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ABSTRACT
This article continues a series of short comments on the paradoxes and wonders of the protein
intrinsic disorder phenomenon by introducing the “stability of instability” paradox. Intrinsically
disordered proteins (IDPs) are characterized by the lack of stable 3D-structure, and, as a result, have
an exceptional ability to sustain exposure to extremely harsh environmental conditions (an
illustration of the “you cannot break what is already broken” principle). Extended IDPs are known to
possess extreme thermal and acid stability and are able either to keep their functionality under
these extreme conditions or to rapidly regain their functionality after returning to the normal
conditions. Furthermore, sturdiness of intrinsic disorder and its capability to “ignore” harsh
conditions provides some interesting and important advantages to its carriers, at the molecular
(e.g., the cell wall-anchored accumulation-associated protein playing a crucial role in intercellular
adhesion within the biofilm of Staphylococcus epidermidis), supramolecular (e.g., protein complexes,
biologic liquid-liquid phase transitions, and proteinaceous membrane-less organelles), and
organismal levels (e.g., the recently popularized case of the microscopic animals, tardigrades, or
water bears, that use intrinsically disordered proteins to survive desiccation).
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Introduction

Recent years clearly witnessed increased penetrance of
the intrinsic disorder concept into the different
branches of protein science.1-7 Because of their lack of
stable structures, exceptional spatiotemporal heteroge-
neity, outstanding conformational plasticity, ability to
be precisely controlled and regulated, and capability
to conduct and juggle multiple jobs, intrinsically dis-
ordered proteins (IDPs) and hybrid proteins possess-
ing ordered domains and intrinsically disordered
protein regions (IDPRs)8 are specialized in unique
biologic functions,1-7,9-38 which are extending far
beyond mostly catalytic activities traditionally
assigned to the proteins within the “one gene – one
structure – one function” paradigm.1,3,10-12,18,39-41 In
fact, among intrinsic disorder-based biologic functions
are regulation of various cellular pathways, binding
promiscuity, involvement in diverse signaling pro-
cesses, and participation in cell protection, protein
protection, controlled cell death, and cellular homeo-
stasis.1-7,10-41 Several recent studies (mostly of compu-
tational nature) revealed that IDPs are very common

in various proteomes, with the proteome content of
IDPs being typically an indicator of both evolution
and adaptation to the environment.1,18,42-46 In fact,
the percentage of IDPs in proteomes is increasing
from bacteria and archaebacteria, to fungi, and to
eukaryotic organisms, thereby reflecting the evolution-
ary importance of intrinsic disorder.42,44-46 On the
other hand, the role of disorder in adaptation to the
environment can be illustrated by the fact that the salt,
pH, and/or temperature-tolerant bacteria and Achaea
typically contain more IDPs than their mesophilic and
salt/pH-sensitive counterparts.31,47

Many aspects related to the structure, conforma-
tional behavior and functionality of IDPs look rather
strange from the viewpoint of “traditional” ordered
proteins.48,49 To give a brief outlook of various para-
doxes and wonders of intrinsic disorder, a series of
short comments on different unusual features of IDPs
was started in the Intrinsically Disordered Proteins
journal. The first comment in this series was dedicated
to the introduction of the “prevalence of exceptional-
ity” paradox, where a progression was shown in
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understanding of the natural abundance of IDPs from
the early days, when they were taken as rare excep-
tions, to the current days, when the prevalence of
IDPs/IDPRs in various proteomes and biological pro-
cesses is well accepted.50 In the second comment, the
“complexity of simplicity” paradox was introduced to
indicate how the multilevel simplicity of IDPs ranging
from the reduced amino acid abet and simplified
sequences containing multiple sequence repeats to
their structural primitivity and inability to spontane-
ously fold into the ordered structures is translated into
the exceptional structural and functional complexity
of disorder carrying proteins.51 This article continues
the aforementioned series by introducing the “stability
of instability” paradox.

