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Abstract

One of the largest factors affecting disease recurrence after surgical cancer resection is negative 

surgical margins. Hyperspectral imaging (HSI) is an optical imaging technique with potential to 

serve as a computer aided diagnostic tool for identifying cancer in gross ex-vivo specimens. We 

developed a tissue classifier using three distinct convolutional neural network (CNN) architectures 

on HSI data to investigate the ability to classify the cancer margins from ex-vivo human surgical 

specimens, collected from 20 patients undergoing surgical cancer resection as a preliminary 

validation group. A new approach for generating the HSI ground truth using a registered 

histological cancer margin is applied in order to create a validation dataset. The CNN-based 

method classifies the tumor-normal margin of squamous cell carcinoma (SCCa) versus normal oral 

tissue with an area under the curve (AUC) of 0.86 for inter-patient validation, performing with 

81% accuracy, 84% sensitivity, and 77% specificity. Thyroid carcinoma cancer-normal margins are 

classified with an AUC of 0.94 for inter-patient validation, performing with 90% accuracy, 91% 

sensitivity, and 88% specificity. Our preliminary results on a limited patient dataset demonstrate 

the predictive ability of HSI-based cancer margin detection, which warrants further investigation 
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with more patient data and additional processing techniques to optimize the proposed deep 

learning method.
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1. INTRODUCTION

Each year about 16 per 100,000 males and 6 per 100,000 females are diagnosed with cancer 

of the oral cavity, of which approximately 90% are squamous cell carcinoma (SCCa) at sites 

including the surfaces of the lips, gums, mouth, plate, and anterior two-thirds of the tongue.1 

The safest margin for surgical resection of oral cancer is typically considered 5 mm from the 

permanent edge of the tumor.2 Recently, the definition of a negative margin was proposed to 

2.2 mm, decreasing from the previous standard of 5 mm for the oral tongue.3 Another study 

found cuts within 1 mm of oral cavity SCCa tumor margins are associated with significantly 

increased recurrence rates.4 Additionally, the incidence rate for differentiated thyroid 

carcinomas in the United States is approximately 20 per 100,000 females and 6 per 100,000 

males, predominantly papillary and follicular carcinoma.5 Similarly, negative resection 

margins are the primary prevention of disease recurrence for thyroid cancer.6 This study 

aims to investigate the ability of HSI using convolutional neural networks to classify tissue 

at the cancer margin. If proven reliable, this method could help surgeons achieve negative 

margins during intraoperative cancer resection for successful patient remission.

2. METHODS

2.1 Experimental Design

In collaboration with the Otolaryngology Department and the Department of Pathology and 

Laboratory Medicine at Emory University Hospital Midtown, freshly excised, ex-vivo tissue 

samples were obtained from previously consented patients undergoing surgical cancer 

resection.7,8 Three tissue samples were collected from each patient: a sample of the tumor, a 

normal tissue sample, and a sample at the tumor-normal interface. Tissues were kept cold 

and imaged fresh. Twenty head and neck cancer patients were included in this study and 

divided into two groups, comprising thyroid gland tissue and oral cavity tissue. Tissue 

samples that are entirely tumor and entirely normal will be used for the training dataset, and 

the sample that contains the tumor-normal margin will be used for the validation dataset.

The average patient age was 51, 60% were men and 40% were women, and 25% had 

smoking history. Nine patients with SCCa of the oral cavity or aerodigestive tract comprised 

the SCCa group. For this group, tissues were obtained from the maxillary sinus, mandibular 

mucosa, hard palate, buccal mucosa, and oropharynx. Eleven patients with differentiated 

thyroid carcinoma made up with thyroid group, which was comprised of 8 cases of papillary 

thyroid carcinoma and 3 cases of medullary thyroid carcinoma.
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2.2 Hyperspectral Imaging and Preprocessing

The 3D HSI cubes (hypercubes) were acquired from 450 to 900 nm at 5 nm spectral 

frequency using a previously described CRI Maestro imaging system (Perkin Elmer Inc., 

