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Abstract

The Urban Heat Island (UHI), the tendency for urban areas to be hotter than rural regions, 

represents a significant health concern in summer as urban populations are exposed to elevated 

temperatures. A number of studies suggest that the UHI increases during warmer conditions, 

however there has been no investigation of this for a large ensemble of cities. Here we compare 

urban and rural temperatures in 54 US cities for 2000-2015 and show that the intensity of the 

urban heat island, measured here as the differences in daily-minimum or daily-maximum 

temperatures between urban and rural stations or ΔT, in fact tends to decrease with increasing 

temperature in most cities (38/54). This holds when investigating daily variability, heat extremes, 

and variability across climate zones and is primarily driven by changes in rural areas. We relate 

this change to large-scale or synoptic weather conditions, and find that the lowest ΔT nights occur 

during moist weather conditions. We also find that warming cities have not experienced an 

increasing urban heat island effect.

Introduction

Urbanization is one of the most significant ways in which humans alter surface climate 

(Kalnay & Cai 2003), causing cities to be warmer than surrounding rural areas. This 

phenomenon is called the Urban Heat Island (UHI) and represents a significant health 

concern in summer as urban populations are exposed to elevated temperatures (Luber & 

McGeehin 2008) that have known impacts on morbidity and mortality (WMO 2014). 

Projected economic losses from urban heating have been calculated as high as $10 trillion 

USD worldwide by 2100 (Estrada, Tol & Botzen 2017). However, the cause of urban heating 

may differ as a function of background climate (Zhao, Lee, Smith & Oleson 2014), season 

(Arnfield 2003), or time of day (Peng, Piao, Ciais, Friedlingstein, Ottle, Bréon, Nan, Zhou & 

Myneni 2011). This poses a challenge to adaptation, mitigation, and resiliency efforts 

(Stone, Vargo & Habeeb 2012) and it hinders extrapolating analysis from one city to another. 

A US-wide analysis showed that cooling interventions are possible (Georgescu, Morefield, 

Bierwagen & Weaver 2014) but implementation requires detailed cost-benefit analysis 

(Aerts, Botzen, Emanuel, Lin, de Moel & Michel-Kerjan 2014) to evaluate potential 

solutions such as green or white roofs and street trees (Li, Bou-Zeid & Oppenheimer 2014, 

Sharma, Conry, Fernando, Hamlet, Hellmann & Chen 2016, Coffee, Parzen, Wagstaff & 

Lewis 2010).

These health concerns and economic costs make it important to know how the UHI changes 

over time, and between locations. Studies have measured the UHI in cities around the world 
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using in-situ observations, modeling, and satellite imagery (see Arnfield (2003) and 

references therein). Of particular importance is how the UHI changes during warm periods, 

and a number of recent modeling and observational studies have examined this issue. 

Several studies have used numerical models to investigate how the UHI evolves during 

summertime heatwaves, and concluded that the heatwave amplifies urban-rural temperature 

differences at night and during the daytime (Li & Bou-Zeid 2013, Ramamurthy, Li & Bou-

Zeid 2017, Li et al. 2014, Li, Sun, Liu, Yang, Wang & Gao 2015). While these findings were 

corroborated by observations at nearby weather stations, these studies all examined only a 

single event in a single city (Baltimore for Li & Bou-Zeid (2013), Li et al. (2014) and Li et 

al. (2015); New York City for Ramamurthy et al. (2017)), and it is not known if this result 

applies to other events in other cities. Further, the conclusions from the observational studies 

examining this topic are mixed. Gabriel & Endlicher (2011) reported an enhanced UHI 

during summertime heatwave nights in Berlin but Zhou & Shepherd (2010) found that this 

effect in Atlanta depended on which urban station is chosen for analysis. A novel 

measurement approach using dense networks of low-cost sensors found evidence that the 

UHI increases during summertime heatwaves in Madison (Schatz & Kucharik 2015), but 

findings from Baltimore show that this is not universal (Scott, Zaitchik, Waugh & O’Meara 

2016). These observational studies examined different periods, different cities, and used 

different data sets, making comparisons between studies difficult.

