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Abstract

Strains MWH-EgelM1-30-B4T and MWH-Feld-100T were isolated from the water columns of two 

freshwater systems. Both strains represent delicate bacteria not easy to work with in laboratory 

experiments. Phylogenetic analyses of the 16S rRNA genes suggested that both strains were 

affiliated with the genus Polynucleobacter. Both strains share 16S rRNA sequence similarities of > 

99% with eight free-living Polynucleobacter type strains, all affiliated with the cryptic species 

complex PnecC. The full length 16S rRNA gene sequences of the two strains differ only in two 

and three positions, respectively, from the sequence of the closest related Polynucleobacter type 

strain. Genome sequencing of both strains revealed relatively small genome sizes of 2.0 Mbp and 

G+C contents of 45 mol%. Phylogenetic analyses based on nucleotide sequences of 319 shared 

protein-encoding genes consistently placed the two strains in taxon PnecC but did not suggest an 

affiliation with one of the previously described species. Pairwise analyses of whole genome 

average nucleotide identities (gANI) with representatives of all previously described 

Polynucleobacter species resulted in both cases throughout in values < 80%. Pairwise comparison 

of the genomes of the two new strains resulted in gANI values of 83.3%. All gANI analyses 

clearly suggested that strains MWH-EgelM1-30-B4T and MWH-Feld-100T represent two novel 

Polynucleobacter species. We propose for these novel species the names P. hirudinilacicola sp. 

nov. and P. campilacus sp. nov. and strain MWH-EgelM1-30-B4T (=DSM 23911T =LMG 30144T) 

and MWH-Feld-100T (=DSM 24007T =LMG 29705T) as the type strains, respectively.

The genus Polynucleobacter (family Burkholderiaceae, class Betaproteobacteria) and the 

species P. necessarius were described by Klaus Heckmann and Helmut J. Schmidt as 

obligate endosymbionts dwelling in ciliates affiliated with the genus Euplotes [1]. The 
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symbiosis between the ciliates and the bacteria is mutually obligate, that is both partners rely 

on each other and cannot survive if separated [1, 2]. The obligate endosymbiotic lifestyle of 

these bacteria prevented their cultivation when separated from their hosts. Therefore, the 

type species of the genus, P. necessarius, is not represented by a type strain but by type 

material consisting of endosymbionts contained in a culture of E. aediculatus [1]. 

Unfortunately, this type material is not anymore available from the American Type Culture 

Collection (ATCC) or from any other culture collection [3].

More than ten years after description of the genus, it was recognized that a large group of 

free-living bacteria also belongs to that genus [4–7]. These free-living Polynucleobacter 
bacteria are ubiquitously present in the water column of standing freshwater systems [8–14]. 

Strains affiliated with this genus could be isolated from freshwater systems across all 

climatic zones and continents [7, 15]. Unusual traits of Polynucleobacter bacteria are their 

ability to penetrate 0.2 µm filters [16] and only weak growth in standard media as compared 

to their closest relatives [17]. Furthermore, some Polynucleobacter strains possess genes 

putatively encoding an apparatus for anoxygenic photosynthesis [18–20] or 

proteorhodopsins [21, 22]. Recent investigations revealed that a part of the genus 

Polynucleobacter named subcluster PnecC [23] represents a large cryptic species complex 

not resolvable by analyses of 16S rRNA gene sequences [3, 19]. At the time of writing, 

fourteen Polynucleobacter species were described, which is including only one 

endosymbiotic species.

Here we describe two new members of subcluster PnecC and propose to establish for these 

strains the new species P. hirudinilacicola sp. nov. and P. campilacus sp. nov.

Home habitat and isolation

Strains MWH-EgelM1-30-B4T and MWH-Feld-100T were both isolated from the water 

columns of freshwater systems by using the filtration acclimation method (FAM) and NSY 

medium [24]. Strain MWH-EgelM1-30-B4T was isolated from the smallest (0.4 hectare 

surface area) of four ponds and lakes called Egelseen forming a chain connected by running 

waters. These systems are located (47.966°N, 13.125°E) at an altitude of about 590 m near 

the town Mattsee in Austria. This shallow pond was sampled from the shore line on 21. 