Waltham, Massachusetts).9–11 In summary, the HSI system is comprised of a light source, 

tunable filter, and camera that captures 1040 by 1,392 pixel resolution and 25 μm per pixel 

spatial resolution.12 The HS data were normalized at each wavelength, λ, over all pixels, i 
and j, by subtracting the inherent dark current (captured by imaging with a closed camera 

shutter) and dividing by a white reference disk according to (1). Figure 1 shows the 

normalized reflectance spectra for cancer and normal tissues from both groups, tissue 

obtained from the aerodigestive tract and thyroid tissue.

Inorm(λ, i, j) =
Iraw(λ, i, j) − I (λ, i, j)darkcurrent
Iwhitere f (λ, i, j) − Idarkcurrent(λ, i, j) (1)

Specular glare is created on the tissue surfaces due to wet surfaces completely reflecting 

incident light. Glare pixels do not contain useful spectral information for tissue classification 

and are hence removed from each HSI by converting the RGB composite image of the 

hypercube to gray scale and experimentally setting an intensity threshold that sufficiently 

removes the glare pixels, assessed by visual inspection.

2.3 Histology and Gold Standard

After HSI are acquired from the patient ex-vivo tissue samples, tissues are fixed in formalin, 

stained with haemotoxylin and eosin, and scanned. A head and neck specialized, certified 

pathologist (J.V.L) outlined the cancer margin on the digital slides using Aperio ImageScope 

(Leica Biosystems Inc, Buffalo Grove, IL, USA). The histological images serve as the 

ground truth for the experiment, as shown in Figure 2, but registration is necessary to create 

gold-standard masks for HSI.13–15

The histological cancer margin is registered to the respective gross HSI using a pipeline 

(Figure 3) involving affine followed by deformable demons registration to produce a binary 

mask of three specimens (tumor, tumor-normal, and normal). Registration is performed 

separately using MATLAB (MathWorks Inc, Natick, MA, USA). The demons registration is 

performed using five pyramid levels with one thousand iterations per pyramid level and an 

accumulated field smoothing value of 0.5.16,17 This binary mask is used to create a gold-

standard for training and a validation group for testing the CNN.

A patch-based method is implemented to train the CNN in batches. Patches are produced 

from each HSI after pre-processing using a stride of 20 pixels to create overlapping patches. 

Patches are constructed to exclude any glare pixels to produce patches that are 25 × 25 × 91 

pixels and are labeled corresponding to the center pixel. Patches from the tumor and normal 

tissue samples are used for the training group, and the validation group is comprised of 

patches from the tumor-normal margin sample.
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2.4 Convolutional Neural Network

Patient HS data were used to train and test a convolutional neural network (CNN) classifier, 

implemented in TensorFlow.18 Three distinct network architectures of CNN were used: 2D-

CNN, 3D-CNN, and Inception CNN, which was inspired by the inception module that 

concatenates simultaneous convolutions of different kernel sizes.19 For all architectures, 

convolutional layers were calculated using the valid specification, and the crossentropy loss 

was reduced using AdaDelta, adaptive learning.20 Training was performed using a batch 

method, feeding 5 patches into the network every step, and then optimizing loss. Due to a 

limited training sample size, validation performance was evaluated every one-thousand 

steps, and additionally the training data were randomly shuffled for improved training. Each 

iteration of training was run for twenty-thousand steps, and the best validation performance 

was used. Group parameters between validation methods were optimized for each group and 

varied slightly due to small sample sizes, see Table 1.

The 2D-CNN architecture was inspired by the AlexNet architecture.21 It consisted of four 

convolutional layers, which were performed by a 5 × 5 kernel with convolutional filters sizes 

of 100, 88, 76, and 64, respectively. The convolutional layers were followed by two fully 

connected layers comprised of 500 and 250 neurons each. A drop-out rate of 0.6 was applied 

after each layer. The final, soft-max layer converted the connections down to two classes. 