Intrinsic disorder from the traditional viewpoint
of protein conformational stability

A set of specific non-covalent interactions (conforma-
tional forces) of different nature, such as hydrogen
bonds, hydrophobic interactions, electrostatic interac-
tions, van der Waals interactions, etc., is responsible
for the ability of a typical globular/ordered protein to
have a unique 3-D structure For ordered proteins, the
presence of the “protein folding” code was proposed,
where, under the physiological conditions, the correct
folding of a globular protein into its unique biologi-
cally active structure is determined by its amino acid
sequence.52 The presence of unique and stable struc-
ture in ordered proteins implies that it can be coopera-
tively unfolded into a random coil-like conformation
under the variety of conditions.53-56 Such unfolding
process of a small, single domain, globular protein is
typically described by a sharp sigmoidal curve repre-
senting a case of the all-or-none transition, where a
cooperatively unfoldable unit includes the whole pro-
tein molecule; i.e., no intermediate states can be
observed in the transition region. In fact, based on the
analysis of the urea- or guanidinium chloride-induced
unfolding transitions in ordered globular proteins it
has been concluded that the steepness of the corre-
sponding unfolding curves (that can be expressed as
the difference in the numbers of denaturant molecules
‘bound’ to the initial and final states in the denatur-
ant-induced transitions, Dneff) depends strongly on
whether a given protein has a rigid tertiary structure
(i.e., it is ordered) and undergoes the O!U transition
from ordered (O) to unfolded (U) state or exists as a

molten globule (MG) and undergoes the MG!U
transition.57,58 For example, for a protein with the
molecular mass of 30 kDa, Dneff

O!U D 23.1, whereas
Dneff

MG!U D 8.2.59

Inasmuch the ability of an ordered protein to fold
into unique 3D-structure is encoded in its sequence,
the lack of rigid globular structures in IDPs/IDPRs is
also encoded in the specific features of their amino
acid sequences, such as enrichment in the disorder-
promoting residues (Pro, Arg, Gly, Gln, Ser, Glu, Lys,
and Ala) and depletion in the order-promoting amino
acids, such as Cys, Trp, Tyr, Phe Ile, Leu, Val, and
Asn.18,60-66 Obviously, due to their highly biased
amino acid sequences IDPs/IDPRs might possess
some unusual conformational responses to changes in
their environment. Although the denaturant-induced
unfolding of a native molten globule is a low coopera-
tivity transition that can be described by a shallow sig-
moidal curve,59,67 due the low content of the residual
structure in native pre-molten globules or native coils
their denaturant-induced structural changes are typi-
cally non-cooperative and seen as monotonous fea-
ture-less curves.59 In other words, from the traditional
view of protein conformational stability, IDPs/IDPRs
are characterized by low structural stability, which is
reflected in low steepness of their unfolding transi-
tions induced by strong denaturants or even in the
complete lack of the sigmodal shape of these unfolding
curves.59 This structural instability is supported by the
well-known fact of high sensitivity of IDPs/IDPRs to
proteolytic degradation.68-77

High resilience of intrinsic disorder

Although lacking stable structure, possessing non-
cooperative unfolding behavior, and showing high
sensitivity to proteolysis, one of the most intriguing
biophysical properties ascribed to highly disordered
proteins is their extraordinary resilience, where an
IDP can sustain exposure to the extremely harsh envi-
ronmental conditions, being able either to keep its
functionality under these extreme conditions or to
rapidly regain it after returning to normal condi-
tions.48,49 An illustrative example of such behavior is
given by a “funny protein” prothymosin a,48 which
triggered my interest to the intrinsically disordered
proteins by its unusual ability to be unharmed by the
prolonged exposure to harsh conditions (activity of
the protein was not affected by boiling for a few days).
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Because of its highly biased amino acid composition
(no aromatic or cysteine residues and overall low
hydrophobicity level compensated by extremely high
(»60%) content of charged residues), prothymosin a

behaved as a highly disordered coil-like chain, thereby
providing illustration of the “one cannot break what is
already broken” concept.78

Prothymosin a is not an exception, and several
other extended IDPs, such as p21, p27, a-synuclein,
and phosphodiesterase g subunit, were shown to pos-
sess high resistance toward heat denaturation and
aggregation, being virtually unaltered by heating to
90�C.78-88 Curiously, this resistance to thermal aggre-
gation has been used for purification of these pro-
teins,83,89-92 and the indifference to heat treatment
was proposed as an analytical tool for evaluation
of the abundance of extended IDPs in various
proteomes.93,94

Furthermore, extended IDPs, being characterized
by high percentages of charged residues and low over-
all hydrophobicity, do not undergo large-scale struc-
tural changes at low pH95 and remain soluble under
these extreme conditions.78,96 Furthermore, a careful
analysis of proteins which do not precipitate during
perchloric acid (PCA) or trichloroacetic acid (TCA)
treatment of cell extracts revealed that many of these
proteins are totally unstructured.97

