “grafting onto”, and “grafting from” 

[126–128]. In recent years, the investigation of brush-shaped core–shell unimolecular NPs 

has gained increasing attention. For example, a wormlike unimolecular micelle based on a 

densely grafted brush polymer polymethacrylate-g-(poly(ε-caprolactone)-b-poly(ethylene 

oxide)) (PGA-g-(PCL-b-PEO), prepared by “grafting onto” chemistry, was reported [129]. 

This polymer brush in an aqueous solution exhibited a uniform, wormlike conformation both 

before and after anticancer drug (DOX) encapsulation, as demonstrated by atomic force 

microscopy (AFM) images.

We also fabricated a unimolecular micelle system based on a brush-shaped amphiphilic 

block copolymer. The backbone of the brush-shaped polymer was poly(2-hydroxyethyl 

methacrylate) (PHEMA) and the side chains were poly(L-lactide)-poly(ethylene glycol) 

(PHEMA-PEG) [130]. The brush-shaped polymer was prepared via the “graft from” method 

and was able to form a stable unimolecular micelle for targeted drug delivery. Ito et al. also 

engineered a unimolecular NP formed by a branched graft copolymer poly(styrene-graft-

PEO) that was synthesized via a “graft through” approach [60]. The polystyrene backbone 

of the brushed polymer served as a hydrophobic domain of the unimolecular micelle.

More recently, Tu et al. reported a unimolecular NP formed by a cyclic brush copolymer 

named poly(2-hydroxyethyl methacrylate-g-poly(N-isopropylacrylamide-st-N-

hydroxyethylacrylamide)) (P(HEMA-g-P(NIPAAm-st-HEAAm)) (Figure 3) [131]. They 

found that the unimolecular micelles formed by these cyclic brush copolymers possessed 

better stability and a higher anti-proliferation effect compared to the ones formed by the 

bottlebrush analogues.
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2.1.3. Other Types of Unimolecular Micelles—Unimolecular micelles formed by 

multi-arm amphiphilic polymers based on other types of central cores have also been 

reported. For example, polyhedral oligomeric silsesquioxane (POSS) with eight functional 

groups on the vertex of the silica cage has been used in the design of drug delivery systems 

due to its good biocompatible and non-toxic properties [132]. The eight corner functional 

groups can be conveniently used to grow multifunctional polymers. For instance, Fan et al. 

[133] reported a unimolecular micelle composed of POSS as the central core, PLA as the 

hydrophobic segment, and PEG as the hydrophilic block for drug delivery (Figure 4). In an 

aqueous solution, a stable unimolecular micelle with a unique core–shell structure was 

obtained as evidenced by DLS and TEM. The hydrophobic domain formed by POSS-PLA 

was loaded with the anticancer drug, DOX, with a high drug-loading content (18.5%) 

capable of sustained drug release.

β-CD has also been used to fabricate unimolecular NPs. β-CD is a cyclic oligosaccharide 

consisting of seven glucose molecules linked by α(1,4)-glucosidic bonds [134]. The 21 

available hydroxyl groups on the surface of β-CD make it a suitable central core for 

unimolecular NPs. Lin et al. reported a β-CD-polystyrene-block-poly(3-hexylthiophene) 

unimolecular micelle as a potential drug nanocarrier [135].

2.2 Water-Soluble Unimolecular NPs

Water-soluble unimolecular NPs are generally designed for the delivery of hydrophilic 

payloads, such as metal-based compounds (e.g., platinum-based drugs), nucleic acids (e.g., 

siRNA and microRNA), peptides, and small proteins. These payloads are typically loaded 

into the unimolecular NPs, mainly through electrostatic interactions, hydrogen bonding, ion–

dipole interactions, and chelation [70–72, 136–138]. Hence, polyelectrolytes are often 

incorporated into the design of such unimolecular NPs (Figure 1).

We reported a water-soluble unimolecular NP made of a hydrophilic multi-arm star block 

copolymer poly(amidoamine)-b-poly(aspartic acid)-b-poly(ethylene glycol) (PAMAM-

PAsp-PEG) [136]. Carboplatin, a hydrophilic platinum-based drug, was complexed into the 

carboxyl-bearing PAsp segments through an ion–dipole interaction.

Jiang et al. reported a polyelectrolyte brush (PFNBr), which was a brush-like polymer 

consisting of a polyfluorene backbone and multiple positively charged poly(2-(dimethyl-

amino)ethyl methacrylate) (PDMAEMA) side chains [72]. This unique cationic brush 

polymer can complex siRNA through electrostatic interactions and form an siRNA-

complexed unimolecular NP. Its intrinsic fluorescence property also makes it a promising 

candidate for precise bioimaging.

