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Abstract

TOPIC—Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease in premature 

infants, and is a major cause of childhood blindness worldwide. In addition to known clinical risk 

factors such as low birth weight and gestational age, there is a growing body of evidence 

supporting a genetic basis for ROP.

CLINICAL RELEVANCE—While comorbidities and environmental factors have been identified 

as contributing to ROP outcomes in premature infants, most notably gestational age and oxygen, 
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some infants progress to severe disease despite absence of these clinical risk factors. The 

contribution of genetic factors may explain these differences and allow better detection and 

treatment of infants at risk for severe ROP.

METHODS—To comprehensively review genetic factors that potentially contribute to the 

development and severity of ROP, we conducted a literature search focusing on the genetic basis 

for ROP. Terms related to other heritable retinal vascular diseases like “familial exudative 

vitreoretinopathy”, as well as to genes implicated in animal models of ROP, were also used to 

capture research in diseases with similar pathogenesis to ROP in humans with known genetic 

components.

RESULTS—Contributions across several genetic domains are described including vascular 

endothelial growth factor, the Wnt signaling pathway, insulin-like growth factor 1, inflammatory 

mediators, and brain-derived neurotrophic factor.

CONCLUSIONS—Most candidate gene studies of ROP have limitations such as inability to 

replicate results, conflicting results from various studies, small sample size, and differences in 

clinical characterization. Additional difficulty arises in separating the contribution of genetic 

factors like Wnt signaling to ROP and prematurity. Although studies have implicated involvement 

of multiple signaling pathways in ROP, the genetics of ROP have not been clearly elucidated. 

Next-generation sequencing and genome-wide association studies have potential to expand future 

understanding of underlying genetic risk factors and pathophysiology of ROP.

INTRODUCTION

Retinopathy of prematurity (ROP) is a retinal vascular disorder affecting premature low birth 

weight infants, and is a major cause of childhood blindness in the United States and 

internationally. Beyond the clinical impact, infancy-acquired visual loss from ROP 

represents an enormous social and economic burden.1–4 Furthermore, as the incidence of 

premature births worldwide increases and as medical technology becomes better able to treat 

the complications of premature birth, the number of infants at risk for ROP is increasing 

rapidly.5–8

Oxygen plays a central role in ROP.9–13 Oxygen environment and a key transcription factor 

that oxygen regulates (e.g. Hypoxia inducible factor [HIF]) are thought to modulate ROP. In 

terms of ROP pathogenesis, a two-phase hypothesis has been proposed and has become 

widely accepted.14,15 In phase 1, there is delayed physiologic retinal vascular development 

and vasoattenuation, which is aggravated by hyperoxia and loss of nutrients and growth 

factors. In phase 2, vasoproliferation occurs at the junction of vascularized and avascular 

retina. Mouse oxygen-induced retinopathy (OIR) model (exposure to 75% oxygen for 5 days 

followed by room air), a widely used animal model of ROP, best represents the two-phase 

hypothesis.16,17 During the vasoproliferative phase, the avascular retina releases pro-

angiogenic growth factors such as vascular endothelial growth factor (VEGF), which are 

induced by hypoxia and may cause aberrant vessel growth and neovascularization. Oxygen 

fluctuations with intermittent hypoxia is also implicated in development of ROP in clinical 

studies18–20 and OIR animal model studies especially in rats (e.g. cycling between 50 and 

10% oxygen).21,22 Growing neovascular vessels lead to fibrovascular membranes that may 
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pull on the retina, causing tractional retinal detachment and eventual blindness. The 

phenotype of ROP is classified based on location, extent, and severity of these pathologic 

changes.23 Some infants show a rapidly progressing, severe form of ROP, known as 

aggressive posterior ROP (AP-ROP).23–27

Early investigations into ROP risk factors focused primarily on prematurity itself, as well as 

environmental factors including oxygen exposure after birth.10,11 Various studies focusing 

on oxygen exposure have proven its importance as a primary predictor of ROP outcomes.
9–11 However, some high-risk infants with extremely low birth weight (BW) and gestational 

age (GA) do not develop ROP, whereas some low-risk infants do develop severe ROP. In 

these infants at phenotypic extremes, a study showed that known clinical risk factors were 

not significantly associated with development of ROP.28 In addition, it is not understood 

why certain infants are predisposed to AP-ROP with very high likelihood of blindness. This 

heterogeneity of ROP risk suggests that other factors, such as genetics may be involved in 

creating a predisposition to ROP. Before specific genetic variations were investigated in 