Training was performed with a learning rate of 0.005 using the AdaDelta optimizer for loss.

The 3D-CNN architecture was implemented similarly to the 2D-CNN architecture. It 

consisted of four convolutional layers, with a 2 × 2 max-pool after the second and fourth 

convolutional layers. Convolutions were performed by a 3 × 3 × 11 kernel with 

convolutional filters sizes of 40, 30, 20, and 10, respectively. The convolutional layers were 

followed by two fully connected layers comprised of 200 and 100 neurons each. A drop-out 

rate of 0.7 was applied after each layer. The final, soft-max layer converted the connections 

down to two classes. Training was performed with a learning rate of 0.005 using the 

AdaDelta optimizer for loss.

The 2D inception-based CNN architecture was constructed by expanding the AlexNet 

architecture with the inception module.19 As shown in Figure 4, the inception module 

simultaneously performs a convolution with a 1 × 1 kernel, convolutions with 3 × 3 and 5 × 

5 kernels following the 1 × 1 convolution, and lastly a 2 × 2 max pool followed by a 1 × 1 

convolution. After performing the individual operations, the outputs filters of each are 

concatenated in the features dimension and used as input for the next convolutional layer. 

The overall 2D inception CNN architecture used consisted of two inception modules 

followed by a convolutional layer with 9-by-9 kernel. Convolutional filters sizes were 100, 

88, 76, and 64, respectively. The convolutional layers were followed by two fully connected 

layers comprised of 500 and 250 neurons each. A drop-out rate of 0.6 was applied after each 

layer. The final, soft-max layer converted the connections down to two classes. Training was 

performed with a learning rate of 0.005 using the AdaDelta optimizer for loss.

The 3D-CNN inception architecture consisted of two 3D convolutional layers followed by 

two inception modules followed by a final 3D convolutional layer. To adjust the inception 

module to 3D form, the kernel size used for convolutions or max pool was simply extended 
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in the z-direction by the same length as the 2D kernel. Convolutional filters sizes were 40, 

30, 20, and 10, respectively. The convolutional layers were followed by two fully connected 

layers comprised of 500 and 250 neurons each. A drop-out rate of 0.6 was applied after each 

layer. The final, soft-max layer converted the connections down to two classes. Training was 

performed with a learning rate of 0.005 using the AdaDelta optimizer for loss.

2.5 Validation

A separate validation dataset was used to evaluate performance of the CNN, after training on 

the training dataset. Intra-patient classification was performed by training on patches 

obtained from tumor and normal samples of all patients and testing on the tumor-normal 

margin of an in-group patient tumor-normal sample. Inter-patient classification was 

performed by training on patches obtained from tumor and normal samples of all patients 

except the held-out testing patient, and testing on that corresponding patients tumor-normal 

margin. The CNN classification performance was evaluated using leave-one-out validation 

to obtain average performances. Therefore, nine iterations of leave-one-out validation were 

performed for the thyroid group, and seven iterations were performed for the SCCa group. 

To assess classifier performance, accuracy, sensitivity, and specificity were calculated 

according to equations (2)-(4).

Accuracy=True Positives + True Negatives
Total Number of Samples (2)

Sensitivity= True Positives
True Positives + False Negatives (3)

Specificity= True Negatives
True Negatives + False Positives (4)

The final output of the CNN assigns a probability of each patch belonging to either class, 

which adds to 100%. Using the best performing trained model, the validation group is 

classified to obtain probabilities, which are used to construct a receiver operating 

characteristic (ROC) curve. Therefore, nine ROC curves were obtained for the thyroid group 

and eight were obtained for the SCCa group; one for each patient. From each ROC curve, 

the area under the curve (AUC) is calculated, and accuracy, sensitivity, and specificity are 

calculated from the threshold at the optimal operating point.