We also reported a pH and redox dual-responsive unimolecular NP for the delivery of siRNA 

[137]. The unimolecular NP was formed by an H40-poly(aspartic acid-(2-aminoethyl 

disulfide)-(4-imidazolecarboxylic acid))-poly(ethylene glycol) (H40-P(Asp-AED-ICA)-

PEG)) multi-arm star block copolymer. The cationic segments (P(Asp-AED-ICA)-PEG)) 

used for siRNA complexation contained disulfide bonds and were linked to the H40 core 

through pH-sensitive bonds. These pH and redox dual-response properties facilitate the 

release of the siRNA once they are taken up by the cells.
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We recently reported a unique charge-conversional unimolecular NP made of multi-arm star 

block copolymer poly(amidoamine)–poly(aspartate diethylenetriamine-aconitic acid-r-
imidazole)-poly(ethylene glycol) (PAMAM-PAsp(DET-Aco-r-Im)-PEG) for the delivery of 

positively charged peptides (Figure 5) [70]. In acidic conditions, the anionic PAsp(DET-

Aco) segment can turn to positively charged PAsp(DET), thereby facilitating the release of 

peptides to function.

3. Unimolecular NPs for In Vivo Applications

Unimolecular NPs have been extensively investigated as drug nanocarriers for various 

therapeutic and diagnostic applications. In this section, we will summarize the state-of-the-

art usage of unimolecular NPs for the delivery of therapeutic and diagnostic agents. Table 1 

summarizes the representative core-shell structured polymeric unimolecular for biomedical 

applications.

3.1. Unimolecular NPs for Drug Delivery

The success of the therapeutic applications of unimolecular NPs critically depends on a 

rational design of the unimolecular NPs. Different therapeutic payloads may require 

distinctively different designs of unimolecular NPs. For instance, unimolecular micelles are 

used to deliver hydrophobic drugs, while water-soluble unimolecular NPs containing 

polyelectrolytes are needed to deliver charged payloads such as nucleic acids and peptides.

3.1.1. Unimolecular Micelles for Drug Delivery—Since Duncan and Kopecek 

introduced the concept of using polymers to deliver drugs back in the 1980s [139], the 

application of polymers in the drug delivery field has been explosively investigated. 

Polymeric micelles, due to their unique core–shell structure, have been extensively studied 

for delivering hydrophobic drugs [41, 42, 140–143]. It has been estimated that about 40% of 

the drugs in the market present poor water solubility [144, 145]. The inner hydrophobic core 

of the micelles can solubilize drugs through hydrophobic interactions and hydrogen 

bonding, while the hydrophilic shell can provide the micelles with good water dispersity and 

reduced opsonization. However, as aforementioned, the instability issue associated with 

traditional polymer micelles severely hinders their in vivo application [46–49]. Premature 

disruption of the micelles could lead to a burst release of the entrapped drugs, causing 

serious systemic toxicity and undermining their multifunctionality, including loss of specific 

tissue/cell targeting ability [50–52]. In contrast, judiciously designed unimolecular micelles 

can offer excellent in vitro and in vivo stabilities due to their covalent nature. It has been 

previously demonstrated that unimolecular NPs can transport hydrophobic guests into living 

cells under biologically relevant high-dilution conditions, which cannot be achieved by an 

analogous structure prepared by self-assembly [146].

Drug molecules can be encapsulated into unimolecular micelles via either physical 

encapsulation or chemical conjugation. All hydrophobic drugs can be easily loaded into 

unimolecular micelles via physical encapsulation through hydrophobic interactions and/or 

hydrogen bonding [61, 62, 91–93, 99, 120, 147, 148]. Thus, physical encapsulation is a 

more general and easier approach than chemical conjugation. However, chemical 

conjugation can offer stimuli-responsive drug release profiles [69, 149, 150]. We have 
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reported a series of drug-loaded unimolecular NPs for cancer treatment [62, 115, 116, 119, 

130, 151, 152]. In order to improve delivery efficiency, various targeting ligands—such as 

folate (for folate receptor) [62], GE11 peptide (for epidermal growth factor receptor 

(EGFR)) [116], octreotide (for somatostatin receptor) [151], aptamer (e.g., A10 aptamer for 

prostate-specific membrane antigen) [152], and antibody (e.g., anti-CD105 monoclonal 

antibody (TRC105)) [115, 130]—were tagged to the surface of the unimolecular micelles for 

targeted cancer therapy. The resulting drug-loaded unimolecular micelles exhibited superior 

stability and tumor-targeting ability, as well as enhanced therapeutic efficacy. For example, 

aminoflavone (AF; an anticancer drug)-loaded and GE11-conjugated unimolecular micelles 

were tested in an orthotropic triple-negative breast cancer (TNBC) xenograft mouse model 

(Figure 6) [116]. GE11 peptide can bind specifically to EGFR, which is frequently amplified 

in TNBC tumors. The AF concentration in the tumor treated with AF-loaded, GE11-

conjugated unimolecular micelles was about 72-fold and 10-fold higher than the AF 

concentration in the tumor treated with free AF and AF-loaded unimolecular micelles 

without GE11 targeting ligand, respectively (Figure 6 (B)). Remarkably, the AF-loaded, 

GE11-conjugated unimolecular micelles induced complete tumor regression at a 

significantly lower dosage (7 mg/kg) than the common dosage required for free drug (70–

120 mg/kg) (Figure 6 (C)) [153–155], and this treatment did not result in any detectable 

systemic toxicity. A unimolecular micelle designed for the co-delivery of an anticancer drug 