April 2006. The water sample from which the strain was isolated was characterized by a pH 

of 8.0, a conductivity of 353 µS cm-1, and a water temperature of 11.4 °C. The water was 

stained by humic substances. Repeated sampling of the pond confirmed the alkaline pH 

(range 7.6 – 8.0) and the brownish water colour, which is an unusual combination in lakes 

and ponds of this area [8].

Strain MWH-Feld-100T was isolated from Lake Feldsee (47.871°N, 8.033°E) located in the 

Black Forest, Germany. This oligotrophic cirque lake is located at an altitude of 1109 

meters, has a surface area of about 10 hectare and a maximum depth of 32 meter. This 

habitat is characterized by a circum-neutral pH (6.4 - 7.5), low conductivity (18 - 24 µS 

cm-1), very high transparency (clear water lake) and low concentrations of humic substances. 

The lake was sampled from the shore line on 30. December 2006.
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Genomic characterization

DNA extraction, genome sequencing, assembly and annotation were performed for both 

strains as described previously for other Polynucleobacter type strains [18, 21, 25]. The 

genomes of strains MWH-EgelM1-30-B4T and MWH-Feld-100T are in their general 

characteristics very similar to previously characterized genomes of Polynucleobacter type 

strains affiliated with subcluster PnecC (Table 1). Nevertheless, they differed in their gene 

content from all other type strains affiliated with subcluster PnecC, even from the closest 

related type strain P. wuianus QLW-P1FAT50C-4T (Fig. 1, Table 2) [3, 18, 21, 22, 25]. 

Genome sizes of strains MWH-EgelM1-30-B4T and MWH-Feld-100T were 2.01 and 1.98 

Mbp, respectively, and G+C contents were 45.3 and 45.2 mol%, respectively. The genomes 

of the two new type strains shared the presence of a gene cluster putatively encoding the 

apparatus of anoxygenic photosynthesis with the type strains of P. wuianus (Table 2, [18]), P. 
duraquae [3], P. difficilis [22], P. acidiphobus [22], and P. rarus [22]. Furthermore, the two 

new type strains shared with those strains the lack of genes encoding efficient pathways for 

assimilation of inorganic carbon. In addition, the genomes of the two new strains lacked any 

genes putatively encoding proteorhodopsins, which were previously discovered in the 

genomes of P. meluiroseus [22], P. aenigmaticus [21], and P. cosmopolitanus type strains 

[22]. Both strains MWH-EgelM1-30-B4T and MWH-Feld-100T shared with P. duraquae [3] 

and other Polynucleobacter strains [19] the presence of an Fe3+ ABC-type transporter and 

the lack of genes encoding an Fe2+ FeoAB transporter. This gene content signature linked to 

iron acquisition suggested that both strains are adapted to circum-neutral or alkaline waters 

but not to acidic habitats [19], which fits quite well to the environmental conditions 

characterizing the respective home habitat of the two new type strains. Interestingly, both 

strains differed in their iron acquisition genes, as well as in the lack of several inorganic 

nitrogen assimilation genes from the type strain of the closest related species P. wuianus 
(Table 2). Strains MWH-EgelM1-30-B4T and MWH-Feld-100T differed from each other in 

the presence of genes encoding for flagella. While strain MWH-Feld-100T shared, for 

instance, with the type strain of P. duraquae [3], the presence of such genes, accompanied by 

a motile phenotype, strain EgelM1-30-B4T seemed to completely lack the potential for 

motility.

Phylogeny

Reconstruction of the phylogenetic positions of strains MWH-EgelM1-30-B4T and MWH-

Feld-100T with a suitable resolution was not possible by using 16S rRNA gene sequences. 

Tree construction based on this marker placed both strains in the cryptic species complex 

PnecC [3] within the genus Polynucleobacter (Supplementary Materials Fig. S1). As 

expected for members of this subcluster [3], both strains shared 16S rRNA gene sequence 

similarities of > 99% with the other type strains affiliated to this taxon.

The phylogenetic positions of the two new strains were reconstructed based on an alignment 

of 319 shared genes as described previously [22]. Briefly, nucleotide sequences of 319 genes 

shared by all Polynucleobacter type strains and Cupriavidus metallidurans CH34T were 

extracted from genome sequences (Table 1) and aligned by using the software MAFFT [26]. 

