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ABSTRACT
The conserved plant 14–3-3 proteins (14–3-3s) function by binding to phosphorylated client proteins to
regulate their function. Previous studies indicate that 14–3-3s are involved in the regulation of plant
primary metabolism; however, not much is known regarding the functions of 14–3-3s in plant oil
biosynthesis. Our recent work shows that 14–3-3 plays a role in mediating plant oil biosynthesis through
interacting with the transcription factor, WRINKLED1 (WRI1). WRI1 is critical for the transcriptional
control of plant oil biosynthesis. Arabidopsis WRI1 physically interacts with 14–3-3s. Transient co-
expression of AtWRI1 with 14–3-3s enhances plant oil biosynthesis in leaves of Nicotiana benthamiana.
Transgenic plants overexpressing of a 14–3-3 show enhanced seed oil content. Co-expression of a 14–3-3
with AtWRI1 results in increased transcriptional activity and protein stability of AtWRI1. Our transcrip-
tional regulation model supports a concept that interaction of a 14–3-3 with a transcription factor
enhances the transcriptional activity through protein stabilization.
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The 14–3-3 proteins (14–3-3s) are a family of phosphopeptide-
binding proteins, which are conserved in all eukaryotes, and
involved in the regulation of numerous biological and physiologi-
cal processes.1–3 Interactions of 14–3-3s with the phosphorylated
client proteins lead to many alterations in protein characteristics
such as stability, activity, subcellular localizations, and interactive
property of the client proteins.2–4 Thirteen functional 14–3-3s
have been predicted in Arabidopsis.2,3,5 Diverse clients of plant
14–3-3s have been identified, among which are transcription
factors, ion channels, enzymes, proton pumps, and signaling
proteins.6–13 Despite numerous studies showing important roles
of 14–3-3s in plant primary metabolism,4,14 little is known about
their involvement in plant oil biosynthesis.

TheWRINKLED1 (WRI1) transcription factor is considered to
be a “master regulator” in the transcriptional regulation of plant
triacylglycerol (TAG) biosynthesis.15 WRI1 is an APETALA2
(AP2) transcription factor 16,17 and its Arabidopsis loss-of-
function mutant (wri1-1) shows an 80% reduction in seed oil
content.18 Transcriptome analysis indicated that the majority of
the genes that show reduced expression inwri1-1 encode enzymes
for fatty acid biosynthesis and glycolysis.19 Many genes encoding
enzymes in the glycolytic and fatty acid biosynthetic pathways are
recently characterized as AtWRI1 targets.20–22 WRI1 orthologs
have been identified in other plant species (both monocots and
dicots), and shown to be functional in terms of regulating plant oil
biosynthesis.23–29 Overexpression ofAtWRI1 andWRI1 orthologs
result in increased oil content in seeds and vegetative tissues of the
transgenic plants.23,26–28,30,31 Transient expression of WRI1s in
tobacco leaves elevates oil production as well.29,32–34 Recent work
began to further elucidate AtWRI1 function by dissecting its

functional domains/motifs, protein structural features, and inter-
acting partners. AtWRI1 was recently discovered to interact with
CULLIN3-based E3 ligase adaptor BTB/POZMATH (BPM) pro-
teins to mediate its stability.35 Computational analysis revealed
that AtWRI1 protein displays a hallmark of intrinsic disorder and
three intrinsically disordered regions (IDRs) are identified.33 In
particular, the IDR3 contains a PEST motif, which is known to
mediate protein stability.33

Recently we have demonstrated that a novel function of
14–3-3s in plant oil biosynthesis.36 14–3-3s physically interact
with AtWRI1 in yeast and plant cells, suggesting that AtWRI1
is a novel client for 14–3-3s. Stable transgenic plants over-
expressing a 14–3-3 show increased seed oil content. In a
Nicotiana benthamiana transient expression system, a
14–3-3 is found to be able to increase AtWRI1-mediated
TAG generation, as well as transcriptional activity and protein
stability of AtWRI1.36 In mammalian cells, 14–3-3s are cap-
able of interacting with transcription factors, to enhance the
transcriptional activity and protein stability. The interaction
of 14–3-3σ with transcription factor p53 results in increased
transcriptional activity and enhanced stability of p53.37 Co-
expression of the ETV1 transcription factor with 14–3-3τ in
293T cells also leads to enhanced stability and transcriptional
activity.38 In plant cells, the activity of barley transcription
factor HvABI5 is increased through interacting with a
14–3-3.13 Thus, our work further supports the concept that
14–3-3s mediate the activity and stability of their client sub-
strates through protein-protein interaction.2–4

In mammalian cells, kinases trigger the phosphorylation
of transcription factors to create 14–3-3 binding sites which
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is important for mediating the activity of transcription fac-
tors in signal transduction pathways.37–39 Currently, we do
not know whether the interaction between a 14–3-3 and
AtWRI1 is dependent on environmental signals or uniden-
tified kinase(s) in charge of phosphorylating AtWRI1.
Therefore, an insightful future work will be focused on the
identification of kinases that interact with and phosphory-
late AtWRI1. It is highly possible that diverse kinases are
involved in the regulation of AtWRI1 activity which displays
tempo-spatial variations, depending on different embryo
developmental stages and upstream signaling events.
Recent work by Zhai et al. has shown that KIN10 (an
important SNF1-related protein kinase in sugar signaling
pathways) interacts with AtWRI1 to trigger the phosphor-
ylation and degradation of AtWRI1 protein.40 The 14–3-3
binding region36 and KIN10 phosphorylation site40 are adja-
cent, suggesting a possible overlap between these two
described occurrences. In addition, our prior work finds
that phosphorylation of the IDR3–PEST motif mediates
the protein stability of AtWRI1.33 Taken together, these
work33,36,40 suggests that the phosphorylation might play a
dual role in terms of mediating the activity of AtWRI1.

Due to the functional redundancy, it is not surprising to
see that some other plant 14–3-3s not tested in our work can
also interact with AtWRI1 and enhance the transcriptional
activity of AtWRI1. So what are the 14–3-3s’ specific roles in
modulating AtWRI1 activity and how can they coordinate
during the embryo development? Therefore, the precise
mechanistic roles of these 14–3-3s need to be further eluci-
dated in the future.
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