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Abstract

Recent reports describing lymphatic vasculature in the meninges have challenged the traditional 

understanding of interstitial solute clearance from the central nervous system, although the 

significance of this finding in human neurological disease remains unclear. To begin to define the 

role of meningeal lymphatic function in the clearance of interstitial amyloid beta (Aβ), and the 

contribution that its failure may make to the development of Alzheimer’s disease (AD), we 

examined meningeal tissue from a case series including AD and control subjects by confocal 

microscopy. Our findings confirm the presence of lymphatic vasculature in the human meninges 

and indicate that, unlike perivascular efflux pathways in the brain parenchyma in subjects with 

AD, Aβ is not deposited in or around meningeal lymphatic vessels associated with dural sinuses. 

Our findings demonstrate that while the meningeal lymphatic vasculature may serve as an efflux 

route for Aβ from the brain and cerebrospinal fluid, Aβ does not deposit in the walls of meningeal 

lymphatic vessels in the setting of AD.
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1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia worldwide and is diagnosed 

histopathologically by the presence of intracellular neurofibrillary tangles and extracellular 

amyloid beta (Aβ) plaques (Glabe, 2005; Selkoe, 2001). In sporadic AD, production of Aβ 
remains relatively stable during the aging process, yet the slowing of Aβ clearance observed 

among aging and AD subjects suggests that impairment of endogenous Aβ clearance may 

underlie Aβ deposition in the human brain (Mawuenyega et al., 2010; Patterson et al., 2015). 

Aβ is removed from the brain interstitium through several mechanisms, including local 

cellular degradation, receptor-mediated efflux across the blood-brain barrier, and 

perivascular exchange into the cerebrospinal fluid (CSF) compartment via the glymphatic 

system (Iliff et al., 2012; Ramanathan et al., 2015; Tarasoff-Conway et al., 2015).

The characterization of a meningeal lymphatic vascular system in mice has important 

implications for our understanding of interstitial homeostasis in the brain and central 

nervous system (CNS), CSF physiology, and CNS immune surveillance (Aspelund et al., 

2015; Iliff et al., 2015; Louveau et al., 2015). These findings were recently confirmed in 

three human subjects and in nonhuman primates by Absinta et al. (Absinta et al., 2017) who 

visualized the meningeal lymphatic network by contrast-enhanced magnetic resonance 

imaging and immunohistochemical detection of meningeal lymphatic vessels with molecular 

markers of lymphatic endothelial cells. In both mice and humans, meningeal lymphatic 

vessels are distributed along large blood vessels and cranial nerves in the dura mater, 

reflecting patterns observed in the peripheral lymphatic vasculature. In mice, meningeal 

lymphatic vessels absorb macromolecules from the brain and CSF and transport these 

solutes to the deep cervical lymph nodes (DCLNs). This efflux route provides an anatomical 

basis for the experimental observation that molecules introduced into the CNS accumulate in 

the DCLNs (Boulton et al., 1999; Bradbury and Cole, 1980; Cserr et al., 1992). Although 

meningeal lymphatic function remains largely unexplored, this pathway is speculated to play 

an important role in the clearance of pathological waste products such as Aβ from the brain 

interstitium and CSF (Louveau et al., 2017; Tarasoff-Conway et al., 2015). However, to our 

knowledge, no studies have evaluated whether changes in meningeal lymphatic vessel 

structure or function are observed in the setting of AD. It also remains unclear if Aβ is 

deposited in the walls of meningeal lymphatic vessels as has been observed along 

leptomeningeal and intraparenchymal arteries in the cerebral amyloid angiopathy (CAA) 

that is present in more than 90% of AD brains (Kalaria and Ballard, 1999).

2. Methods

2.1 Human Tissue Samples

Samples were collected after obtaining consent from subjects or legal next of kin as part of 

donation to the Oregon Brain Bank. During the autopsy, human dural tissue containing the 
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superior sagittal sinus was collected by pathologists at Oregon Health & Science University. 

Samples were fixed in 10% formalin for variable time periods before being processed and 

embedded in paraffin. This manuscript does not contain any identifiable personal patient 

information. Braak neurofibrillary tangle and CERAD amyloid plaque scores of AD-related 

pathologies were determined by standard procedures (Braak and Braak, 1995; Mirra et al., 

1991). Non-AD diagnoses were established via comprehensive gross and histopathologic 

exam as described elsewhere (Erten-Lyons et al., 2013). Throughout tissue preparation and 

image acquisition, researchers were blinded to the subjects’ demographic information and 

diagnosis.