To compare the performance of the CNN to other machine learning algorithms, the same 

training and testing data were used to evaluate the performance of three classifiers: support 

vector machines, ensemble linear discriminant analysis, and random forest. In MATLAB, 

the pixel reflectance values of each patch were averaged per wavelength to create a 91 

element one dimensional spectra vector for each patch. Training data were used to optimize 
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model parameters using internal cross-validation, and testing data were withheld until after 

training. Support vector machines (SVM) was performed with both a linear and radial basis 

function (RBF) kernel.22–24 Ensemble linear discriminant analysis (LDA) was performed 

with up to 500 learners, using the optimal number of learners determined by cross-

validation.10 Random forest algorithm was implemented using bootstrap-aggregated 

(bagged) decision trees with a random subset of predictors at each decision split.25,26

3. RESULTS

Eleven thyroid patients were used to train the CNN, which was tested on the thyroid 

validation group, comprised of 9 thyroid patients. Two thyroid patients were not used for 

testing because they did not have a complete tumor, normal, and tumor-normal sample, so 

they were used only to expand the training dataset. A representative patient classification is 

shown in Figure 5. Thyroid carcinoma cancer margins are classified with an AUC of 0.94 

and accuracy of 89% for intra-patient validation using the 2D-CNN architecture. Thyroid 

carcinoma interpatient cancer margins are classified with an AUC of 0.94 and accuracy of 

90% using the 3D-CNN architecture, see Table 2 for detailed results shown with standard 

deviations and Figure 6 for ROC curves.

Classical machine learning techniques classify with lower performance than the proposed 

CNN method, as shown in Table 3. Linear SVM and RBF SVM perform with an AUC of 

0.85 and 0.80; ensemble LDA performs at an AUC of 0.85; and random forest performs with 

an AUC of 0.87, the best of the traditional machine learning methods.

After training on 9 oral SCCa patients, the CNN was tested on the SCCa validation group, 

comprised of 7 SCCa patients. Two oral SCCa patients were removed from the testing group 

after conducting the experiment, so were only used to expand the training dataset. One 

patient sample was removed because histopathological analysis showed it was a different 

type of carcinoma. The other patient sample was removed because it was the only sample of 

tongue tissue, which differs substantially histologically from the oral and aerodigestive 

mucosa patients; therefore, it was removed to avoid testing on a patient that contains features 

significantly unlike the training data.

Squamous cell carcinoma tumor-normal margins are classified with an AUC of 0.84 and 

accuracy of 80% for intra-patient validation using the rudimentary 2D-CNN architecture. 

Inter-patient SCCa cancer margins are classified with an AUC of 0.86 and accuracy of 81% 

using the more sophisticated 3D-inception CNN architecture, see Table 2 for detailed results 

shown with standard deviations and Figure 6 for ROC curves. Additionally, the inter-patient 

SCCa group performance was evaluated with two previous architectures. The 2D inception 

CNN architecture classified the margins with an AUC of 0.85 ± 0.13 and 78 ± 13% 

accuracy, and the 3D-CNN architecture classified the cancer margins with an AUC of 0.81 

± 0.09 and 77 ± 9% accuracy.

Compared to the proposed deep learning technique, traditional machine learning techniques 

classify with lower performance than the proposed CNN method, evaluated by inter-patient 

validation. As shown in Table 3, ensemble LDA is the best performing traditional classifier 
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with an AUC of 0.81 and accuracy of 75%, representing a 5% lower performance compared 

to the proposed CNN method.

4. CONCLUSION

The proposed deep learning method using CNNs out-performs traditional machine learning 

algorithms by a few percentage points with regards to AUC, accuracy, sensitivity, and 

specificity, between both SCCa and thyroid groups. The classical machine learning 

algorithms can only make predictors using one-dimensional vectors as features for data 

classification, which inherently requires dimensionality reduction for HSI, limiting features 

only to the spectral domain. Therefore, classical methods do not incorporate the textural and 

spatial information of the data rich HSI system. Convolutional neural networks can 

incorporate both spectral and spatial features simultaneously to take advance of the full HSI 

dataset. For this reason, our results indicate that the proposed algorithm is promising for a 

reliable cancer margin classification.