This inconsistency in both methods and results underscores the need for a systematic, 

quantitative investigation of the relationship between the UHI and temperature across 

multiple cities and over different time scales. Here we perform such a study by investigating 

how the UHI responds to increases in temperature, over several timescales as well as with 

space. We adopt a large sample, empirical approach in order to characterize temperature 

dependency of the UHI. We choose a simple UHI metric, ΔT between an urban and a rural 

station that is based on daily minimum or maximum temperature (though we focus primarily 

on minimum daily temperature) and we use exclusively in situ meteorological records.

Data and Methods

We analyse temperature observations from the Global Historical Climatology Network 

(GHCN), a network of land-based observation stations that have passed a quality assurance 

procedure (Lawrimore, Menne, Gleason, Williams, Wuertz, Vose & Rennie 2011). The 

GHCN integrates different observation networks, meaning that different instruments are 

used, and readings of minimum-maximum thermometers may occur at different times of 

day. To limit the impact differences in instruments or time of methods, our analysis focuses 

on data between 2000 and 2015, as by the year 2000, most stations make measurements in 

the morning and there are fewer instrumentation changes (Menne, Williams Jr & Vose 

2009). The year 2000 is not pivotal but rather reflects a reasonable balance between having a 

long climate record while limiting potential observational biases; we have found similar 

results using a longer period of 1985-2015.

The weather stations used in our analysis were selected using three criteria: 1) population, 2) 

satellite nighttime brightness index (BI), and 3) data availability. Population data were 

obtained from http://simplemaps.com/resources/world-cities-data. The BI is used to classify 
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urban and rural stations. It comes from the Defense Meteorological Satellite Program’s 

Operational Linescan System (DMSP 2013) and was obtained from https://

ngdc.noaa.gov/eog/dmsp/downloadV4composites.html. BI is a unit-less value representing 

digital numbers ranging from zero to 63, where zero represents no light received by the OLS 

sensor and 63 represents sensor saturation.

In each US metropolitan area with an urban population above 500 000, we selected two 

stations—one urban and one rural—from within a 30 kilometer radius of the urban center. 

Urban stations were selected as having the highest BI if data availability exceeded 75% data. 

The lowest BI value was 47, and all but four cities had a BI of 63. The rural station was 

selected as the station with lowest BI and more than 75% data between 2000-2015. Airport 

stations were excluded, as were urban stations beyond 27 kilometers from the urban center. 

If the difference in BI between selected urban and rural stations (ΔBI) was less than 25, then 

the city is rejected from the analysis. This selection method rejected 16 cities, yielding 54 

cities across the US (see Table S1 or Fig. S1 for spatial distribution).

We find that our algorithm accurately identifies urban and rural stations according to the 

National Land Cover Database (NLCD) landcover classification (Homer, Dewitz, Yang, Jin, 

Danielson, Xian, Coulston, Herold, Wickham & Megown 2015), computed using Google 

EarthEngine’s Python API (Gorelick, Hancher, Dixon, Ilyushchenko, Thau & Moore 2017). 

The urban stations selected by this method are mostly (48/54) in developed land, with the 

remaining six being located in urban parks (2), near enough to water to be misclassified (1), 

or on the outskirts of town (3). Most of the rural stations (45/54) are located in undeveloped 

locations; the remainder are located in open land (5), low development intensity land (3), or 

medium development intensity land (1).

The sensitivity of the UHI calculations to choice of stations was tested by repeating the 

analysis for multiple station pairings for each city. To test sensitivity to rural selection, the 

urban station in each pairing was as described above, but different stations were used for the 

rural station in each pair. We removed the criteria that there was at least 75% data between 

2000 and 2015 and selected any station for which ΔBI > 25. To test sensitivity to urban 

station selection, the rural station was selected as above. We removed the criteria that there 

was at least 75% data between 2000 and 2015 and selected any station for which ΔBI > 25 

and the surrounding land cover class is developed, as classified by NLCD. This resulted in 

an average of 11 rural stations (urban-rural pairs) per city and 2.7 urban stations. We 

calculate one statistic per each station pair.