2.2 Tissue Preparation

7 μm coronal sections of paraffin-embedded human dura and superior sagittal sinus were cut 

and mounted on glass slides (Star Frost). Slides were baked at 50°C overnight, 

deparaffinized using citrus clearing solvent, rehydrated using graded steps of ethanol, and 

rinsed in distilled water.

2.3 Immunofluoresence

Tissues were incubated in 10% formic acid for 10 minutes, steamed in citrate buffer (pH 6.0) 

for 30 minutes, and incubated overnight at 4°C in 0.3% PBS triton with 2% donkey serum, 

2.5% bovine serum albumin blocking buffer. Tissues were then incubated in primary 

antibodies diluted in blocking buffer overnight at 4°C (1:40 D240 Podoplanin mouse 

monoclonal antibody, 1:800 4G8 pan-Aβ mouse monoclonal antibody, 1:300 6E10 pan-Aβ 
mouse monoclonal antibody BioLegend 803001, 1:100 LYVE1 rabbit polyclonal antibody 

Abcam 36993, 1:500 α-smooth muscle actin polyclonal antibody Abcam ab5694, 1:300 

rabbit CD31 antibody Abcam ab28364). Corresponding fluorescent secondary antibodies 

were diluted 1:500 in blocking buffer and were incubated overnight at 4°C. Tissues stained 

with Hoechst 33342 were incubated in 1:50,000 working solution for 10 minutes. Tissues 

stained with X-34 (Sigma) were incubated in 500 μM X-34 for 10 minutes, rinsed in DI 

water, incubated in 0.2% NaOH/80% EtOH for 2 minutes, and rehydrated in DI water for 10 

minutes (Styren, et al., 2000). Slides were mounted using mowiol 4–88 mounting media 

(Sigma, cat. 81381). Because the podoplanin and Aβ (6E10 and 4G8) antibodies were 

generated in the mouse, sequential sections were stained and compared to identify co-

localized immunoreactivity.

2.4 Confocal Microscopy and Spectral Unmixing

Images were acquired in single frames or z-stacks using the Zeiss LSM 880 with a 20x 

objective. Due to abundance of autofluorescent material in the aged human meninges, a 

spectral unmixing strategy was implemented to separate nonspecific background signal from 

signal due to antibody binding. Specifically, the spectral profile of signal emitted during 

excitation in lambda mode was measured in unstained, Hoechst only, and Hoechst + 

secondary antibody treated meningeal tissue samples. After identifying the spectral signature 

of nonspecific signals in these reference tissues, spectrally separated images were acquired 

in real time using Emission Fingerprinting. Post image processing (including image 

thresholding, noise reduction, and maximum intensity z-stack projections) was carried out 

using ImageJ software.
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3. Results

To define the presence and distribution of lymphatic vessels in human meningeal tissue, we 

used immunofluorescence in post mortem coronal sections of superior sagittal sinus (SSS, 

Figure 1A-B) derived from control subjects (n=5), AD subjects (n=6) and diagnosed with 

mixed dementia or other neurological diseases (n=10). Demographic information including 

age at death, gender, clinical-pathological diagnosis, Braak stage, and Consortium to 

Establish a Registry for Alzheimer’s Disease (CERAD) score (neuritic Aβ plaque burden) 

for each subject are reported in Table 1. To visualize podoplanin (PDPN, a lymphatic 

endothelial cell marker) immunofluorescence across the large SSS histological sample, we 

employed whole-slide fluorescence microscopy. Individual PDPN+ lymphatic vessels were 

visualized by high resolution microscopy with spectral unmixing to segment out tissue 

autofluorescence. We observed PDPN+ vessels in 19/21 subject samples, including 6/6 AD 

subjects, 4/5 control subjects, and 9/10 subjects with mixed dementia or other neurological 

diseases (Table 1).