ROP, epidemiologic studies suggested racial and ethnic differences in ROP incidence.29–31 

The Cryotherapy for ROP (CRYO-ROP) study of 4,099 premature infants found 7.4% of 

white infants reached threshold disease, while only 3.2% of black infants achieved a similar 

level of disease.31 Also, twin and sibling studies have supported the involvement of a genetic 

component of disease. Two studies of monozygotic and dizygotic twins found that the 

heritability of ROP was 0.70 and 0.73, respectively.32,33 Evidence of genetic effects is also 

supported by data from the oxygen-induced retinopathy (OIR) phenotype in rodent models, 

in which studies of different rat strains have found differences in the retinal avascular area 

and VEGF expression between strains.34–36 Investigations into this genetic component in 

humans and animal models have implicated the involvement of multiple genes, but have not 

discovered a genetic component of large effect. It is likely that knowledge of such a genetic 

component could be used to identify possible targets to improve outcomes of screening and 

treatment.

Many signaling molecules and related pathways have been suspected in the pathogenesis of 

ROP due to known biochemical and clinical associations: VEGF, insulin-like growth 

factor-1 (IGF-1), erythropoietin (EPO), and inflammatory mediators. In addition to ROP, the 

growth of abnormal, leaky blood vessels is a common pathologic component of other 

blinding neovascular eye diseases, such as diabetic retinopathy (DR) and neovascular age-

related macular degeneration (AMD), both of which have strong evidence of a genetic 

predisposition to disease.37–39 Moreover, because ROP progresses more rapidly and presents 

with relatively homogeneous clinical characteristics, the correlation of genotype and 

phenotype is easier than with a chronic disease such as DR or AMD.15 Thus, the study of 

ROP genetics may give us important insights into the pathophysiology of other more 

prevalent adult and pediatric neovascular retinal diseases.

This review summarizes current research into genetic factors contributing to ROP risk in 

both human and animal models and recommends future directions for research into the 

underlying genetics of pathways that contribute to disease.
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METHODS

Pubmed was queried from January 1980 to June 2017. The following search terms were 

used: retinopathy of prematurity AND genetics, retinopathy of prematurity AND gene, 

retinopathy of prematurity AND single nucleotide polymorphism (SNP), retinopathy of 

prematurity AND variant, and retinopathy of prematurity AND polymorphism. Criteria for 

inclusion included the relevance, clinical importance, level of statistical evidence provided, 

and scientific importance of articles to the subject of this paper. Articles cited in the 

reference lists of other articles were reviewed and included when considered appropriate. All 

articles with English abstracts were reviewed.

CANDIDATE GENES IN ROP

VEGF and associated receptors

VEGF plays a crucial role in ROP. Increased VEGF in avascular retina stimulates 

pathological retinal neovascularization, which may result in blinding complications like 

tractional retinal detachment. Moreover, VEGF is a proven therapeutic target, as intravitreal 

anti-VEGF therapy has shown efficacy in promoting regression of severe ROP.40 There have 

been many genetic studies on associations between the VEGF gene and incidence or severity 

of ROP.

Table 1 summarizes results of SNP studies in human VEGF gene (VEGFA). rs2010963 (also 

known as −634G>C and +405 G>C) is the most extensively studied SNP. In a British study 

of 188 preterm infants on rs2010963 in 2004, the G allele was found to have higher 

frequency among infants with ROP.41 This result was supported by a 2015 study in 102 

preterm infants from Egyptian hospitals showing that G allele was significantly higher in 

infants with ROP.42 However, one study in Hungary reported the opposite results – higher 

frequency of C allele in severe ROP – and 5 other studies found no significant association 

between rs2010963 and ROP.

In addition, rs833061 (−460C>T) and VEGFA +13553C>T have been reported to be 

associated with ROP. However, replication has not been attempted for +13553C>T and the 

association of rs833061 and ROP has not been replicated in 3 other studies. VEGFA 
haplotypes have also been reported to be associated with ROP. A study performed in an 

Italian population of 342 infants focused on the distribution of polymorphisms in a handful 

of genes implicated in ROP showed evidence that VEGFA haplotype (TCCT) decreases risk 

of ROP.43

VEGF promotes angiogenesis and hyper-permeability by binding to the VEGF receptor 2 

(VEGFR-2) on vascular endothelium, whereas VEGFR-1 acts as a decoy receptor.44 

However, studies on VEGFR-1 (FLT1) and -2 (KDR) genes found no associations with ROP 

(Table 2).