The use of spectral-spatial features for CNN classification can also introduce some error. As 

demonstrated in Figure 5, the edge regions of the tissue are typically where error occurs due 

to greater curvature of the tissue. Another source of classification error is glare pixels. In our 

method, they are automatically removed and not included in classification results. However, 

not all glare can be removed and still remains problematic due to obfuscation of useful 

spectral information. These two problems can potentially be overcome when translating into 

clinical practice. For example, glare pixels could be reduced using a polarized filter on the 

imaging device, but this could potentially alter the spectral signatures. The curvature can be 

accounted for in two ways: there is potential to mathematically factor for tissue curvature by 

the edges; or in a clinical environment, one can potentially reposition the imaging device to 

capture from multiple angles to ensure accurate classification results.

The cancer margin from the digitized histology slide is registered to the gross-level HSI 

using deformable registration. In tissue which is less deformable, such as oral cavity tissue 

which tends to be more rigid, there is less deformation, so the cancer-margin is usually well 

represented on the HS. On the other hand, in tissues with large potential for deformation, 

such as thyroid tissue due to its glandular composition, the cancer-margin can be visibly 

incorrect after our registration pipeline. For thyroid samples, the cancerous areas are usually 

visibly discernible from normal tissue, so the margin can be adjusted if necessary after 

performing deformable registration. Despite the fact that our methodology requires using 

histopathology as the gold-standard for HSI, there will always be some inherent error 

because it involves reducing a 3D tissue sample to a 2D histology image and reconstructing 

the margin to 3D again.

Intra-patient classification, using a known sample of tumor and normal for training data 

supplementation, simulates a potential method to improve performance. However, intra-

patient classification does not have the potential clinical and translational viability of inter-

patient validation. The results of our experiment with different CNN architectures indicate 

that a more sophisticated and intricate CNN architecture can improve performance of inter-
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patient classification to comparable levels of performance as that of intra-patient 

classification.

Selecting an architecture to pursue with deep learning is challenging and often depends on 

the classification task, but our results suggest that for a more complicated problem requires a 

more advanced architecture that can extract higher-order features and predictors necessary 

for classification. For example, oral SCCa tumor-normal margin classification is generally 

more challenging than thyroid carcinoma tumor-normal margins because the tissue is more 

difficult to visually discriminate between. This phenomenon is demonstrated in the reported 

results because a more sophisticated and deeper architecture is needed for SCCa 

classification compared to thyroid carcinoma. Thyroid inter-patient classification with a 3D-

CNN is comparable to intra-patient classification with only a 2D-CNN. However, SCCa 

inter-patient classification requires a 3D-inception-based CNN to achieve results comparable 

to 2D-CNN intra-patient classification.

In summary, CNNs are able to classify the tumor-normal boundary with an acceptable 

accuracy. Deep learning requires a large patient dataset, and more sophisticated architectures 

and longer computing time are needed for solving more challenging and complex problems. 

Therefore, our promising results suggest the potential of HSI for cancer-margin delineation 

and encourage further investigation.
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Figure 1: 
Normalized reflectance spectra of thyroid and SCCa tissue samples
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Figure 2: 
Representative HSI-RGB composite and histological images from oral cavity with SCCa 

(left) and thyroid tissue with papillary thyroid carcinoma (right) patients. Three tissue 

samples are collected from each patient: tumor, tumor-normal cancer-margin, and normal. 