(DOX) and an NIR-photothermal agent (benzo [1,2-c;4,5-c’]bis[1,2,5]thiadiazole-4,7-

bis(9,9-dioctyl-9H-fluoren-2-yl)thiophene (BBT-2FT)) for combination chemotherapy and 

photothermal therapy (PTT) was also reported [156]. The unimolecular micelle was formed 

by β-CD-poly(2-(diisopropylamino) ethyl methacrylate-oligo (ethylene glycol)-methyl 

ether-methacrylate) (β-CD-P(DPA-OEGMA)). The PDAP segment, with a pKa value around 

6.4, is hydrophobic at neutral pH, and becomes hydrophilic in an acidic environment (pH < 

6.4). The unimolecular micelles loaded with DOX and BBT-2FT showed pH-responsive 

drug release kinetics that enhanced the therapeutic effect against cancer cells by chemo-

photothermal combination therapy. The combination therapy induced approximately 23-fold 

and 3-fold more cell death than chemotherapy and PTT alone, respectively.

Besides cancer therapy, drug-loaded unimolecular micelles have also been investigated for 

the treatment of other diseases. For instance, glaucoma is a common eye disease 

characterized by loss of retinal ganglion cells (RGCs), resulting in irreversible blindness. An 

RGC-targeted intraocular drug delivery system employing unimolecular micelles was 

engineered to deliver a neuroprotective drug, dehydroepiandrosterone (DHEA), to prevent 

RGC loss [157]. The unimolecular micelles were formed by multi-arm star amphiphilic 

block copolymers poly(amidoamine)–polyvalerolactone–poly(ethylene glycol) (PAMAM-

PVL-PEG) conjugated with the cholera toxin B (CTB) domain that can bind specifically to 

GM1 ganglioside on the RGC surface. Following intravitreal administration, the CTB-

conjugated (targeted) unimolecular micelles exhibited a much higher accumulation in the 

RGC layer than the non-targeted ones. Targeted unimolecular micelles can be detected at 7 

days post-injection, while non-targeted micelles can only be detected one day post-injection. 

Moreover, in an acute N-methyl-D-aspartate-induced RGC death mouse model, the DHEA-

loaded targeted unimolecular micelles exhibited a much better RGC protective effect than 
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the DHEA-loaded non-targeted ones after 14 days (>40 % of RGC being preserved for the 

targeted micelles vs. <20% of RGC being preserved for the non-targeted micelles).

A unimolecular micelle-based drug delivery system was also developed for the treatment of 

vascular diseases. Restenosis is the recurrence of blood vessel narrowing, leading to a 

restricted blood flow rate [158]. Globally, millions of patients receive open vascular 

interventions every year, but a significant fraction of these interventions eventually fail due 

to restenosis [159]. A perivascular drug delivery system consisting of drug (rapamycin)-

loaded unimolecular micelles made of PAMAM-PVL-PEG and a thermosensitive hydrogel 

formed by PLGA-PEG-PLGA triblock copolymer (Triblock gel) was designed to inhibit 

restenosis after open surgery [122]. This hybrid perivascular drug delivery system provides 

sustained drug release for four months, while Triblock gel alone or unimolecular micelles 

alone only provide sustained drug release for one and two months, respectively. Remarkably, 

this hybrid perivascular drug delivery system produced a rare feat of 3-month restenosis 

inhibition in an animal model. Specifically, rapamycin-loaded unimolecular micelles in the 

Triblock gel inhibited restenosis by 80% and induced a larger luminal area (60% bigger) 

compared to its respective drug-free control.

Stimuli-responsive characteristics have also been incorporated into the unimolecular 

micelles to achieve controlled release of payloads to potentially achieve better therapeutic 

efficacy. Since NPs are largely taken up by cells through endocytosis, their subcellular 

trafficking pathways typically involve acidic endosomes and lysosomes. Therefore, pH-

responsive unimolecular micelles have been engineered to control the drug release from the 

unimolecular micelles. For example, Haag et al. reported a pH-responsive unimolecular 

micelle formed by the hyperbranched amphiphilic block copolymer HPG-octadecane-18-

PEG (HPG-C18-PEG) [160]. The amphiphilic C18-PEG block copolymer molecules were 

conjugated to the HPG core via a pH-responsive imine linker. In the acidic endocytic 

compartments, the imine linkers were cleaved quickly, thereby causing a more rapid drug 

(DOX) release, and subsequently leading to a better therapeutic efficacy compared to 

unimolecular micelles lacking a pH-responsive drug release profile in A549 lung cancer 

cells. Since the concentration of glutathione (GSH) (approximately 2–10 mM) is drastically 

higher than in the extracellular spaces (approximately 2–20 μM) [161–163], GSH-responsive 

unimolecular micelles for redox-responsive drug release have also been reported [96, 164, 

165].

A GSH-sensitive unimolecular micelle composed of H40-PLA (as the hydrophobic core) 

linked to poly(2-ethoxy-2-oxo-1,3,2-dioxaphospholane) (PEP) (as the hydrophilic shell) 

through disulfide bonds was engineered to achieve GSH-responsive drug release [164]. GSH 

(2–10 mM) in the cytosol triggered the detachment of the hydrophilic PEP shell from the 

unimolecular micelle, which resulted in a rapid drug (DOX) release due to the disruption of 

the micelle structure, thereby enhancing growth inhibition in tumor cells.