This resulted in a total alignment length of 344,717 bp. The software GBlocks Masking 

Hahn et al. Page 3

Int J Syst Evol Microbiol. Author manuscript; available in PMC 2018 September 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



3.9.17 [27] was used to select conserved blocks from the alignment for the further analyses. 

This resulted in 331,885 positions (96 %) in 253 selected blocks. The CIPRES Science 

Gateway V. 3.3 [28] was used to calculate a bootstrapped (100 iterations) RAxML tree [29] 

(Fig. 1). In accordance to the 16S rRNA gene phylogeny, this tree based on a large multi-

gene alignment also placed strains MWH-EgelM1-30-B4T and MWH-Feld-100T in 

subcluster PnecC but did not suggest an affiliation with any previously described 

Polynucleobacter species. The multi-gene tree differed from a 16S rRNA tree calculated for 

the same taxa in the branching order of taxa not belonging to subcluster PnecC (Fig. 1, 

Suppl. Materials Fig. S1). In the multi-gene tree P. cosmopolitanus, P. victoriensis and P. 
rarus formed a joint branch but P. rarus was separated from the other two species in the 16S 

rRNA tree. By contrast, P. difficilis and P. acidiphobus formed a joint branch in the 16S 

rRNA tree (previously designated subcluster PnecB) but not in the multi-gene tree. The 

multi-gene tree suggested that strains MWH-EgelM1-30-B4T and MWH-Feld-100T were 

more closely related to each other than to any previously described type strain. The closest 

related Polynucleobacter species to both new strains was P. wuianus (Fig. 1). Whole genome 

Average Nucleotide Identity (gANI) analyses performed by using the IMG/M ER system 

[30] revealed that strains MWH-EgelM1-30-B4T and MWH-Feld-100T shared a value of 

83.3% gANI. Both did not share ANI values > 80% with any previously described 

Polynucleobacter species (Fig. 1).

Phenotypic and chemotaxonomic characterization

The phenotypic and chemotaxonomic characterization was performed as described 

previously [17, 22]. The obtained results are presented in Tables 3 and 4. As many other 

Polynucleobacter strains, strains MWH-EgelM1-30-B4T and MWH-Feld-100T formed small 

circular, convex, colourless colonies with shiny surface on NSY agar plates [24]. Strain 

MWH-Feld-100T differed from many PnecC strains in its growth performance on liquid 

NSY medium. While most Polynucleobacter strains established maximum optical densities 

(OD575nm) of 0.1 or slightly higher, which is only about 10% of the maximum OD reached 

by members of the closest related genera Cupriavidus and Ralstonia [17], strain MWH-

Feld-100T reached even only OD values of 0.03-0.04 in this medium. The weak and slow 

growth performance of this strain made the comparative phenotypic characterization of the 

strain even more tedious than usual for Polynucleobacter strains. We cannot exclude that we 

overlooked weak growth of strain MWH-Feld-100T on some substances when assessing the 

substrate spectra, due to measurements near the detection limit. The fact that only a 

relatively low number of four substrates resulted in good growth compared to eight to eleven 

compounds utilized as substrates by the related type strains [22] may also result from the 

comparatively weak growth of the type strain. On the other hand, a narrower substrate 

spectrum could explain the low maximum OD reached by the strain.

The analysis of the whole-cell fatty acid composition (Table 4) was carried out as described 

previously [31]. The cell masses were cultivated on R2A [32] agar slants which were filled 

up with 1.5 ml liquid R2A medium. The slants were incubated at 28°C and inspected for 

growth daily. Once biomass was well visible at the lowest point of the slope the cell mass 

was harvested. The incubation periods for strains MWH-EgelM1-30-B4T, MWH-Feld-100T 

and QLW-P1FAT50C-4T were 4, 13 and 7 days, respectively. The fatty acids of strain 
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MWH-EgelM1-30-B4T had a composition similar to that of P. wuianus which is roughly 

representative for strains of the PnecC subcluster [18, 21, 22]. The fatty acid pattern of strain 

MWH-Feld-100T, however, deviated from all these patterns by showing relatively high parts 

of C16:0 and extraordinarily low percentages of C18:1 ω7c (Table 4). These characteristics 

persisted when the temperature was changed to 22°C or incubation time was varied between 

10 and 14 days.