PDPN+ lymphatic vessels with two distinct morphologies were observed in human 

postmortem SSS samples. One vessel type reflected traditional initial lymphatic 

morphology, with a single layer of endothelium, no smooth muscle or red blood cells, 

unoccupied lumen, and irregular morphology (Figure 1C). For simplicity, these PDPN+ 

vessels were termed “Type 1” lymphatic vessels. A second vessel type, termed “Type 2”, 

was observed that exhibited an irregular endothelial border and material within the lumen, 

resembling the lymphatic vessels described in human autopsy samples by Louveau and 

colleagues (Louveau et al., 2015) (Figure 1C). In contrast to meningeal arteries and veins 

(Figure 1D), both vessel types were negative for the blood endothelial cell marker CD31 

(Figure 1E), indicating that PDPN+ Type 1 and Type 2 vessels are not meningeal blood 

vessels. Like other peripheral lymphatic vessels, Type 1 vessels also labeled with the 

LYVE-1, however Type 2 vessels did not (Figure 1F). Type 1 and 2 lymphatic vessels 

exhibited specific distributions within the dural tissue, with Type 1 vessels distributing 

within the periosteal and meningeal layers of the dura mater, and Type 2 vessels distributed 

between the SSS and periosteal layer of the dura (Figure 1B). As reported in the rodent, 

lymphatic vessels of both types were negative for the vascular smooth muscle cell marker 

smooth muscle actin (Figure 1E).

Both Type 1 and 2 lymphatic vessels were readily detectable in both control and AD 

subjects (Figure 2A, Table 1). To determine if there were structural differences in the 

lymphatic vessels of AD and control subjects, we measured the circumference of 5 

lymphatic vessels per subject. We found no difference in lymphatic vessel circumference 

between AD and control subjects, with an average circumference of 354 ± 55 μm and 381 

± 76 μm, respectively (Figure 2B).

The deposition of Aβ in leptomeningeal and intraparenchymal cerebral arterial walls is a 

common feature among AD subjects that is thought to reflect the role of perivascular spaces 

as routes for efflux of Aβ from the brain parenchyma (Carare et al., 2008; Kalaria and 

Ballard, 1999; Weller et al., 2007). We hypothesized that if the meningeal lymphatic 

vasculature participates in clearance of Aβ, then Aβ deposition may also occur along the 
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meningeal lymphatic vessels of AD subjects. To evaluate this hypothesis, we labeled 

sequential cortical and SSS sections with the 6E10 and 4G8 Aβ antibody clones, which 

display differential detection of prefibrillar oligomeric Aβ. Specifically, the 4G8 antibody 

binds to both fibrillar and prefibrillar oligomeric Aβ, while the 6E10 antibody only binds 

fibrillar Aβ (Kayed et al., 2007). As expected, Aβ immunoreactivity was largely absent 

from frontal cortical sections from control subjects while AD subjects exhibited dense 

frontal cortical Aβ immunoreactivity (Figure 2A, Figure 3A). In the dura mater, we observed 

that Aβ reactivity was clone-specific in both AD and control subjects, with widespread, 

diffuse immunoreactivity detected in the meninges by the anti-Aβ 6E10 clone, but scant 

reactivity with the anti-Aβ 4G8 clone (Figure 3A, Table 2). Several dural blood vessels also 

exhibited Aβ immunoreactivity, though more were found in sections labeled with the 6E10 

clone than the 4G8 clone (Figure 3A). Interestingly, when staining with the 6E10 clone, we 

observed Aβ immunofluorescence in the walls of dural lymphatic vessels, with 3/6 AD and 

0/5 control subjects exhibiting Aβ6E10
+PDPN+ lymphatic vessels (Figure 3B, Table 2). 

However, labeling with the 4G8 antibody did not result in PDPN+ lymphatic vessel-

associated immunoreactivity (Figure 3B, Table 2). As noted above, the 4G8 antibody readily 

labeled cortical Aβ plaques, leptomeningeal Aβ, and Aβ associated with dural arteries 

(Figure 2A, Figure 3A).

Because the 6E10 antibody only detects fibrillary species of Aβ, we surmised that if the 

immunoreactivity we observed with the 6E10 antibody was specific to Aβ, then similar 

patterns would be observed when staining with a congophilic dye such as Congo red or 

X-34. Importantly, there was no observable positive Congo red or X-34 labeling in 

meningeal sections of both control and AD subjects using this approach (Figure 3A-B). The 

lack of positive staining with both the 4G8 antibody and congophilic dyes argue that the 

anti-Aβ 6E10-immunoreactivity seen in dural tissue from control and AD subjects and in 

association with meningeal lymphatic vessels reflects non-specific antibody binding rather 

than the specific localization of Aβ to these structures.