FEVR, Norrie disease and the Wnt pathway

Familial Exudative Vitreoretinopathy (FEVR) and Norrie disease are developmental diseases 

of the retina with known genetic causes with similar pathology to ROP. Both are hereditary 
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disorders occurring primarily in full-term infants, characterized by abnormal retinal 

vascularization leading to retinal detachment.45,46 While patients with Norrie disease are 

blind from or shortly after birth, and often have systemic pathologies such as deafness and 

mental retardation, the clinical manifestations of FEVR are variable but restricted to 

abnormalities in ocular development.47 FEVR is known to be caused by mutations in FZD4, 
LRP5, TSPAN12, NDP, etc.,48–51 and Norrie disease is caused by mutations in the NDP 
gene.46 These genes encode proteins which are components of the Wnt/beta-catenin 

signaling pathway – a group of signal transduction pathways with roles in cell survival, 

proliferation, and migration throughout the body.

The canonical (beta-catenin dependent) Wnt pathway has known roles in a variety of 

diseases with angiogenic properties including DR and AMD.52,53 Frizzled-4 and low-

density-lipoprotein receptor related protein 5 (LRP-5) are receptors for Wnt ligands, and 

tetraspanin-12 is an auxillary membrane protein. Norrin, a product of NDP gene, binds to 

the Frizzled-4, LRP-5, and tetraspanin-12 receptor complex and activates signals on 

endothelial cells. Mutations of these genes have been investigated in ROP (Table 2).

Mutations in the FZD4 gene were found in up to 7.5% of patients with severe ROP (Table 

2).54–57 A 2015 study of 421 patients displaying various vitreoretinopathies found a 

significant association between the FZD4 double missense mutation [P33S(;)P168S] and 

both ROP and FEVR.57 A study of 53 Japanese patients with advanced ROP was performed 

using direct sequencing of FZD4, TSPAN12, NDP, and LRP5. Investigators identified six 

nonsynonymous DNA variants in the coding regions of FZD4 and LRP5, but detected no 

changes in NDP or TSPAN12, demonstrating involvement of Wnt with ROP.56

Mutations in the NDP gene have also been found in ROP patients with variable frequencies 

(Table 2).58–60 SNP studies in Kuwaiti populations have supported evidence of a link 

between NDP and ROP,60 while other studies have implied that mutations in the regulatory 

region of NDP are also a contributor to the development of ROP.61 The relationship between 

SNPs residing in the UTR of NDP and progression of ROP to advanced disease has also 

been investigated. The Kuwaiti study by Haider found that 83% of patients with severe 

disease possessed NDP 597C>A polymorphisms in their UTR, while none of those whose 

disease resolved spontaneously possessed this polymorphism.60

Taken together, these findings intriguingly suggest involvement for the Wnt pathway and 

associated genes in ROP development, and serve as strong candidates for further sequencing 

research. It should be noted that it may be difficult or nearly impossible to differentiate ROP 

from FEVR in premature infants. This has recently been proposed as a new classification, 

ROPER (ROP vs. FEVR) due to the clinical similarity of the two conditions.62 In future 

studies, in-depth analysis of clinical features, retinal imaging with fluorescein angiography, 

genetic and phenotypic analysis of relatives, and functional analysis of genetic variants may 

be helpful for better understanding of genetics in ROP as well as FEVR.