In contrast to this remarkable pH resistance of
IDPs, ordered proteins commonly undergo denatur-
ation or unfolding in solution with extreme pH.98-101

Since ordered proteins contain high fractions of
hydrophobic residues, their pH-denatured or unfolded
conformations contain numerous solvent exposed
hydrophobic residues, which are normally buried
inside the folded structures. This exposure of hydro-
phobic residues defines the “stickiness” of the partially
folded pH-induced conformations of globular pro-
teins, leading to their aggregation and precipitation.
Based on these observations it has been suggested that
indifference to acid treatment represents one of the
characteristic properties of extended IDPs that can be
used for the isolation of extended IDPs. In fact, it was
shown that substantial enrichment of IDPs in the sol-
uble fraction can be achieved after the acid treatment,
and, therefore, such PCA/TCA pretreatment can be
exploited to develop standard protocols for isolating
and studying IDPs on a proteomic scale.97

Besides being highly resistant to the exposure to
harsh environmental conditions (high temperature or

extreme pH values), extended IDPs are also character-
ized by the “turned out” conformational response to
the changes in their environment, where they gain
some structure under conditions resulting in denatur-
ation or even unfolding of ordered proteins, such as
heat, extreme pH, and desiccation.18,48,59 For example,
the temperature-induced formation of secondary
structure (and not partial unfolding, which is typical
of ordered globular proteins) was reported for a-synu-
clein,102 636–771 fragment of caldesmon,88 g-subunit
of phosphodiesterase,103 the extracellular domain of
nerve growth factor,104 as-casein,

105 and many other
IDPs. Furthermore, complete reversibility and inde-
pendence on protein concentration was reported for
these heat-induced partial folding of IDPs, indicating
the intramolecular nature of this structural transition.
These structure-forming potential of elevated temper-
atures was attributed to the peculiarities of the amino
acid compositions of the extended IDPs (namely, their
overall low level of hydrophobicity) leading to their
“turned out” response to heating: higher temperatures
caused the increase in strength of the hydrophobic
interaction, leading to a stronger hydrophobic attrac-
tion, which is the major driving force for protein
folding.48,49,102

Similar “turned out” response to changes in pH was
reported for several extended IDPs, such as prothymosin
a,78 a-synuclein,102 pig calpastatin domain I,106 histidine
rich protein II,107 naturally occurring human peptide
LL-37,108 and several other extended IDPs. Here, partial
folding of extended IDPs (which are characterized by
the high net charge at neutral pH) in solutions with
extremely high or low pH values can be attributed to the
minimization of the overall net charge, thereby decreas-
ing charge-charge intramolecular repulsion and permit-
ting hydrophobic-driven collapse to the partially-folded
conformation.48,49

Some biological uses of the “stability of instability”
of intrinsic disorder

There are multiple way of how Nature is using stabil-
ity of instability paradox introduced in this article.
Sections below provide description of several cases
where sturdiness of intrinsic disorder provides
remarkable benefits to individual proteins (bacterial
accumulation-associated protein, Aap), as well as
serves as means for the mechanical regulation of the
macroscopic properties of the networks formed by the

INTRINSICALLY DISORDERED PROTEINS e1327757-3



neurofilament proteins, assembly of stable complexes
(e.g., elastin), liquid-liquid phase transitions residing
at the core of the formation of various membrane-
less organelles, and defines desiccation stability of
organisms.

Die-hard proline-rich extended stalk of the bacterial
accumulation-associated protein

Since IDPs and IDPRs possess specific and rather
unusual (from the viewpoint of ordered
proteins) structural properties,48,49 it is not too sur-
prising to find that they are uniquely suitable for
orchestrating some surprising (again, from the view-
point of ordered proteins) functions.109-111 One of the
illustrative examples of such atypical function is given
by an intrinsically disordered C-terminal portion
of the cell wall-anchored (CWA) accumulation-
associated protein (Aap) that plays a crucial role in
the intercellular adhesion within the biofilm
of Staphylococcus epidermidis.112 Aap is one several
staphylococcal CWAs that are anchored to the pepti-
doglycans located at the surface of bacterial cell.113

This multifunctional protein contributes to both the
primary attachment phase and the establishment of
intercellular connections by forming fibrils on the cell
surface.112 Structurally, Aap consists of multiple repet-
itive blocks. For example, besides the globular lectin
domain, the N-terminally located A-domain of Aap
contains 11 short (16-residue-long) A-repeats. This
A-domain is responsible for the initiation of the bio-
film and is proteolytically removed to promote biofilm
accumulation and growth.112 The B-repeat superdo-
main, which follows the A-domain, contains 5–17
nearly identical 128-residue-long B-repeats that are
used in the Zn2 C-mediated antiparallel self-assembly
responsible for the intercellular adhesion.114,115