Drug molecules with certain types of functional groups, such as –OH, –NH2, and –C(O)–, 

can be covalently conjugated on unimolecular micelles to achieve stimuli-responsive drug 

release. We reported DOX-conjugated unimolecular micelles, where DOX was linked to the 

unimolecular micelles through a pH-sensitive hydrazone bond, thus taking advantage of the 
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13-keto position of the DOX molecule [69, 149]. Once taken up by cells through 

endocytosis, DOX can be easily cleaved from the unimolecular micelles in the acidic 

endocytic compartments. The DOX-conjugated unimolecular micelles exhibited a rapid drug 

release under acidic conditions. Specifically, 83% of the drug was released at a pH of 6.6 

after 45 h, while only 15% of the drug was released at a pH of 7.4 after 45 h [149].

3.1.2 Water-Soluble Unimolecular NPs for Drug Delivery—Water-soluble 

unimolecular NPs are typically formed by employing polyelectrolytes to form the 

hydrophilic core and PEG as the hydrophilic shell (Figure 1). They have been used to deliver 

hydrophilic therapeutics, including small molecule drugs, genes, peptides, and proteins, 

mainly through electrostatic interactions and hydrogen bonding. More specifically, 

depending on the net charge of the biomacromolecule payload (e.g., nucleic acids, peptides, 

and proteins), unimolecular NPs are typically constructed with opposite-charged 

polyelectrolytes [70, 71, 137]. For small metal-based hydrophilic drugs, other interactions 

may also be utilized, such as ion–dipole interactions [136] and chelation [71]. Similar to 

self-assembled multi-molecular polymer micelles, multi-molecular polymeric NPs formed 

by electrostatic interactions, hydrogen bonding, and ion–dipole interactions possess 

insufficient in vivo stability because of their multi-molecular nature. Hence, the use of 

unimolecular NPs is more desirable.

As mentioned previously, a water-soluble PAMAM-PAsp-PEG unimolecular NP was 

engineered to deliver the platinum-based drug, carboplatin [136]. Carboplatin was 

complexed to the unimolecular NPs via pH-responsive ion–dipole interactions between the 

carboplatin and the carboxylate. The carboplatin-complexed unimolecular NPs exhibited 

excellent stability with a desirable pH-sensitive drug release profile. cRGD peptide (for 

integrin αvβ3-positive tumor targeting) was decorated on the surface of the unimolecular 

NPs for enhanced drug delivery efficiency. Liu et al. reported a unimolecular NP based on 

PAMAM (G3) that was conjugated with block copolymers poly(glutamic acid)-b-poly-

(ethylene glycol) (PAMAM-PGA-PEG) to deliver 1,2-diaminocyclohexane-platinum(II) 

(DACHPt) through chelate complexation [71]. DACHPt-complexed unimolecular NPs 

displayed longer in vivo half-lives (13.2 h) than the self-assembled DACHPt-loaded micelles 

(7.1 h). The in vivo anticancer study showed that the tumor volume of the DACHPt-

complexed unimolecular NP treated group was significantly smaller than that of the 

DACHPt-complexed self-assembled NP treated group (115 vs. 177 mm3; note the original 

tumor size was 50 mm3).

Delivery of nucleic acids is also of great interest to treat or prevent human diseases, such as 

genetic disorders and cancers [166, 167]. The polyplexes formed by the electrostatic 

interactions between cationic polymers and negatively charged genes have been widely 

explored to overcome the limitations associated with nucleic acids, such as limited cellular 

uptake due to their highly negatively charged nature, insufficient chemical stability, and 

short plasma half-life [168–170]. However, as aforementioned, polyplexes also exhibit poor 

in vivo stability due to various factors, including interactions with serum proteins (e.g., 

albumin) and in vivo dilution [171–174]. The use of unimolecular NPs could not only 

address the limitations with naked nucleic acids, but also provide excellent in vivo stability.
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Chen et al. [137] engineered a pH and redox dual-sensitive unimolecular NP for siRNA 

delivery. The cationic core used for siRNA complexation contained GSH-cleavable disulfide 

bonds, thereby facilitating the decomplexation of siRNA from the unimolecular NPs. The 

cationic polymers were conjugated onto the H40 core via a pH-sensitive imine bond, which 

further facilitated siRNA decomplexation. The incorporation of imidazole in the 

unimolecular NP delivery system enhanced the endosomal escape capability of the NPs via 

the proton sponge effect. The resulting siRNA-complexed unimolecular NPs exhibited 

excellent stability. To enhance delivery efficiency, GE11 peptide was decorated on the 

surface of the unimolecular NPs, which was tested in EGFR-overexpressing TNBC cells. 

The in vitro gene silencing efficiency of the siRNA-complexed targeted unimolecular NPs 

(79 %) was comparable to the commercially available siRNA transfection agent, RNAiMAX 

(81 %). RNAiMAX is known to have severe cytotoxicity, whereas the unimolecular NPs 

exhibited a much better biocompatibility.