The dotted line indicates cancer margin on RGB and histology images.
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Figure 3: 
Flowchart of registration pipeline for obtaining the cancer-margin of HSI samples, using 

digitized histopathology slides as the gold-standard.
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Figure 4: 
Inception module in two-dimensional form.
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Figure 5: 
Representative CNN classification results of non-glare regions of of oral cavity SCCa 

sample (top) and medullary thyroid carcinoma (bottom). From left to right: digitized 

histology slide, gross RGB composite of HSI with registered histological cancer-margin, 

binary ground truth image of tissue sample using registered histological cancer-margin 

(cancer is white, normal is grey), CNN classification result of tumor-normal tissue sample 

excluding regions with high glare pixel density (cancer is shown as white, normal is shown 

as grey), and artificial color visualization of CNN classification result overlaid on gray-scale 

HSI composite image (cancerous regions are shown in red and normal as yellow).
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Figure 6: 
Receiver operator characteristic (ROC) curves of testing group patients for oral cavity SCCa 

(left) and thyroid carcinoma (right) patients. An ROC curve is produced from each patient, 

with patient numbers shown in legend. Accuracy, sensitivity, and specificity are calculated 

using the threshold of the optimal operating point on each patient’s respective ROC curve.
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Table 1:

Description and parameters used for each CNN architecture and validation group (intra- or inter-patient)

Inter-pt. thyroid Intra-pt. thyroid Inter-pt. SCCa Intra-pt. SCCa

CNN Architecture 3D-CNN 2D-CNN 3D-Inception CNN 2D-CNN

Kernel Size 3 × 3 × 11 5 × 5 Multiple 5 × 5

Learning Rate 0.005 0.005 0.005 0.005

AdaDelta ρ 0.90 0.90 0.85 0.875

AdaDelta ε 1 × 108 1 × 10−8 1 × 108 1 × 104

No. Conv. Layers 4 4 15 4

Total Conv. Filters. 100 328 350 328

Batch Size 5 5 5 5

Dropout 0.7 0.6 0.7 0.7

Initial Neuron Bias 0.05 0.05 0.07 0.05
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Table 2:

Results of CNN classification with inter- and intra-patient validation, values are shown as averages with 

standard deviation.

Training
Patches

Testing
Patches AUC Accuracy Sensitivity Specificity

Thyroid Intra-patient 44,517
(n=11)

16,464
(n=9) 0.94 ± 0.06 89 ± 7% 89 ± 8% 89 ± 7%

Intra-patient 44,517
(n=11)

16,464
(n=9) 0.94 ± 0.06 90 ± 8% 91 ± 7% 88 ± 10%

SCCa Intra-patient 30,286
(n=9)

8,668
(n=7) 0.84 ± 0.16 80 ± 14% 82 ± 14% 79 ± 16%

Intra-patient 30,286
(n=9)

8,668
(n=7) 0.86 ± 0.10 81 ± 10% 84 ± 8% 77 ± 13%

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 September 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Halicek et al. Page 19

Table 3:

Results of classical machine learning techniques compared to the proposed CNN method, values are shown as 

averages with standard deviation.

Classifier AUC Accuracy Sensitivity Specificity

Thyroid 3D-CNN 0.94 ± 0.06 90 ± 8% 91 ± 7% 88 ± 10%

Inter-Patient Random Forest 0.87 ± 0.13 84 ± 13% 87 ± 11% 82 ± 17%

(n=9) Ensemble LDA 0.85 ± 0.21 83 ± 15% 81 ± 23% 84 ± 10%

Linear SVM 0.85 ± 0.23 76 ± 24% 81 ± 27% 87 ± 11%

RBF SVM 0.80 ± 0.02 80 ± 11% 87 ± 11% 74 ± 14%

SCCa 3D-Inception CNN 0.86 ± 0.10 81 ± 10% 84 ± 8% 77 ± 13%

Inter-patient Ensemble LDA 0.81 ± 0.14 75 ± 13% 78 ± 11% 76 ± 17%

(n=7) Linear SVM 0.72 ± 0.17 73 ± 14% 84 ± 16% 59 ± 30%

Random Forest 0.65 ± 0.06 65 ± 8% 62 ± 10% 71 ± 17%

RBF SVM 0.58 ± 0.22 62 ± 12% 64 ± 18% 61 ± 23%
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