The intensity of the UHI, ΔT, for each city, is calculated as the difference between the 

temperatures for an urban Tu and rural Tr station, i.e., ΔT = Tu −Tr. As in Zhou & Shepherd 

(2010), we calculate ΔT using either daily-minimum temperatures or daily-maximum 

temperatures, referred to as the nighttime or daytime UHI. While minimum temperature may 

not occur at the same time of day in both urban and rural areas, there is no nationwide 

hourly, in situ temperature dataset available fpr both rural and urban areas. While this may 

bias a calculation of the UHI magnitude, this bias will be constant over time and is thus 

unlikely to affect our analysis of UHI change over time. The nighttime UHI is larger than the 

daytime UHI for most (35/54) of the cities considered (see Fig. S1), so we focus mainly on 
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the nighttime UHI. Unless otherwise stated the ΔT shown corresponds to difference in daily 

minimum temperatures. We also compare urban and rural temperatures to their average, Ta = 

(Tu + Tr)/2.

The relationship between Tr, Tu, Ta and ΔT is examined over three different temporal scales 

as well as over space. First, we explore daily variability by examining the relationship 

between daily Tr and Tu, using June, July, and August (JJA) data (2000-2015), and compare 

both to Ta. Second, we examine variability during extreme heat by examining the variations 

in ΔT and Ta for 15 nighttime heat events in each city. These events are the hottest 15 nights 

for Ta, though we repeat this analysis for the hottest 10 nights for Tu and Tr and the first 

principal component of the system of Tu and Tr (representing what causes most of the 

variance in both temperatures) in the Supplementary Materials. Third, we examine 

interannual variability by looking at the 30-year (1985-2015) linear trends in Tr and Tu. 

Finally, we examine geospatial variability by looking at the relationship between 30-year 

mean JJA Tr and Tu for each city.

In each of the above cases, we calculate the relationship between Tu, Tr, and Ta using the 

linear, total least squares regression (Allen & Stott 2003) of the form:

Tu = m ⋅ Tr + c, (1)

where the slope m represents the change in Tu per increase in Tr and c is a constant. The 

regression coefficient m can be interpreted as the sensitivity or response of the urban heat 

island changes to a change in regional temperature. The total least squares regression is an 

errors-in-variable method that differs from an ordinary least squares regression in that it 

considers errors or noise in both dependent and independent variable (Allen & Stott 2003). 

As a result, the slope it produces is insensitive to whether Tu or Tr is used as an input 

variable. This is in contrast to the ordinary least squares method, which may introduce an 

artificial bias called regression dilution bias by assuming that the dependent variable is error-

free (Pitkänen, Mikkonen, Lehtinen, Lipponen & Arola 2016).

We assess the statistical significance of this slope by testing against the null hypothesis that 

m = 1, that is, urban and rural areas respond similarly to changes in temperature, using a 

Student’s T-test. We also report the sample mean μ and the standard deviation σ of m.

To examine if there is a connection between the ΔT and weather conditions we use the 

synoptic weather classification in Sheridan (2002), which classifies air masses into moist 

and dry tropical, polar, and moderate air masses based on each weather station’s data. In this 

study, we group together dry marine, dry polar, and dry tropical weather types as ”dry”, and 

we group moist marine, moist polar, moist tropical, and moist tropical plus weather types 

as ”moist”. The classification is available for 46 of the cities examined in this study and is 

downloaded from http://sheridan.geog.kent.edu/ssc.html (the remaining stations are not in 

the weather station network used by Sheridan (2002)). We calculate the sensitivity of 

temperature to weather type for rural versus urban areas by subtracting the average 

temperature of moist nights from that of dry nights in each city, T(moist) − T(dry) and 
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compare this in both urban and rural areas. Additionally, we assess significance of the 

difference between moist and dry nights using a two sample t-test that takes the differing 

sample size of moist and dry nights into account.