Unimolecular NPs can also be used to deliver peptides and small proteins. As mentioned 

earlier, a unique charge-conversional PAMAM-PAsp(DET-Aco-r-Im)-PEG unimolecular NP 

was developed for the delivery of a positively charged peptide, the pyruvate kinase isozyme 

M2 (PKM2) peptide (Figure 5) [70]. The PKM2 peptide is a fragment of the PKM2 protein 

that can specifically and efficiently bind with co-activator-associated arginine 

methyltransferase 1 (CARM1), and thus inhibits the interaction between PKM2 and 

CARM1 [70]. The non-methylated PKM2 peptide (nonmethyl-peptide), but not the 

methylated PKM2 peptide (methyl-peptide), can inhibit the CARM1-mediated methylation 

of PKM2. In a lung tumor metastasis mouse model, the bioluminescence intensities of lung-

metastatic cells in the non-methyl PKM2 peptide-loaded unimolecular NP treated group 

were 5-fold lower than those in the methyl PKM2-peptide-loaded unimolecular NP treated 

group, indicating that the PKM2 peptide delivered by the unimolecular NPs successfully 

inhibited breast cancer lung metastasis by disrupting the metabolic energy balance in cancer 

cells (Figure 7).

Dai et al. [175] fabricated a dendritic poly(amido amine)-b-poly(ɛ-caprolactone)-b-poly(d-

gluconamidoethyl methacrylate) (PAMAM-PCL-PGAMA) block copolymer for the delivery 

of Concanavalin A (Con A) protein. Con A is a carbohydrate-binding protein, and thus can 

bind to the sugar molecules in dendritic polymers. These unimolecular NPs were more 

stable than those self-assembled from their linear counterparts. Similarly, host–guest 

interactions (e.g., cyclodextrin and adamantane) or biotin/avidin interactions could also be 

potentially incorporated into the unimolecular NP systems.

3.2. Unimolecular NPs for Bioimaging

Bioimaging is a prominent area of research aiming at extending or developing novel tools 

for diagnosis with high specificity and quality [176, 177]. Most of the bioimaging probes 

currently used are small molecular compounds, such as organic fluorescent agents for 

optical imaging, metal ions for magnetic resonance imaging (MRI), and radiolabeled 

molecules for positron emission tomography (PET) [177, 178]. Although they have shown 

some utility, clinical applications of these bioimaging probes are still hindered by low 

specificity and sensitivity, instability, and potential toxicity [179–181]. Unimolecular NPs 
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have emerged as an excellent candidate for bioimaging probes. Their high loading capacity 

and versatile chemistry allow encapsulation or conjugation of imaging probes for enhanced 

diagnosis.

Optical imaging utilizes photons emitted from fluorescence or bioluminescence probes. It is 

a fast and inexpensive approach [176, 182]. DOX, a common anticancer drug, is also 

fluorescent (red) and thus it is suitable for optical imaging. Hence, DOX-encapsulated 

unimolecular NPs can be used for optical imaging. For instance, Xu et al. reported an 

aptamer-conjugated and DOX-loaded unimolecular micelle to target prostate cancers [152]. 

A10 aptamer, which can specifically recognize the prostate-specific membrane antigen 

(PSMA) abundantly expressed on the surface of prostate cancer cells, was used as the 

targeting ligand. In tumor-bearing mice, the DOX fluorescence intensity measured by optical 

imaging suggests that targeted unimolecular micelles exhibited a much higher tumor 

accumulation than non-targeted micelles and free DOX. However, one concern with utilizing 

imaging probes loaded into NPs via physical encapsulation to localize the NPs in vitro and 

in vivo is that the imaging probes are continuously released from the NPs. Therefore, 

physically encapsulated imaging probes may not result in the precise localization of the NPs. 

Owing to the large number of surface functional groups on the unimolecular NPs, imaging 

probes can also be covalently linked to the NPs. For example, to track the unimolecular NPs, 

Cy5.5 molecules were conjugated onto the distal ends of the PEG arms [116, 118]. Another 

approach to endow the unimolecular NPs with optical imaging properties is to fabricate the 

NPs with fluorescent building segments. We also reported a self-fluorescent unimolecular 

micelle system for targeted drug delivery. The unimolecular NPs were formed by H40-

biodegradable photo-luminescent polymer-poly(ethylene glycol) (PEG) (H40-BPLP-PEG) 

[183]. The hydrophobic BPLP segment was self-fluorescent, thereby making the 

unimolecular micelle self-fluorescent that is suitable for optical imaging. Self-fluorescent 

unimolecular micelles can also serve as drug carriers for cancer-targeted delivery. The 

combination of its intrinsic fluorescence properties and its capability of drug delivery holds 

great promise for cancer theranostics.

Pu et al. reported a bottom-up strategy to construct water-soluble fluorescent unimolecular 

NPs based on the cationic oligofluorene-conjugated POSS dendritic polymer for 

fluorescence amplification in cellular imaging [184]. The high quantum yields (e.g., 0.85 in 

water and 0.80 in PBS) and good signal amplification capability of POSS-based molecules 

allow for high quality biological imaging even with a small amount of indicator dyes, 

thereby avoiding the undesirable side effect of elevated dye concentrations. The emission 

wavelength, charged nature, and diameter of POSS-based fluorescent unimolecular NPs can 

be easily adjusted through chemical modification of the fluorescent arms so as to fulfill the 

different requirements of specific applications.