IGF-1

Insulin-like growth factor 1 (IGF-1), a growth hormone promoting somatic growth and 

maturation, has also been proposed as a contributing factor to ROP progression.63 IGF-1-

Swan et al. Page 5

Ophthalmol Retina. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deficient mice showed a decrease in vascular development61 and lower birth weight64 than 

those of controls. In human babies, low IGF-1 levels were also associated with low birth 

weight,65 and persistent low serum IGF-1 levels were associated with severity of ROP.63,66 

Based on these findings, IGF-1 replacement therapy has recently been investigated.67 A 

phase 2 trial of administering a complex of recombinant human IGF-1 and IGFBP-3 to 

prevent ROP was undertaken, but the study did not meet its primary endpoint of reducing 

severity of ROP.68

Investigations of specific polymorphisms of IGF-1 gene have been unsuccessful finding a 

significant association. A study linked a c.3174G>A polymorphism in the IGF-1 receptor 

gene (IGF1R) to low levels of plasma IGF-1.69 A 2006 study of 392 infants in Hungary was 

unable to detect a difference in the prevalence of the IGF1R c.3174G>A among severe ROP, 

mild ROP and full-term groups (Table 2).70 A 2007 study in an American population was 

also unable to find a link between advanced ROP and IGF1R c.3174G>A polymorphism 

(Table 2).71

eNOS

Endothelial nitric oxide synthase (eNOS) is one of the constitutive enzymes that synthesize 

NO, which is known to play a regulatory role in retinal and choroidal blood flow.72,73 In an 

eNOS-deficient mouse OIR model, neovascularization and vaso-obliteration were both 

reduced.74 Moreover, eNOS gene polymorphisms have shown reduced NO levels.75 Thus, 

the association between ROP and eNOS gene (NOS3) polymorphisms have been 

investigated. A literature search showed that 3 SNPs (rs2070744, rs1799983 and 

rs61722009) and one variable number tandem repeat (VNTR), 27-bp VNTR in intron 4, had 

been observed in ROP patients (Table 2). Although some studies reported positive 

associations between rs2070744, rs1799983, or the 27-bp VNTR and ROP, others found 

contradictory results (Table 2).

Inflammatory Mediators

Growing evidence suggests that perinatal inflammation and infection may increase the risk 

for ROP by direct proangiogenic effects and/or modifying known risk factors.76 Studies have 

reported higher plasma levels of inflammatory cytokines including IL-6, Il-8, and TNF77 and 

higher vitreous levels of inflammatory cytokines including IL-6, IL-7, IL-10, IL-15, etc. in 

eyes with advanced ROP.78

Dammann et al investigated 4 SNPs of inflammation-associated genes (IL1B, TNF, IL10, 

TLR4) in preterm patients, but none showed significant association, although there were 

trends towards higher stage of ROP with the presence of TNF and IL1B SNPs (Table 2).76 

TNF −308G>A polymorphism also showed no significant associations with ROP (Table 2).

A recent study has also shown an angiogenic role for mast cells and associated factors 

including mast cell tryptase and monocyte chemotactic protein-1, making them a potential 

target for ROP research.79
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Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF), a neuronal trophic factor in brain and retina, may 

promote survival of several types of retinal neurons.80–83 Although the exact role of BDNF 

in retinal angiogenesis is unknown, reduced BDNF levels have been demonstrated in 

patients with severe ROP, suggesting a possible role of BDNF in development of severe 

ROP.84–86 In an animal model study, the retinal level of BDNF was lower in the OIR mouse 

model compared to that in normal controls.86

In a large-scale candidate gene study, which analyzed 1614 Tag SNPs of the 145 candidate 

genes in 817 infants in the discovery cohort and 543 in the US replication cohort, it was 

found that two SNPs (rs7934165 and rs2049046) in the intronic region of BDNF were 

associated with severe ROP. Although these results were not independently confirmed in the 

replication cohort, the association with rs7934165 did increase in significance with severe 

ROP in their meta-analysis of the combined data. Interestingly, reduced serum BDNF in the 

severe ROP group was also found in the same discovery cohort.87 Further studies on the 

functional effects of intronic variants of BDNF and replication studies in different 

populations are warranted.

Renin-Angiotensin System

The Renin Angiotensin system (RAS) has been linked to retinal vascular development and 

pathological angiogenesis. Blockade of RAS with inhibitors of angiotensin-converting 

enzyme (ACE) and angiotensin receptor blockers ameliorated OIR, suggesting that 

inhibiting RAS may be beneficial in ROP.88 A SNP study of ACE gene showed association 

with DR.87

However, results from genetic studies on RAS component genes in ROP are inconclusive 

(Table 2). A study in Italy showed no associations between ROP and SNPs of ACE gene 