Finally, the C-terminal tail of Aap includes a 135-resi-
due-long proline/glycine-rich region (PGR) contain-
ing a set of 18 nearly identical AEPGKP repeats
followed by the LPXTG motif that is used for the sor-
tase A-mediated covalent linkage of Aap to the pepti-
doglycan layer of the bacterial cell wall.116 Recent
comprehensive multilevel biophysical analysis of the
structural properties and conformational behavior of
the PGR domain of Aap revealed that this intrinsically
disordered region is highly extended (e.g., in
SDS-PAGE experiments, PGR migrated as a species
with an apparent molecular mass more than 10-fold

higher than predicted, and in SEC and SLS experi-
ments, this domain also showed very large Rh values
(37.06 § 1.1 A

�
and 38.39 § 0.9 A

�
according to SEC

and DLS analyses, respectively) that were noticeably
exceeding those expected for native coil of the molecu-
lar mass of 13.2 kDa (30.2 A

�
) consistent with a highly

elongated shape), likely due to the very high content
of the polyproline type II (PPII) helical structure.117

Importantly and rather unexpectedly, PGR showed
remarkable sturdiness and was able to resist tempera-
ture-induced compaction and solvent-induced a-helix
formation.117 It was hypothesized that this ability of
the PGR to keep an extended state irrespectively of the
environmental conditions helps this region in fulfilling
its biologic function as an extended stalk that pushes
Aap out and away from the bacterial cell wall.117

Phosphorylation controllable expansion
and collapse of the neurofilament network

Neurofilaments are the crucial constituents of the neu-
ronal cytoskeleton that play several pivotal roles in
supporting the axon structure and controlling its
diameter.118 Morphologically, neurofilaments are
10 nm wide bottlebrush-like filaments assembled from
the 3 intermediate filament proteins, the light or low-
est (»70kDa), the medium or middle (»150kDa), the
heavy or highest chains/subunits (»210kDa) and des-
ignated as NF-L, NF-M, and NF-H, respectively.119,120

The neurofilament backbone is assembled from the
N-terminal head and rod domains of NF-L, NF-M,
and NF-H that are »100 and »300 residue long
respectively and are rather similar among the NF-L,
NF-M, and NF-H proteins. The C-terminal tails of
these proteins are highly disordered and serve as
entropic bristles protruding outwards the neurofila-
ment body, providing means for the bottlebrush
topology of the neurofilaments, and mediating the
inter-filament interactions and controlling the neuro-
nal cytoskeletal organization.121-123 These tails of the
neurofilament proteins differ from each other by their
length and amino acid composition. For example
human NF-L, NF-M, and NF-H proteins contain 147,
504 and 613 residues, respectively.

The C-tails of NF-M and NF-H undergo extensive
phosphorylation mostly at the serine residues located
within the Lys-Ser-Pro (KSP) repeat motifs that results
in the dramatic changes of their charge distributions
(e.g., dephosphorylated NF-M and NF-H C-tails have
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total charges of ¡46 and ¡7, whereas, total charge of
their completely phosphorylated forms are ¡87 and
¡97, respectively).124,125 It was expected that charge
alterations induced by phosphorylation of these C-tails
could play a role on controlling changes in the inter-fil-
ament spacing, the axonal caliber, and protein trans-
port.122,126-129 This is because phosphorylation would
increase electrostatic repulsion between the excess
charges thereby promoting lateral extension of neurofi-
lament tails. This hypothesis was proven to be wrong
by a recent comprehensive analysis of physico-chemi-
cal and mechanical properties of phosphorylated and
dephosphorylated composite filaments containing
NF-L assembled with either NF-M (NF-LM), NF-H
(NF-LH), or both (NF-LMH).125 Although, the macro-
scopic properties of the networks formed by the neuro-
filament proteins, such as expansion, orientation, and
stress response, were shown to be dramatically modu-
lated by phosphorylation, the structural and mechani-
cal modifications caused by phosphorylation were
strongly neurofilament composition-dependent, with
phosphorylation being able to lead to either neurofila-
ment network expansion or collapse.125 The found
expanding-collapsing effects of phosphorylation on the
neurofilament network were caused by the dual nature
of the phosphorylation-introduced interactions, which
depend on the protein sequence and could be repulsive
or attractive.125 Therefore, the actual consequences of
the extensive phosphorylation could be more complex
than the na€ıve expectations of the increased electro-
static repulsion due to the phosphorylation introduced
excess negative charges. Instead, there is a possibility of
the phosphorylation-driven electrostatic attraction
between the highly disordered regions that could graft
unexpected structural and mechanical properties to the
assemblies of intrinsically disordered proteins.125