Proposal of the new species Polynucleobacter hirudinilacicola sp. nov. and 

Polynucleobacter campilacus sp. nov.

The performed phylogenetic and gANI analyses clearly suggested that strains MWH-

EgelM1-30-B4T and MWH-Feld-100T each represent new Polynucleobacter species. Both 

strains did not share gANI values of > 95% with any other type strains and also not with 

each other. This value is commonly accepted for species demarcation in prokaryotes [33], 

therefore it is clearly suggested that two new species should be established for the two 

investigated strains.

Strain MWH-EgelM1-30-B4T can be discriminated from the two closest related type strains, 

i.e. P. campilacus sp. nov. MWH-Feld-100T and P. wuianus QLW-P1FAT50C-4T, by the lack 

of growth at NaCl concentrations above 0.1% (Table 3). Strain MWH-Feld-100T can be 

discriminated phenotypically from strains P. hirudinilacicola sp. nov. MWH-EgelM1-30-B4T 

and P. wuianus QLW-P1FAT50C-4T by its ability to assimilate glycolate and D-sorbitole 

(Table 3).

The most efficient way to identify and discriminate Polynucleobacter type strains is by 

comparative analyses of partial sequences of the glutamine synthetase gene [34]. Such 

sequences can be obtained from Polynucleobacter strains by using the primers glnA1212F 

5’-AGTWGCWCCWGTAGATACATTCC-3’ and glnA1895R 5’- 

GTTGGGATCTTTGCATCTTCTTC -3’. All Polynucleobacter type strains possess 

similarity values < 91% for these sequences (Table 5), while several strains affiliated with 

the same species, i.e. P. asymbioticus, share similarities of > 99% for this marker sequence 

[35].

We propose to establish the new species Polynucleobacter hirudinilacicola sp. nov. and 

Polynucleobacter campilacus sp. nov. and to designate strains MWH-EgelM1-30-B4T 

(=DSM 23911 T =LMG 30144T) and MWH-Feld-100T (=DSM 24007T = LMG 29705T) as 

the type strains, respectively.

Description of Polynucleobacter hirudinilacicola sp. nov.

Polynucleobacter hirudinilacicola (hi.ru.di.ni.la.ci’co.la. L. fem. n. hirudo –inis a leech; L. 

masc. n. lacus lake; L. suff. –cola (from L. masc. or fem. n. incola), inhabitant, dweller; N.L. 

masc. n. hirudinilacicola, inhabitant of leech lake (German Egelsee)).

Contains free-living Polynucleobacter strains dwelling in the water body of alkaline and 

probably also circum-neutral freshwater systems. Cells are short sometimes slightly curved 
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rods, 0.5-1.2 µm in length and 0.3–0.5 µm in width, depending on cultivation conditions. 

Aerobic and chemoorganoheterotrophic, anaerobic growth was not observed. Colonies 

grown on NSY agar are non-pigmented, circular and convex with smooth surface. Growth 

occurs up to 31 °C. Growth occurs in 0–0.1% (w/v) NaCl but not in 0.2 to 0.5% or higher. 

Assimilates acetate, pyruvate, oxaloacetate, fumarate, succinate, L-cysteine, and L-alanine. 

Does not assimilate glycolate, glyoxylate, propionate, oxalate, malate, citrate, levulinic acid, 

D-galacturonic acid, D-glucose, D-galactose, D- lyxose, D-fructose, D-sorbitole, L-histidine, 

L-aspartate, L-asparagine, L-serine, L-leucine, or betaine. Major fatty acids are C16:1 ω7c, 

C16:0, C18:1 ω7c and feature 2 containing C16:1 isoI and C14:0-3OH. Encodes an ABC-type 

Fe3+ transport system but no FeoAB Fe2+ transporter. The type strain is MWH-EgelM1-30-

B4T (=DSM 23911 T =LMG 30144T), isolated from Lake Egelsee in Austria. The type strain 

is characterized by a genome size of 2.01 Mbp and a G+C content of 45.3 mol%. The 

accession numbers of the whole genome and the 16S rRNA gene sequence are 

NAIA00000000 and FN429662, respectively.