Results

We first examine the relationship between minimum daily rural temperature Tr and 

minimum daily urban temperature Tu on daily time scales. The left column in Fig. 1 shows 

this relationship for Albuquerque, Minneapolis, and Baltimore for JJA 2000-2015. Although 

the details differ, for each city we see evidence of the UHI as Tu > Tr on most nights. We 

examine mdaily, the sensitivity of how Tu changes with Tr (Eq. 1) for each city. While it may 

be expected that during warmer conditions we see differences between Tu and Tr amplified, 

instead mdaily is less than one in each case, indicating that Tu and Tr become more similar as 

Tr increases. Thus, nighttime heat is associated with lower urban-rural thermal differences. 

This raises the question of whether the observed phenomena is driven by urban changes, 

rural changes, or perhaps both. To examine this, we look at the relationship between average 

temperature Ta and Tu in the middle column of Fig. 1. The slope of the regression shows that 

urban temperatures increases at the same rate as average temperature. By contrast, Tr 

becomes more similar to Ta on hotter nights in each city (Fig. 1, right column): their slopes 

are all greater than one, indicating that the urban heat island decreases under warmer 

conditions due to changes in rural temperatures.

We now expand this analysis to 54 cities across the US. The statistical distributions of mdaily 

are shown in Fig. 2a for all cities. In most cities (38/54), mdaily < 1, meaning that the urban 

increase is less then the rural increase during warmer conditions. Nationwide, the average 

response is mdaily = 0.88. That is, Tu increases on average by only about 0.9° C for every 

degree increase in daily Tr. The full range of the distribution is 0.11 ≤ mdaily ≤ 1.44 which is 

statistically different from 1 (p = 0.002). For 16 cities, mdaily > 1, meaning that the UHI 

increases under warmer conditions. These cities are distributed equally across climate zones 

(Fig. S2), so their differing behavior is not due to them being in different climate zones. For 

10 of the 16 cities where mdaily > 1, the urban weather station is located farther than 10 

kilometers from the city center or located in an area with less-developed land cover types 

(low to no intensity of development). Removing these cities yields mdaily = 0.83, 

demonstrating that microclimate effects impact how ΔT changes with heat and explains why 

cities with increasing UHIs in warmer conditions differ.

The above result that ΔT decreases overall during warmer conditions is robust. Repeating 

this analysis with daily anomalies calculated with respect to each year’s JJA mean yields a 

mean sensitivity similar to the raw temperature values mdaily′ = 0.93(0.1 ≤ mdaily′ ≤ 1.92), see 

Fig. 2b. This confirms that the decrease of ΔT during warmer conditions is due to day-to-day 

variability rather than interannual trends. Additionally, a similar relationship between Tr and 

Tu is also found for daytime (maximum daily) temperatures (Fig. 2c), for other seasons (Fig. 

2d-f), and when a longer period is used (1985-2015, Fig. S3). Similarly, varying the weather 

station selection does not affect the overall result: we find mdaily = 0.84 when varying urban 
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stations and mdaily = 0.95 when varying rural stations (Fig. S4, S5). In each case, the mean 

change is close to 0.9 for day, night, and for all seasons.

It is possible the Tr-Tu relationship may differ during periods of extreme heat, so we next 

examine how the UHI intensity ΔT evolves during an extreme heat event. We first consider 

Baltimore, as the change in the UHI during a heatwave in Baltimore has been examined by 

Li & Bou-Zeid (2013), Li et al. (2014) and Li et al. (2015). Figure 3a, b shows the temporal 

variation of Ta and ΔT for the 15 hottest nights (heat event night zero) in Baltimore during 

2000-2015 (colored lines). Ta rises until heat event night zero and decreases afterwards (Fig. 

3a). In contrast, ΔT decreases before night zero and increases after (Fig. 3b). Thus during the 

four nights before and after these heat events there is a decrease in ΔT. Averaging the 15 

events to form a composite event for both Ta and ΔT (Fig. 3a, b, black curves) shows that the 

average increase in Ta for heat extremes in Baltimore is 5°C with a corresponding decrease 

of ΔT by 0.1° C.