Another widely used bioimaging modality is MRI, which is an extremely versatile 

anatomical imaging technique that generates high quality images [185, 186]. Paramagnetic 

contrast agents (e.g., gadolinium (Gd)) can enhance the signal intensity of T1-weighted MRI 

images [187]. However, the commercial products for Gd-based agents, such as Gd-DTPA 

(Magnevist®; DTPA: diethylenetriaminepentaacetic acid), Gd-(DTPA-BMA) (Omniscan; 

DTPA-BMA: di-ethylenetriaininepentaacetic acid-bis(methylamide)), and Gd-DOTA 
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Dotarem®; DOTA: 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid), often exhibit 

a rapid clearance rate and no specificity [188, 189].

Unimolecular NPs can be used to adequately address these concerns. Li et al. reported a 

unimolecular micelle formed by H40-star-(PCL-b-POEGMA/Gd/FA) for cancer-targeted 

MRI [148]. In vitro MRI experiments revealed considerably enhanced T1 relaxivity for Gd-

loaded unimolecular micelles (18.14 s−1 mm−1) compared to that of small molecular 

DOTA–Gd complexes (3.12 s−1 mm−1). Further in vivo MRI experiments in rats showed 

prominently positive contrast enhancement in the major organs. Specifically, in the first 20 

min, the contrast-to-noise ratio (CNR) in the heart, kidney, and liver dramatically increased. 

Both the heart and kidney reached the highest CNR at 20 min post-injection, while the CNR 

of the liver reached a maximum at 20 h post-injection.

PET imaging has become increasingly popular in both preclinical and clinical settings as this 

non-invasive imaging modality is tomographic in nature, has excellent tissue penetration as 

well as high sensitivity and specificity, and can observe functional changes over a short time 

period [190, 191]. As such, PET-based nanomedicine has gained increasing attention during 

the last decade. The use of unimolecular NPs for PET imaging has also been reported. For 

instance, Xiao et al. [150] engineered a unimolecular micelle made of a hyperbranched 

amphiphilic block copolymer (Figure 8). NOTA (a macrocyclicchelator for 64Cu-labeling) 

and cRGD peptide (for integrin αvβ3-positive tumor targeting) were linked to the surface of 

the unimolecular micelles. In vivo PET imaging demonstrated a higher tumor accumulation 

of 64Cu-labeled targeted unimolecular micelles (e.g., 5.7 % ID/g at 4 h post injection) than 

the non-targeted ones (e.g., 2.6 % ID/g at 4 h post injection). Injection with a blocking dose 

of cRGD peptide, along with 64Cu-labeled targeted unimolecular micelles, significantly 

reduced tumor uptake (e.g., 3.2 % ID/g at 4 h post injection) to a level similar to the non-

targeted ones, indicating integrin αvβ3-specific binding of 64Cu–labeled targeted 

unimolecular micelles. In addition, DOX was also conjugated to the unimolecular micelles 

via a pH-labile hydrazine bond, allowing for optical imaging as well. The ex vivo 
fluorescence imaging of the excised tumors also revealed a higher tumor accumulation of 

targeted micelles compared to the non-targeted control.

3.3. Unimolecular NPs for Nanotheranostics Applications

Nanotheranostics, the use of nanotechnology for the integration of therapy and diagnostics, 

may offer new opportunities for “personalized nanomedicine” [192–194]. Unimolecular 

micelles can conveniently incorporate therapeutic and diagnostic agents to achieve 

multifunctionality due to their excellent stability, high loading capacity, and versatile 

chemistry [67, 68]. Therefore, unimolecular micelles can be a desirable platform for 

nanotheranostics [115, 130, 150, 152, 183, 195–199].

We developed a multifunctional unimolecular micelle for targeted neuroendocrine (NE) 

cancer theranostics [195]. The unimolecular micelle was formed by multi-arm star 

amphiphilic block copolymer PAMAM-PVL-PEG conjugated with KE108 peptide as a 

targeting ligand and Cy5 dye as an optical imaging probe (abbreviated as PAMAM-PVL-

PEG-KE108/Cy5) (Figure 9). The targeted unimolecular micelles exhibited a much higher 

tumor accumulation than that of the non-targeted micelles in an NE-tumor-bearing mouse 

Chen et al. Page 13

Adv Drug Deliv Rev. Author manuscript; available in PMC 2019 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model based on in vivo optical imaging. Moreover, the drug (thailandepsin A (TDP-A))-

loaded targeted unimolecular micelles induced the highest antitumor efficacy (92 % tumor 

reduction compared to the control group) without detectable systemic toxicity.

Hu et al. fabricated a theranostic unimolecular NP formed by hyperbranched polyprodrug 

amphiphiles consisting of a hyperbranched core conjugated with reduction-activatable 

camptothecin (CPT) prodrugs and MRI contrast agent (Gd-DOTA), and hydrophilic coronas 

functionalized with guanidine residues (abbreviated as H-P(CPTM-co-DOTA(Gd))-b-

P(OEGMA-co-GPMA), thus enabling a combination of chemotherapy and MRI [196]. Upon 

cellular internalization, CPT in its active form was released from the polyprodrug 

unimolecular NPs under intracellular cytosol reductive conditions (e.g., cytosol GSH ~10 

mM). Synchronously, the MR contrast performance was also enhanced (~9.6-fold) in the 

reductive environment due to the hydrophobic-to-hydrophilic transition of the 

hyperbranched cores. Furthermore, the unimolecular NP exhibited a long blood circulation 

time (t1/2 ~10.6 h), enabling this unimolecular NP to be a promising candidate for 

synergistic imaging/chemotherapy.