Making sturdy complexes

One of the illustrative examples is given by utilization
of intrinsic disorder in assembly of large multiprotein
complexes, where highly flexible IDPs/IDPRs serve as
assemblers130 or molecular glue cementing protein
complexes.131 In fact, mutual folding of intrinsically
disordered protomers is crucial for the formation of
so-called 2-state protein complexes, where the proto-
mers are intrinsically disordered in their unbound
forms and undergo the binding-induced folding at the
complex formation.132-135

Structurally, the protomers of protein complexes
formed via the 2-state mechanism, where binding and
folding occur concomitantly, are characterized by very
large per-residue interface and surface areas.134 As a
result, protomers in such complexes do not have a
simple globular structure (i.e., structure that defines
the smallest accessible area), but possess very unusual,
mostly non-globular shapes.136,137 Resulting com-
plexes are characterized by sophisticated, highly inter-
twined structures, where different parts of one
protomer penetrate to the multiple binding pockets of
different protomers. Therefore, IDPs participating in
the formation of the 2-state proteins can be considered
as a molecular glue or cement that becomes rigid once
the complex forms and thereby serves as a crucial
means for stable complex formation.131 The idea of
using flexible disorder for making sturdy complexes is
illustrated by elastin, which is a self-assembling intrin-
sically disordered protein of elastic fibers found in the
extracellular matrix and constituting an essential part
of different elastic tissues in animals (e.g., connective
and vascular tissue, lungs, and skin).138 The major bio-
logical function of elastin relies on its ability to elasti-
cally extend and contract in repetitive motion when
hydrated.139-143 Although monomers of elastin are
highly disordered, random coil-like polypepti-
des,138,144-147 because of the formation of the elastic
supramolecular complexes, this protein has been
shown to be one of the longest lasting proteins in the
body, possessing a half-life of about 74 y.148

Liquid-liquid phase transitions and membrane-less
organelles

Eukaryotic cells contain numerous proteinaceous
membrane-less organelles (PMLOs) that are com-
monly found in cytoplasm and nucleus of eukaryotic
cells and represent an intricate solution of the cellular
need to facilitate and regulate molecular interactions by
chemically isolating target molecules in specialized com-
partments in a reversible and controllable way.149-151

PMLOs are also known as ribonucleoprotein (RNP)
granules/bodies, or RNP droplets since they typically
contain both RNAs and proteins.152 PMLOs are
observed as spherical micron-sized droplets,153 structural
integrity of which is not supported by encapsulation in
the membrane. They are just slightly denser than the rest
of the cytoplasm or nucleoplasm,154,155 exhibit liquid-
like behavior, such as dripping, relaxation to spherical
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structures upon fusion, and wetting,156-159 and, therefore,
are classified as liquid-droplet phases of the nucleo-
plasm/cytoplasm.156-161 These organelles have unique
morphologies, are characterized by specific distribution
patterns, and have specific sets of resident proteins.
Importantly, the biogenesis of PMLOs is entirely con-
trolled and mediated by protein–protein, protein–RNA,
and/or protein–DNA interactions.162 The list of cur-
rently known cytoplasmic PMLOs includes centro-
somes,163 germline P-granules (germ cell granules or
nuage),156,164 neuronal RNA granules,165 processing bod-
ies or P-bodies,166 and stress granules.159 The nuclear
PMLOs are more numerous and include Cajal bodies
(CBs),167 chromatin,168 cleavage bodies,169 histone locus
bodies (HLBs),170 nuclear gems (Gemini of coiled of
Cajal bodies),171,172 nuclear pores,173 nuclear speckles or
interchromatin granule clusters,174 nuclear stress bodies
(nSBs),175,176 nucleoli,177 Oct1/PTF/ transcription (OPT)
domains,178 paraspeckles,179 PcG bodies (polycomb bod-
ies containing polycomb group proteins),180 perinucleo-
lar compartment (PNC),181 promyelocytic leukemia
nuclear bodies (PML nuclear bodies) or nuclear dots
(PODs),182 and the Sam68 nuclear body (SNB).181