This result differs from the conclusions of Li & Bou-Zeid (2013), who also examined heat 

extremes in Baltimore. They considered a single event (5-14 June 2008), during which ΔT 
increases during the event. This event is included in our analysis in Fig. 3a,b and we find 

that its behavior is not characteristic as most of the events we find exhibit a decreasing ΔT. 

Thus, our conclusions differ from Li & Bou-Zeid (2013) because their event is atypical.

Composite heat events from each city are shown in Fig. 3c and d. In 19 cities, ΔT decreases 

by more than one degree during the heat event (between four days prior and the heat event 

night zero), in 29 cities, ΔT changes by less than 1°C, and in six cities, ΔT increases by more 

than 1°C. The distribution of the average change of ΔT during extreme heat, ΔThw, is shown 

in Fig. S6 and the average across all cities is ΔThw = − 0.9. This average decrease in ΔT is 

sufficient to reduce ΔT to below zero on heat event day zero in 18/54 cities, meaning that 

one third of the examined cities are slightly cooler than surrounding rural areas during the 

hottest nights.

Cities with UHIs that decrease the most during heat events tend to have larger mdaily (the 

correlation between mdaily and ΔThw is r = 0.7) and 4 of the 6 cities which have an 

increasing UHI on heat event day zero are also cities for which mdaily > 1. This shows 

consistency in our results and suggests the same mechanism drives changes in ΔT on daily 

timescales as well as during periods of extreme heat, and also that the microclimate of urban 

stations can affect both metrics.

How UHIs respond to heatwaves will depend on the method used for selecting heat events. 

We repeat the analysis in Fig. 3 by selecting heat events using the hottest urban nights (Fig. 

S7) and the hottest rural nights (Fig. S8) because when it is hot in one location, it may be 

less likely to be hot in the second location. As expected, the decrease of ΔT is strongest 

when selecting using the hottest rural nights. Similarly, an increase of ΔT is observed when 

selecting the hottest urban nights. However, this increase of ΔT conditioned on hot urban 

nights is less than the decrease of ΔT conditioned on hot rural nights. Additionally, when 

selecting events using the first principal component of temperature (Fig. S9), we also see a 
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decrease of ΔT during heat events. We conclude that the decrease of ΔT during heat events is 

supported by a variety of heat event selection methods.

Given the above robust relationship between ΔT and Ta, an obvious question is what is the 

cause. It has been suggested that local feedbacks in wind (Haeger-Eugensson & Holmer 

1999) and moisture (Li & Bou-Zeid 2013) may modulate the intensity of urban heating. 

Alternatively, synoptic weather systems could modify the intensity of the heat island by 

changing humidity, cloudiness, and outgoing longwave radiation. Dry conditions allow rural 

areas to radiatively cool faster than urban areas, so increasing humidity results in a larger Tr 

and decreased ΔT. To investigate this, we compute the average ΔT on moist nights, 

ΔTmoist = Tu(moist) − Tr(moist), and compare this with the average ΔT on dry nights, 

ΔTdry = Tu(dry) − Tr(dry). The distribution of ΔTmoist and ΔTdry from each city is shown in 

Fig. 4a. We see that when the surrounding air mass is dry, ΔT tends to be larger: nationwide, 

ΔT̄dry − ΔT̄moist = 0.43°C. While small, this difference is statistically significant in most 

cities (29/46 or 63%). Thus, as has been found in Sheridan, Kalkstein & Scott (2000) and 

Hardin, Liu, Cao & Vanos (2017), we find weather type as defined in Sheridan (2002) to be 

an important factor in regulating ΔT.