4. Discussion

4.1 Confirmation of a lymphatic vessel network in the human meninges

Our observation of lymphatic vessels in the dura mater of 19/21 human subjects 

corroborates the recent report of lymphatic vessels in three human subjects by Absinta and 

colleagues (Absinta et al., 2017). Together, these reports confirm that the meningeal 

lymphatic system is conserved among rodents, non-human primates, and humans.

While the PDPN+LYVE1+CD31- (Type 1) lymphatic vessels identified in the present study 

are consistent with peripheral tissue lymphatic capillaries and those described in the murine 

SSS (Louveau et al., 2015), we also identify PDPN+LYVE1-CD31- (Type 2) dural vessels. 

In mice, LYVE1 is heterogeneously expressed along the lymphatic hierarchy with 

progressive loss of expression in precollectors and collecting vessels. Thus, the Type 2 

vessels we observe may represent a precollector (PDPN+LYVE1-αSMA-) rather than 

capillary phenotype. Alternatively, inflammation can induce internalization and degradation 

of LYVE1, which may contribute to the discrepancy observed between naïve murine and 

post mortem human tissue (Johnson et al., 2007). As inflammatory cells are inconspicuous 
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in both AD and control dura, this possibility seems less likely. Finally, though our data 

reveals that these structures lack staining for CD31 and are therefore not meningeal blood 

vessels, it is possible that these Type 2 structures lined with PDPN+ cells are also non-

lymphatic. Future studies in non-human primate or human dura mater should consider 

orthogonal approaches such as flow sorting coupled with quantitative PCR to provide greater 

insight into the identity of these putative lymphatic vessels.

Our findings also highlight other differences between the human and rodent meningeal 

lymphatic system. In the murine meninges, the superior sagittal sinus is typically flanked by 

two lymphatic capillaries, whereas in the human subjects within our study, we noted >5 

vessels in subjects that had identifiable lymphatic vessels associated with this considerably 

larger structure. Furthermore, murine meningeal lymphatic vessels typically display a 

measured diameter of 20–30 μm (Aspelund et al., 2015; Louveau et al., 2015), whereas the 

calculated diameter range of human meningeal lymphatic vessels in our study varied widely 

from 19–470 μm. These findings corroborate the wide diameter range reported by Absinta 

and colleagues (Absinta et al., 2017). These differences, as well as the anatomical 

distribution of Type 1 and Type 2 vessels may have functional significance; dural Type 1 

vessels may absorb the interstitial fluid within the dura itself while Type 2 vessels, although 

apparently lacking contractile mural cells, may conduct CNS- and dura-derived lymph 

towards the cervical lymphatic drainage. These possibilities are clearly speculative, and 

further functional studies will be necessary to evaluate them.

4.2 Absence of Aβ deposition in the meninges, meningeal blood vessels, and meningeal 
lymphatic vessels

The dura mater and several identified dural lymphatic vessels displayed diffuse 

immunoreactivity when stained with the 6E10 clone, but this pattern was not observed when 

staining with the 4G8 antibody clone. This was unexpected because the 4G8 antibody 

identifies a broader range of Aβ species, binding both prefibrillar Aβ oligomers and 

fibrillary Aβ, whereas the 6E10 antibody only binds fibrillary Aβ (Kayed et al., 2007). 

Despite the fact that these antibodies bind to different epitopes on the extracellular domain 

of the Aβ protein (Aho et al., 2010), the staining patterns of dense-core Aβ plaques that 

contain fibrillary Aβ are relatively similar (Liu et al., 2015; Rak et al., 2007). To determine 

if the 6E10 immunoreactivity was fibrillary Aβ or nonspecific, we stained dural samples 

both Congo Red and X-34, which detect fibrillary Aβ in an antibody-independent manner, 

were also negative. Taken with our observation that the dura mater of 4/5 control subjects 

displayed diffuse immunoreactivity with the 6E10 antibody, these findings suggest that Aβ 
is not deposited in the dura and that the 6E10-positive labeling was likely non-specific.