The tumor-targeted combination of chemotherapy and computed tomography (CT) imaging 

enabled by a unimolecular micelle system has also been demonstrated [197]. The 

unimolecular micelle was formed by a 21-arm star-like triblock polymer of β-cyclodextrin-

[poly(ε-caprolactone)-poly(2-aminoethyl methacrylate)-poly(poly(ethylene glycol) methyl 

ether methacrylate)]21 [β-CD-(PCL-PAEMA-PPEGMA)21] (Figure 10). The micelles can 

encapsulate anticancer drugs, such as DOX, and serve as a template for fabricating small 

gold NPs AuNPs) for CT imaging. In vivo CT imaging revealed that the CT signals in the 

tumor sites treated by β-CD-(PCL-PAEMAPPEGMA)21/AuNPs/DOX unimolecular 

micelles were significantly higher than those of Omnipaque, a commercially available 

iodinated contrast agent for CT imaging. Specifically, compared to pre-injection, the 

magnitude of CT value improvement in the tumor sites was much greater in the 

unimolecular micelle treated group (32, 54, 65, or 71% of increase after 0.5 1, 2, or 4 h post 

injection, respectively) than in the Omnipaque treated group (18, 26, 36, or 43% of increase 

correspondingly). Moreover, the unimolecular micelles induced ~87% tumor reduction 

compared to the control group (PBS). Collectively, this platform holds great promise for 

combination CT imaging and chemotherapy.

4. Conclusions and Future Perspectives

In this review, we have surveyed recent progress on unimolecular NPs, including the 

architecture of water-dispersible unimolecular micelles and water-soluble unimolecular NPs, 

as well as their potential therapeutic and diagnostic applications. In contrast to multi-

molecular self-assembled polymeric NPs, unimolecular NPs can offer excellent in vitro and 

in vivo stabilities due to their covalent nature. In addition, multifunctional unimolecular NPs 

can be conveniently fabricated due to their unique chemical structures and versatile 

chemistry. Unimolecular NPs, and in particular, unimolecular micelles, have been 

extensively investigated for targeted cancer therapy and, more recently, for targeted cancer 

theranostics. Unimolecular NPs have also been explored to treat a number of other diseases 

including vascular and eye diseases, as well as genetic disorders. Their diverse polymer 
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chemistry makes it possible to design numerous desirable unimolecular NP platforms for 

different applications.

Despite their promise, some challenges exist for clinical translation. First, the synthesis 

process for the multi-arm polymer molecules used to form the unimolecular NPs may be 

more complex than for linear polymers. Thus, more facial polymer synthesis and 

conjugation strategies to fabricate well-defined multi-arm polymers are highly desirable. Of 

note, once a well-controlled scale-up synthesis process for the multi-arm polymers is 

established, it is expected that the unimolecular NPs will exhibit better reproducibility and 

quality assurance than multi-molecular self-assembled polymeric NPs. The unimolecular 

NPs can readily form in an aqueous solution and stay as intact NPs during freezing drying 

and the re-dispersion process, while the formation of multi-molecular nanoplatforms 

requires the optimization of various parameters, including concentrations, temperatures, 

solvents, and processing parameters. The stability of multi-molecular nanoplatforms is also 

affected by a number of processes (e.g., freezing drying and re-dispersion) and various 

factors (e.g., concentration, flow stress, interaction with serum proteins, etc.). The second 

challenge is a lack of fundamental understanding of the interactions between unimolecular 

NPs and cells/tissues. In contrast to some of the well-investigated drug delivery systems 

(e.g., liposomes and multi-molecular polymer micelles), exploration of core-shell structured 

unimolecular nanoparticles is still largely limited to small animal (e.g., mouse) experiments. 

Thus, more in-depth understanding of the interactions between unimolecular NPs and cells/

tissues, and more comprehensive investigation on their in vivo behaviors including 

pharmacokinetics, pharmacodynamics, and biosafety needs to be carried out before clinical 

translation.
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Figure 1: 
An illustration of a representative multifunctional water-dispersible unimolecular micelle 

and a water-soluble unimolecular NP. The functional core of the water-dispersible 

unimolecular micelle is formed by hydrophobic segments and is used to encapsulate 

hydrophobic drugs. The functional core of the water-soluble unimolecular NP is typically 

formed by polyelectrolytes and is usually used to encapsulate hydrophilic payloads. The 

hydrophilic shell for both types of unimolecular NPs is typically formed by hydrophilic 

segments, such as PEG and polyzwitterions. The hydrophilic shell provides the NP with 

good water dispersity and better biocompatibility. It also helps to reduce opsonization during 

circulation in the bloodstream.
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Figure 2: 
A representative illustration of an H40-based unimolecular micelle formed by a single multi-

arm star amphiphilic block copolymer H40-polyester (e.g., (PLA) and (PCL))-PEG.
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Figure 3: 
Synthesis of cyclic brush and bottlebrush copolymers. Reproduced with permission from 