(ACE), angiotensinogen gene (AGT) and angiotensinogen type 1 receptor gene (AGTR1). In 

a study of 181 premature Kuwaiti infants on 287-bp insertion(I)/deletion(D) in intron 16, the 

frequency of II genotype was higher in ROP patients compared to normal controls, but the 

frequency of DD genotype was higher in advanced ROP patients compared to regressed 

ROP.90 A candidate gene study of 228 infants with ROP and 102 controls found a SNP in 

the AGTR1 gene to be associated with ROP, though this association was not significant after 

Bonferroni correction.91

Angiopoietins

Angiopoietin(Ang)-1 and -2 are growth factors that are essential for retinal vascular 

development. Ang-1 binds tyrosine kinase receptor Tie2 and promotes vascular maturation 

and stabilization.92 In an OIR model, intravitreal Ang-1 promoted normal vascular 

regeneration while inhibiting pathological angiogenesis and vascular leakage.93 In contrast, 

Ang-2, a competitive antagonist of Ang-1/Tie-2, promotes neovascularization in animal 

models.94,95 Vitreous levels of Ang-1 and Ang-2 in eyes of stage 4 ROP were higher than 

those of control eyes.96 However, in two studies of Ang-2 gene promoter polymorphism 

(ANGPT2 −35G>C), no association was found with ROP (Table 2).
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Erythropoietin

Erythropoietin (EPO), a hormone known to stimulate red blood cell formation in bone 

marrow, and EPO receptors are expressed in retina, and their expression is regulated by 

oxygen status.97,98 Mouse models of ROP have shown that vascular stability is affected by 

EPO levels, with exogenous restoration of EPO leading to a reduction in blood vessel 

dropout during the first phase of ROP.96 Conversely, elevated levels of EPO during the 

second stage of ROP exacerbated vasoproliferation, and the vitreous level of EPO is elevated 

in eyes with stage 4 ROP. Increased erythropoietin receptor signaling has also been shown to 

influence severe OIR models of disease through VEGFR2-mediated angiogenesis, making it 

an important target for clinical research in human patients.99,100 While a variant of EPO was 

investigated in a candidate-gene study by Mohamed et. al., significance for this variant was 

not reported in the study results.91

Hypoxia inducible factor

HIF-1 plays a central role in oxygen homeostasis.101 According to the oxygen environment, 

HIF-1 regulates transcription of genes such as VEGF, VEGFR1, PDGF, SDF-1 and Ang2, 

which have been suggested to play important roles in retinal angiogenesis.94 In a study of 

Hif1α knockout mice in an OIR model of disease, disruption of HIF-1 was shown to lead to 

decreased VEGF abundance, indicating a possible role in neovascularization.102 

Additionally, organ system pharmacology studies in mouse models have indicated that 

stabilization of HIF-1 may be important for protection against oxygen toxicity in premature 

infants.103

Likewise, homologous recombination models in mice studying HIF-1a-like factor (HLG) 

and HIF2α found decreasing expression of these genes led to decreased EPO expression and 

resistance to hyperoxia treatments meant to induce ROP.104 HIF1α was also shown to 

upregulate annexin A2 expression in OIR mice during hypoxia, supporting a role in OIR 

models.105

HIF2α’s closest human analogue, known as Endothelial PAS Domain Protein 1 (EPAS1), 

serves as the main regulator of EPO induction and has also been shown to have a connection 

to ROP.106 A candidate gene study of 153 genes in 347 infants under 32 weeks gestational 

age found an association between EPAS1 with development of severe ROP.91

Heme oxygenase-1

Heme oxygenase-1 plays important roles in inflammatory responses, oxidative stress, iron-

metabolism, and vascular physiology. However, in a candidate gene study, rs3074372 in 

HMOX1 showed no significant association with ROP (Table 2).

Other candidate factors—In addition to the above described factors and pathways, a 

number of other potential targets and mechanisms have been identified that lack genetic 

studies in patients with ROP. The ‘a’ disintegrin and metalloproteinase (ADAM) family of 

proteases are involved in the degradation of extracellular matrix components as well as 

interactions mediated by integrin.107 Several subtypes of ADAM family are implicated in 

the pathogenesis of ROP. ADAM17 knockout mice showed less neovascularization in OIR 
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models without affecting normal vascular development.108 Moreover, ADAM 8, 9, and 10 

was found to play a role in development of plus disease in OIR mouse models. Adam8−/− 

and Adam9−/− mice and mice lacking ADAM10 in endothelial cells showed less severe 

tortuosity and dilation mimicking less plus disease in ROP.109 Further evaluations in humans 

including genetic analysis are warranted.