As shown in Fig. 1, the daily response to heat occurs primarily in rural rather than urban 

areas. To assess the sensitivity of urban and rural areas to weather type, we compare the 

moist-dry temperature difference in each city, Tu(moist) − Tu(dry), against that in each rural 

area, Tr(moist) − Tr(dry), in Fig. 4b. In most regions there is a tendency for humid nights to 

be hotter than dry nights; this difference is significant in most cities (39/46 or 85%). That is, 

Tmoist > Tdry for both urban and rural environments. However, see that the values do not 

follow a one-to-one relationship. Rather, rural areas change substantially by weather type, 

whereas urban areas do not. During moist synoptic conditions there are higher rural 

temperatures rather than elevated urban temperatures, which leads to a lower ΔT during 

moist weather patterns. As these humid weather patterns also tend to be the hottest, the role 

of synoptic conditions is critical to our result; individual hot events that evolve under less 

typical hot and dry conditions, or that are influenced by specific mesoscale circulations, may 

differ in characteristics.

Above, we have shown that ΔT decreases in response to daily temperature increases. This 

raises the possibility that changes over longer time scales in response to warmer conditions 

are possible. To test this, we compute the 15-year linear trend in JJA for Tr, called βTr
, for 

Tu, βTu
, and for Ta, βTa

. We find that most urban and rural areas experience nighttime 

warming (46/54 or 85%). For each city the urban and rural trends are not similar (r = 0.3) 

and there is no significant difference between urban and rural trends as calculated by a 

Student’s t-test (p = 0.63), in agreement with Peterson (2003). Nevertheless, we find that 

while urban temperatures warm at the same rate as average temperatures, rural temperatures 

do not (Fig. 5a,b). While 15 years is a limited time period, this result suggests that not only 

are urban areas not warming faster than rural areas, rural areas may in fact warm faster, 

though this effect is not significant over the time period measured.
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Above we have shown that differences between Tu and Tr tend to diminish on a variety of 

time scales, which raises the question of how Tu and Tr varies between cities. To investigate 

this, we compare the 2000-2015 JJA-mean rural temperature Tr with the JJA-mean urban 

temperaure Tu (Fig. 6a). We see that Tu tends to be more similar to Tr for cities with larger 

Tr, with a slope (sensitivity) of 0.85. That is, the UHI is generally smaller for warmer 

climates, with Tu increasing on average by only 0.85°C when comparing to a climate zone 

1°C warmer. Furthermore, while urban temperatures increase at the same rate as average 

temperature, rural temperature increase at a faster rate (Fig. 6b,c). That is, when we compare 

one city to a warmer city, we find the increase in urban temperatures is similar to the 

increase in average temperature. The increase in rural temperatures, however, is more than 

the increase in average temperatures, resulting in a decreased ΔT for warmer cities. Thus, the 

tendency for a weaker ΔT under warmer conditions occurs not only on daily time-scales in 

individual cities but also between cities.

Concluding remarks

We have compared daily maximum and minimum urban and rural temperatures using station 

observations from 54 US cities for 2000-2015, and shown that in most cities, the intensity of 

the UHI, ΔT, diminishes with warmer temperatures. This holds over temporal scales—daily 

over the entire summer, during extreme heat—as well as across climate zones. For daily 

variability Tu increases on average by only 0.88 °C for every degree increase in Tr, while the 

average decrease of Tu during extreme heat is 0.93 °C. On interannual timescales, we find 

that urban trends have a one-to-one relationship with average temperature trends, meaning 

the UHI has not increased with climate change, but do note that rural trends decreased 

slightly with increasing average trends. We relate the decrease in ΔT with larger Tr to large-

scale or synoptic weather conditions, and find that the lowest ΔT nights occur during moist 

conditions. Further, we find that across all time and space scales, our results are driven by 

changes in rural temperatures rather than urban temperatures, which appear less sensitive to 

both heat and weather type.

Our results differ from previous studies because we examine more cities, longer time 

periods, and more heat events. Conclusions of an increasing UHI during warmer 

temperatures were based on studies of single cities and single events. For example, the 

previous study of Baltimore (Li & Bou-Zeid 2013) only examined one heat event; we 

examine this event and others in addition to 15 years of daily data and find that the event in 

Li & Bou-Zeid (2013) is atypical. We do find some individual cities for which UHI 

increases with warmer temperatures, however, in most cases, we find this to be related to the 

land type and thus microclimate of the weather station, similar to Zhou & Shepherd (2010).