Description of Polynucleobacter campilacus sp. nov.

Polynucleobacter campilacus (cam.pi.la’cus. L. masc. n. campus, field; L. gen. n. lacus of a 

lake, N.L. gen. n. campilacus, of field lake, referring to Lake Feldsee (‘field lake’) in 

Germany, indicating the site from which the type strain was isolated).

Contains free-living Polynucleobacter strains dwelling in the water body of circum-neutral 

and probably also alkaline freshwater systems. Cells are motile slightly curved rods, 0.5 – 

2.4 µm in length and 0.3 – 0.7 µm in width, depending on cultivation conditions. Aerobic 

and chemoorganoheterotrophic, anaerobic growth was not observed. Colonies grown on 

NSY agar are non-pigmented, circular and convex with smooth surface. Growth occurs up to 

28 °C and in 0 – 0.4% (w/v) NaCl but not at 0.5 to 0.7 % NaCl or higher. Assimilates 

glycolate, acetate, oxaloacetate, and D-sorbitole. Weakly assimilates pyruvate, malonate, D-

mannose, L-leucine, and betaine. Does not assimilate glyoxylate, propionate, malate, 

fumarate, succinate, citrate, levulinate, oxalate, D-galacturonic acid, D-glucose, D-galactose, 

D-lyxose, D-fructose, L-fucose, L-glutamate, L-cysteine, L-alanine, L-histidine, L-aspartate, 

and L-asparagine. Major fatty acids are C16:1 ω7c, C16:0 and feature 2 containing C16:1 isoI 

and C14:0-3OH, content of C18:1 ω7c. Encodes an ABC-type Fe3+ transport system but no 

FeoAB Fe2+ transporter. The type strain is MWH-Feld-100T (=DSM 24007T = LMG 

29705T), isolated from Lake Feldsee, Germany. The type strain is characterized by a genome 

size of 1.98 Mbp and a G+C content of 45.2 mol%. The accession numbers of the whole 

genome and the 16S rRNA gene sequence are NGUP00000000 and MG952228, 

respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

gANI whole genome average nucleotide identity

IMG/M ER Integrated Microbial Genomes with Microbiome Samples 

Expert Review (ER) companion system

ML maximum-likelihood

NSY medium nutrient broth soytone yeast extract medium

R2A medium Reasoner's 2A medium

PnecC cryptic species complex PnecC

FAM filtration acclimation method

FL free-living

E endosymbiotic

OD optical density

Mbp mega base pairs
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Fig. 1. 
Reconstruction of the phylogenetic position of strains MWH-EgelM1-30-B4T and MWH-

Feld-100T. Bootstrapped RAxML tree calculated with nucleotide sequences of 319 shared 

genes. Percentage values behind the strain names indicate gANI values obtained in pairwise 

comparisons of whole genome sequences with strains MWH-EgelM1-30-B4T (first column) 

and MWH-Feld-100T (second column), respectively. The tree was rooted with sequences of 

Cupriavidus metallidurans CH34T (not shown, accession number: CP000352-CP000355 

[39]). Accession numbers for the genomes of the shown taxa can be found in Table 1. Nodes 

present in a RAxML tree calculated with 16S rRNA gene sequences of the same taxa are 

labelled with filled circles (if bootstrap values were > 70%). Bar, 0.2 substitutions per 

nucleotide position.
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Table 2

Comparison of the presence and absence of selected genes in strains P. hirudinilacicola sp. nov. MWH-

EgelM1-30-B4T, P. campilacus sp. nov. MWH-Feld-100T, and the type strain representing the closest related 

species.