These findings suggest that although interstitial Aβ exchanges into the CSF compartment, it 

does not appear to appreciably deposit within or along meningeal lymphatic vessels 

associated with the SSS. This does not necessarily indicate that these lymphatic vessels do 

not participate in the clearance of soluble Aβ from brain tissue, but rather may simply reflect 

the fact that Aβ does not specifically deposit along these structures. The relative absence of 

mural cells investing the meningeal lymphatic vasculature or differences in the physical 

(such as pulsation) or chemical environment (such as vessel wall matrix composition) of the 
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lymphatic versus arterial wall may prevent Aβ associated with these vessels from 

aggregating as it does in the wall of leptomeningeal or intraparenchymal arteries. Indeed, it 

has recently been suggested that the unique chemical and shear environment within the 

cerebral arterial wall may underlie the Aβ deposition that is characteristic of cerebral 

amyloid angiopathy (Trumbore, 2016). Furthermore, tracer studies carried out in 

experimental animals and human subjects suggest that solutes in the CSF are transported 

along perineural routes through the basal cisterns and through the cribriform plate (Bedussi 

et al., 2017; Johnston et al., 2004). Thus meningeal lymphatic vessels in the calvarium may 

play only a minor role in Aβ clearance from the CSF, compared to those at the base of the 

skull.

4.3 Study Limitations

The use of the spectral unmixing approach was critical to defining small PDPN+ lymphatic 

vessels in the highly autofluorescent human meninges. Despite this, we still observed some 

nonspecific staining, which was attributable to secondary antibody binding. This issue is 

common to immunofluorescence in post mortem human tissue, highlighting the importance 

of using strategies to overcome endogenous tissue autofluorescence, and for the use of 

approaches to evaluate meningeal lymphatic function that are orthogonal to microscopy.

Although this is the largest human cohort evaluated for meningeal lymphatic vessels, 

another limitation of this study is the relatively small sample size and narrow anatomical 

focus, including SSS tissue from 21 subjects, 6 of which were diagnosed with AD and 5 of 

which were control subjects. Since the concentration of Aβ in the CSF and brain vary with 

the stage of AD, this may affect the detection of Aβ in the dura mater. Future studies will 

benefit from including a larger number of subjects with a wide range of CERAD scores, 

allowing subjects to be stratified by stage of AD. Additionally, the use of ELISA-based 

assessment of Aβ from fresh-frozen meningeal tissues may provide a more sensitive readout 

for Aβ burden in this compartment in aging or AD. In this way, potential AD stage-

associated changes in lymphatic vessel-Aβ association could be more comprehensively 

defined.

This study was further limited by the general scarcity of post mortem meningeal tissue and 

the time-intensive use of spectral unmixing in large tissue sections in order to detect small 

vessels within an intensely autofluorescent tissue. It is possible that changes in lymphatic 

vessel abundance, structure, and association with Aβ may vary in different meningeal 

compartments, thus the findings that we report may not generalizable to the wider meningeal 

lymphatic vasculature. In future studies, it will be important to characterize meningeal 

lymphatic vessels from other dural sinus structures (such as the transverse and straight 

sinuses) and meninges in the skull base, including those associated with cranial nerves.

5. Conclusions

Together, these findings confirm the presence of meningeal lymphatic vasculature in humans 

and provide insight into two possible populations of lymphatic vessels in the meninges: one 

with traditional characteristics of lymphatic vessel morphology and another with atypical 

morphology. We also report the absence of Aβ deposition in the wall of dural lymphatic 
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vessels and that the use of multiple approaches is critical for accurate detection of Aβ in 

meningeal tissue. These findings suggest that although the meningeal lymphatic vessels in 

the calvarium may contribute to the clearance of interstitial solutes including Aβ from the 

brain parenchyma, Aβ does not appear to deposit in these potential efflux pathways in the 

same manner that it does along peri-arterial pathways in the setting of cerebral amyloid 

angiopathy.
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Highlights

• Dural sinus-associated lymphatic vessels were observed in 19/21 human post 

mortem samples.

• No differences in vessel number or diameter were observed between control 

and Alzheimer’s subjects.

• Amyloid β deposition was not observed along lymphatic vessels in control or 

Alzheimer’s disease subjects.
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Figure 1. Lymphatic vessels with variable morphology invest the human meninges.
A. Representative image of coronal section of human superior sagittal sinus and meninges. 