The decrease in UHI intensity with warmer conditions has potentially important implications 

for accounting for urbanization in long term climate records, where it is often assumed that 

absent significant changes in urban extent, the urban and rural areas warm at the same rate 

(Hausfather, Menne, Williams, Masters, Broberg & Jones 2013, Stone et al. 2012). Perhaps 

more importantly, it has implications for changes in the UHI as climate continues to warm as 

well as for economic projections of climate change impacts for cities (Estrada et al. 2017). 
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That warming areas did not experience any increase in urban heating indicates that the 

nighttime urban heat island has not been exacerbated by climate change. Absent 

consideration of changes in synoptic weather patterns, urbanization, or urban extent, our 

results suggest that the urban heat island as defined by available weather stations may 

remain constant or possibly decline as background climate warms. Indeed, there is already a 

tendency for Tr > Tu on the hottest nights for many cities (e.g., Fig. 3d).

We emphasize that our results do not mean that global warming will not affect cities, but 

rather that surrounding rural areas may warm faster than urban areas absent changes in 

urbanization and urban extent. Furthermore, the moist weather types which we associate 

with low UHI nights, in particular the moist tropical weather type, are associated with 

elevated risks for mortality and morbidity (Sheridan & Kalkstein 2004), meaning that lower 

UHIs will not necessarily translate into lower health risks. This is important for heat 

mitigation efforts, economic projections, and climate resiliency plans to take into account, as 

our results suggest that rural and suburban heat mitigation efforts may be more important 

than previously thought. Health analyses are concerned with physiologically relevant 

temperature thresholds, and our results indicate that assumptions of a constant or increasing 

urban heat may mischaracterize those risks.
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Figure 1. 
Left column: daily-minimum Tr versus Tu for data from JJA 2000-2015 for a) Albuquerque, 

d) Minneapolis, and g) Baltimore. Middle column: daily-minimum Ta versus Tu for b) 

Albuquerque, e) Minneapolis, and h) Baltimore. Right column: daily-minimum Ta versus Tr 

for c) Albuquerque, f) Minneapolis, and i) Baltimore. The solid line shows the total least 

squares fit to the data with slope mdaily and dashed line shows the 1-1 line.
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Figure 2. 
Histograms of mdaily, slope of Tu versus Tr relationship for (a) June, July, August (JJA) daily 

minimum temperatures, (b) JJA anomaly daily minimum temperatures, (c) JJA daily 

maximum temperatures, (d) December, January, February (DJF) daily minimum 

temperatures, (e) March, April, May (MAM) daily-minimum temperatures, and (f) 

September, October, November (SON) daily-minimum temperatures. The distribution mean 

mdaily and range are listed in each plot.
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Figure 3. 
Heat events: a) temporal evolution of Ta for the 15 hottest nights for Baltimore (colors) and 

their mean (dashed black line), b) temporal evolution of ΔT for those events, c) temporal 

evolution of Ta averaged across the ten hottest events for each city and the sample mean 

(heavy black line), and (d) as in (c) but for ΔT.
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Figure 4. 
Influence of synoptic weather type: a) nationwide distribution of all city’s mean 

temperatures for urban and rural stations during moist or dry weather types and b) sensitivity 

of temperature to synoptic weather conditions for rural (x-axis) versus urban areas (y-axis); 

the total least squares line is shown in solid black and the 1-1 line is dashed. In a), boxes 

indicate the middle two quartiles (Q2 and Q3), the red box indicates the mean, the red lines 

indicate the median, and whiskers represent the wide interquartile range (1.5*(Q3-Q2)). 

Crosses indicate data points beyond this range, that is, statistical outliers.
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Figure 5. 
15-year linear trends for each city: a) βTr

 plotted versus βTa
 and b) βTu

 plotted versus βTa
. 

The total least squares line is shown in solid black and the 1-1 line is dashed.
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Figure 6. 
15 year mean temperature for each city: a) Tr versus Tu, b) Tr versus Ta, and Tu versus Ta. 

The total least squares line is shown in solid black and the 1-1 line is dashed.
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