Ref. [131].
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Figure 4: 
Schematic illustration of the core–shell structured unimolecular micelle formed by the 

amphiphilic block copolymer POSS-(G3-PLLA-b-PEO-COOH)8. Reproduced with 

permission from Ref. [133].
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Figure 5. 
(A) Illustration of the unimolecular NP for PKM2 peptide delivery. (B) Chemical structure 

of PAMAM-PAsp(DET-Aco-r-Im)-PEG. Reproduced with permission from Ref. [70].
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Figure 6: 
(A) A schematic illustration of multifunctional unimolecular micelles formed by multi-arm 

star amphiphilic block copolymer PAMAM–PLA–PEG–OCH3/Cy5.5/GE11 for targeted 

triple-negative breast cancer therapy. (B) Graphical representation of AF concentration in the 

tumors of nude mice treated with saline control, free AF, and AF encapsulated in GE11-

conjugated targeted (AF-T) or non-targeted (AF-NT) micelles as determined by LC/MS/MS. 

(C) Anticancer study of AF-loaded, GE11-conjugated unimolecular micelles in an MDA-

MB-468 TNBC xenograft mouse model. Reproduced with permission from Ref. [116].
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Figure 7. 
Inhibition of PKM2 methylation using a competitive PKM2 peptide reduces tumor lung 

metastasis in vivo. Bioluminescence at indicated times was measured in the lung when mice 

(n=6) were treated with unimolecular NPs loaded with methyl PKM2 peptide (UMNP-

methyl-peptide) or unimolecular NPs loaded with non-methyl PKM2 peptide (UMNP-

nonmethyl-peptide). Representative bioluminescence images of mice after four-week 

treatment with UMNP-methyl-peptide (n=4) or UMNP-nonmethyl-peptide (n=5) via 

retroorbital injection at the indicated times after tumor introduction. The color scale depicts 

the photon flux (photons per second) emitted from the xenografted mice. Reproduced with 

permission from Ref. [70].
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Figure 8: 
(A) A schematic illustration of the multifunctional unimolecular micelle formed by H40-

P(LG-Hyd-DOX)-b-PEG-OCH3/cRGD/NOTA(64Cu). (B) The synthetic scheme for H40-

P(LG-Hyd-DOX)-b-PEG-OCH3/cRGD/NOTA(64Cu). (C) PET imaging of 64Cu-labeled 

nanocarriers in U87MG tumor-bearing mice. (D) Ex vivo fluorescence imaging of excised 

U87MG tumors, with the excitation and emission set for DOX fluorescence. Reproduced 

with permission from Ref. [150].
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Figure 9: 
(A) A schematic illustration of the multifunctional unimolecular micelle formed by the 

multi-arm star amphiphilic block copolymer PAMAM–PVL–PEG–OCH3/Cy5/KE108 for 

targeted NE cancer therapy. (B) A schematic illustration of the passive and active tumor 

targeting capabilities exhibited by the multifunctional unimolecular micelles after i.v. 

injection. (C) In vivo near-infrared fluorescence imaging of subcutaneous BON tumor-

bearing mice treated with saline (control), non-targeted micelles conjugated with Cy5, and 

targeted micelles conjugated with KE108 and Cy5; arrows point to the tumor sites. (D) In 
vivo anticancer efficacy of different TDP-A formulations in BON tumor xenografts. 

Reproduced with permission from Ref. [195].
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Figure 10. 
(A) Schematic representation of the fabrication of a dual-functional β-CD-(PCL-PAEMA-

PPEGMA)21/AuNPs/DOX nanoplatform for cancer theranostics. (B) Synthetic route of β-

CD-(PCL-PAEMA-PPEGMA)21. Reproduced with permission from Ref. [197].
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Table 1:

Representative polymeric unimolecular NPs for biomedical applications.

Chemical composition Therapeutic payloads Imaging Probes Reference

Water-dispersible unimolecular micelles

H40-PLA-PEG DOX - 62

H40-PCL-PEG Resveratrol - 151

PAMAM-PLA-PEG DOX 64Cu (PET) 115

PAMAM-PVL-PEG TDP-A Cy5 (optical imaging) 120

PGA-g-(PCL-b-PEG) DOX - 129

POSS-(G3-PLLA-b-PEO-COOH)8 DOX - 133

β-CD-P(DPA-co-OEGMA) DOX + BBT-2FT - 156

H40-BPLP-PEG DOX BPLP (self-fluorescent) 183

H-P(CPTM-co-DOTA(Gd))-P(OEGMA-co-GPMA) CPT DOTA/Gd (MRI) 196

β-CD-(PCL-PAEMA-PPEGMA)21/AuNPs DOX AuNPs (CT imaging) 197

Water-soluble unimolecular nanoparticles

PAMAM-PAsp-PEG Carboplatin Cy5 (optical imaging) 136

PAMAM-PGA-PEG DACHPt - 71

PFNBr-PDMAEMA siRNA - 72

H40-P(Asp-AED-ICA)-PEG siRNA Cy5 (optical imaging) 137

PAMAM-PAsp(DET-Aco-r-Im)-PEG Peptide - 70
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