PMLOs are believed to be generated as a result of
biologic liquid-liquid phase transitions (LLPTs),
which is one of several forms of protein condensation
(crystallization, liquid-liquid phase separation, aggre-
gation, or gelation). Although crystallization, aggrega-
tion, and gelation are typically irreversible processes,
PMLOs are formed as a result of reversible LLPTs
under the physiologic conditions of living cells. It was
shown experimentally for some PMLOs, such as
nuages,153 P-granules,183 nucleolus,184 and RNA gran-
ules,185 computationally validated for several nuclear
and cytoplasmic PMLOs,186 other “assemb-
lages,”187,188 and generalized for all PMLOs and com-
plex biological coacervates that their formation might
be critically dependent on specific IDPs.149-151

Mechanistically (besides the obvious prerequisite
to be present in high enough concentrations), the
most important properties of the constituents capa-
ble of successful liquid-liquid phase separation are
their flexibility (fluidity) and multivalency, which
are the characteristic features of RNA/DNA (which
are commonly found in PMLOs) and IDPs or
hybrid proteins containing ordered domains and
IDPRs. In fact, nucleic acid binding is one of the
disorder-specific functions of proteins, and some
IDPs are known to possess mosaic structure with

alternating regions of opposite charges. Further-
more, many IDPs and IDPRs are highly charged,
have highly repetitive sequences, contain multiple
low complexity regions, and often possess disorder-
based interaction motifs such as molecular recogni-
tion features (MoRFs),22,189,190 AIBSs (binding sites
identified by ANCHOR algorithm),191,192 or short
linear motifs (SLiMs)193 that can be used by IDPs
in formation of various complexes and assemblages.
All this suggests that IDPs or hybrid proteins con-
taining IDPRs can serve as potential players in liq-
uid-liquid phase separation causing formation of
PMLOs.149-151

Sturdy IDPs to the rescue! intrinsic disorder
and organismal desiccation resistance

In line with the idea that sturdy IDPs characterized by
remarkable conformational stability could have crucial
importance for the sturdiness at the organismal level is
a recently popularized thought-provoking case of the
microscopic animals, tardigrades that use IDPs to sur-
vive complete desiccation.194 Tardigrades (which are
also known as water bears, space bears, pudgy wudgies,
or moss piglets) are water-dwelling, 8-legged, seg-
mented micro-animals characterized by the prodigious
desiccation tolerance and the ability to survive a vast
array of environmental extremes (e.g., exposure the vac-
uum and solar radiation of outer space for 10 full
days).195 They also can remain in the dehydrated state
for up to 20 y and resume normal life, when external
conditions become favorable again.196 Being discovered
more than 250 years, this micro-animals and the molec-
ular mechanisms of their exceptional die-hardiness
remained an enigma till recently, when it has been
revealed that at the molecular level, the exceptional des-
iccation tolerance of tardigrades is attributed not to cer-
tain saccharides (e.g., trehalose) typically found in
many anhydrobiotic organisms, but to the high con-
tents of a set of tardigrade-specific IDPs (TDPs), which
are either constitutively expressed at high levels or dra-
matically upregulated by desiccation.194 These TDPs
are found in multiple tardigrade species, and, being het-
erologously expressed in both prokaryotic and eukary-
otic systems, are sufficient to promote desiccation
tolerance in these heterologous systems. The protective
role of TDPs in the tardigrade desiccation was attrib-
uted to the ability of these proteins to vitrify; i.e., to
form a glass-like matrix that physically prevents
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denaturation and aggregation of other cellular proteins
and also preclude membrane fusion.194

The finding that TDPs are crucial for the ability
of the members of the animal kingdom to survive
during extreme desiccation concur with the previ-
ous work on the plant desiccation resistance that
was shown to be critically dependent on several
specific IDPs, such as late embryogenesis abundant
(LEA) proteins and dehydrins (which are members
of the Group II LEA proteins).197-199 However, the
protective role of LEA proteins (which in addition
to plants can be found in bacteria, nematodes, and
shrimps) was attributed to their ability to suppress
desiccation-induced protein aggregation via forma-
tion of a ‘molecular shield’, a physical barrier,
between the neighboring proteins. Therefore, the
ability of TDPs to vitrify represents a novel intrin-
sic disorder-based molecular mechanism of protec-
tion of biologic material from desiccation.194
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