Genes putatively encoding P. hirudinilacicola sp. nov.
MWH-EgelM1-30-B4T

P. campilacus sp. nov.
MWH-Feld-100T

P. wuianus
QLW-P1FAT50C-4T

Inorganic nutrients

ABC-type Fe3+ transport system + + -

feoAB genes (uptake of Fe2+) - - +

ABC-type sulfate transport system - - +

ABC-type Nitrate/Nitrite/Cyanate transporter - - +

Nitrate reductase (assimilatory) - - +

Nitrite reductase (assimilatory) - - +

Cyanate lyase (releases NH3 and CO2 from cyanate) - - +

Urease and ABC-type urea transporter - - +

Oxidative phosphorylation/Energy metabolism

Cytochrome bd-I terminal oxidase (CydAB) - - +

Fumarate reductase + + +

Carbon monoxide dehydrogenase - - +

Anoxygenic photosynthesis

Photosynthesis gene cluster + + +

Motility

Flagella genes - + -

Oxidative stress

Catalase - - -
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Table 3

Phenotypic characteristics of strains MW-Feld-100T, MWH-EgelM1-30-B4T and the type strain of the closest 

related species. All three strains have the following characteristics in common: Assimilation of acetate and 

oxaloacetate; no assimilation of oxalate, citrate, D-glucose, D-galactose, D-lyxose, and L-serine. +, increase in 

optical density (OD); w, weak increase in OD; -, no significant increase in OD. All presented data were 

obtained in the same lab under standardized conditions.

P. hirudinilacicola sp. nov.
MWH-EgelM1-30-B4T

(DSM 23911T)

P. campilacus sp. nov.
MWH-Feld-100T

(DSM 24007T)

P. wuianus
QLW-P1FAT50C-4T

(DSM 24008T)

Cell morphology short rods slightly curved rods short rods

Cell length (µm) 0.5-1.2 0.5-2.4 0.6-1.7

Cell width (µm) 0.3-0.5 0.3-0.7 0.3-0.6

Temperature range of growth (°C) 5 - 31 5 - 28 5 - 34

NaCl tolerance (%NaCl, w/v) 0 - 0.1 0 - 0.4(w) 0 - 0.5

Anaerobic growth - - -

Assimilation of:

    Glyoxylate - - w

    Glycolate - + -

    Propionate - - +

    Pyruvate + w +

    Malonate - w w

    Malate w - +

    Fumarate + - +

    Succinate + - +

    Levulinate - - w

    D-Galacturonate - - w

    D-Mannose w w -

    D-Fructose - - w

    L-Fucose w - -

    D-Sorbitole - + -

    L-Glutamate w - +

    L-Histidine - - +

    L-Aspartate - - +

    L-Cysteine + - w

    L-Alanine + - +

    L-Asparagine - - w

    L-Leucine - w -

    Betaine - w -
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Table 4

Major fatty acid compositions of P. hirudinilacicola sp. nov. MWH-EgelM1-30-B4T, P. campilacus sp. nov. 

MWH-Feld-100T, and the type strain representing the closest related species. Compounds occurring at 

percentages of 0.2 or higher are given. Data for P. wuianus QLW-P1FAT50C-4T were taken from Hahn et al. 
(2017) [18]. All presented data were obtained in the same lab under standardized conditions.

Fatty acid P. hirudinilacicola sp. nov.
MWH-EgelM1-30-B4T

DSM 23911T

P. campilacus sp. nov.
MWH-Feld-100T

DSM 24007T

P. wuianus
QLW-P1FAT50C-4T

DSM 24008T

C10:0 - 3.1 -

C12:0 6.8 3.6 4.0

C14:0 0.6 0.8 0.2

C15:0 - 0.3 -

C16:0 26.3 38.9 18.5

C17:0 - 0.4 -

C18:0 0.7 1.0 0.9

C14:1 ω5c - 0.3 -

C16:1 ω7c 35.7 40.1 39.1

C18:1 ω9c - - -

C18:1 ω7c 15.7 0.5 27.8

11-methyl C18:1 ω7c 3.3 - 2.7

C12:0 2-OH 0.3 - 1.0

C16:1 2-OH - - 0.5

Feature 2 10.2 11.0 4.7

Feature 7 0.5 - 0.4

Summed features represent groups of two fatty acids which could not be separated by GLC and the MIDI system, such as summed feature 2 
containing C16:1 isoI and C14:0-3OH and summed feature 7 containing C19:1 ω6c and an unknown compound with an ECL of 18.846.
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