B. Schematic demonstrating regions of the meninges where lymphatic vessels were found. 

Yellow regions represent the general distribution of Type 1 vessels and orange regions 

represent Type 2 vessels. C. Representative images of Type 1 and 2 lymphatic vessels 

(arrows). D. Dural blood vessels, including arteries (solid arrowhead) and veins (hollow 

arrowhead), labeled with vascular smooth muscle cell marker alpha-smooth muscle actin 

(aSMA) and the blood endothelial cell marker CD31. E. Dural lymphatic vessels do not co-
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label with aSMA or CD31. F. Type 1 vessels are PDPN+LYVE1+ and Type 2 vessels are 

PDPN+LYVE1-. Scale bars in C and D represent 100 μm and bars in E and F represent 50 

μm.
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Figure 2. Meningeal lymphatic vessels in AD and control subjects.
A. Frontal cortical Aβ plaques and leptomeningeal vascular Aβ deposition in control and 

AD subjects. Type 1 and Type 2 meningeal lymphatic vessels (arrows) are readily detected 

among both groups. B. Quantification of lymphatic vessel circumference (14 Type 1 and 6 

Type 2 vessels in control subjects; 22 Type 1 and 8 Type 2 in AD subjects). Columns on left 

reflect all vessels from all subjects (n = 20 and 30 from control and AD subjects, 

respectively). Columns on right reflect subject-wise averages of lymphatic vessel 

circumferences (n = 4 and 6 control and AD subjects, respectively). No group-wise 

differences in lymphatic vessel circumference were observed (unpaired two-tailed T-test 

with Welch’s correction, p= 0.78 and 0.85 for individual vessels and average vessels per 

subject, respectively).
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Figure 3. Dural lymphatic vasculature and meningeal Aβ immunoreactivity in AD subjects.
A. Detection of Aβ immunoreactivity with 6E10 and 4G8 clones, and Aβ aggregates with 

the congophilic X-34 dye in frontal cortex (top), within dural tissue (middle), and in 

meningeal blood vessels (bottom, arrowhead). B. Representative Type 1 (left) and Type 2 

(right) lymphatic vessel (arrows). Sequential slices stained with PDPN, 6E10, 4G8 and X-34 

shows that co-localization between PDPN and the 6E10 in some vessels. PDPN co-

localization with 4G8 immunoreactivity or with X-34 labeling was not observed. Scale bars 

in frontal cortex micrographs represent 20 um and scale bars in other micrographs represent 

50 μm.
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Table 1.

Description of pathology observed in meninges and brain of individual subjects included in the study. M, 

Male, F Female. AD, Alzheimer’s disease; LBD, Lewy Body Dementia; HPC, hippocampal; FTD, frontal 

temporal dementia; MS, multiple sclerosis; PD, Parkinson’s disease; NA, not applicable (Braak staging in 

control subjects were not evaluated).

Subject Age Sex Diagnosis Braak Stage CERAD Score Type 1 Lymphatic 
Vessels

Type 2 Lymphatic 
Vessels

1 35 F Control NA 0 + +

2 73 M Control NA 0 + +

3 11 M Control NA 0 − −

4 75 M Control NA 0 + +

5 41 M Control NA 0 + +

6 57 M AD 6 3 − +

7 70 M AD 6 3 + +

8 85 F AD 6 2 + +

9 86 F AD 6 2 + +

10 69 F AD 6 3 + +

11 79 M AD 6 2 + +

12 75 F AD and LBD 6 1 − +

13 89 F LBD 4 1 + +

14 85 M LBD 3 0 + −

15 74 M LBD, HPC Sclerosis 4 0 − +

16 >89 F HPC Sclerosis 4 1 − −

17 73 F FTD/Tau 3 0 − +

18 79 M MS 2 0 + +

19 71 M PD 0 0 − +

20 70 F Psychosis 0 0 − +

21 66 F Leukoencephalopathy 1 0 + +
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Table 2.

Detailed results of amyloid beta reactivity and distribution in AD and control subjects. αSMA, Smooth muscle 

actin; N/A, Not applicable (no meningeal lymphatic vessels observed).

Subject 4G8+ Meningeal Blood 
Vessel (5 vessels per suject)

6E10+ Meningeal Blood 
Vessel (5 vessels per subject)

4G8+ Meningeal Lymphatic 
Vessel (2 vessels per subject)

6E10+ Meningeal 
Lymphatic Vessel (2 vessels 

per subject)

1 0 3 0 0

2 0 3 0 0

3 0 0 N/A N/A

4 0 1 0 0

5 0 3 0 0

6 1 2 0 1

7 0 2 0 0

8 0 4 0 2

9 0 0 0 1

10 0 3 0 0

11 0 4 0 0
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