In conjunction with ADAM17, studies have also considered the family of tissue inhibitor of 

metalloproteinases (TIMP) family of proteins. The TIMP-3 protein specifically is a known 

physiological ADAM17 inhibitor.110 Mouse model investigations into the application of this 

protein as a potential treatment showed that TIMP-3 application was linked to decreased 

neovascular tuft formation.109

In addition to these studies, large candidate gene studies of ROP have been successful 

identifying targets with undiscovered connections to ROP. The previously mentioned study 

by Mohamed et al. implicated genes with function in embryonic development (IHH), 

transcription (TBX5), and protein localization (GP1BA, CETP) (Table 2).91 The same study 

also found an association between ROP and complement factor H (CFH), known to be 

associated with development of AMD.38

DISCUSSION

Summary of previous studies

Most genetic studies in ROP have used the candidate gene approach and focused on genes 

related to angiogenesis, inflammation, and retinal (neuro)development. Among them, 

VEGFA polymorphisms and FEVR-related genes have been most extensively studied in 

different populations. However, no VEGFA polymorphisms have been proven to be 

associated with ROP, because most positive studies have not been replicated in other 

populations (Table 1). Variants of Wnt pathway genes, which are known to cause FEVR or 

Norrie disease, have been also found in ROP patients, suggesting possible associations of 

these variants in at least a small proportion of severe ROP patients (Table 2). However, these 

results also have limitations in that we may not confidently distinguish between premature 

infants with severe ROP and FEVR-related genetic variants and prematurely-born infants 

with FEVR, as Hartnett et al. pointed out.27 In addition the polygenic nature of many 

diseases makes identification of causative variants difficult in small sample sizes focused on 

a small number of variants.111 Recently, results of a large-scale candidate gene study using 

Tag SNPs of the 145 candidate genes in a multiracial cohort were reported.87 Although no 

SNPs were significantly associated with the presence versus absence of ROP in this study, 

one SNP of BDNF gene was significantly associated with severe ROP in their meta-analysis 

combining the discovery and replication cohorts, which warrants further genetic and 

biological studies.

Limitations of previous studies

It is difficult to draw meaningful conclusions from most of the candidate gene studies 

reviewed here due to the following limitations: (1) the sample sizes of most individual 

studies were small; (2) no replication study has been performed for many variants; (3) there 
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are conflicting results among studies of the same variants; (4) most studies were conducted 

using only one or a few clinical sites; (5) ocular phenotype was not standardized; (6) 

confounding variables were not reported or standardized; (7) meta-analysis is not possible 

for most variants due to different study protocols between studies; (8) there are variabilities 

in neonatal care such as oxygen treatment protocol9, incidence of (severe) ROP, and 

diagnosis and management of ROP between physicians, study hospitals, study countries and 

study periods.8,112–115 Differences in neonatal care may affect survival rate, systemic 

morbidities of prematurity, incidence of ROP and severity of ROP, making it difficult to find 

exact roles of genetic variants. Moreover, there are unexplained differences in outcome of 

premature birth such as mortality. Also, differences in diagnosis and management of ROP 

may cause bias in phenotypic categorization of subjects, which is a huge problem in genetic 

studies. It should be noted that genetic risk factors for stage 1-3 ROP and stage 4 or 5 ROP 

could be different, as different biochemical processes may be involved and management 

protocols and treatment outcomes of study centers are also important factors for stage 4 or 5 

ROP.

Most importantly, candidate gene studies have inherent limitations of not being able to find 

novel genetic factors. Other approaches to detect novel variants or genes associated with 

ROP are necessary.

Future Directions of studying ROP genetics

It is very challenging to study the genetics of multifactorial diseases such as ROP. To 

overcome the current limitations mentioned above and to study the contribution of genetics 

efficiently, it is necessary to improve the methodology for studying the genetics of ROP. It is 

essential that investigators leverage new methods that interrogate genetic factors agnostically 

and at high sample sizes, in order to maximize study power and facilitate simultaneous 

investigation of many, rather than single, genetic elements. Genome-wide Association 

Studies (GWAS) test for association across hundreds of thousands of SNPs simultaneously 

using array-based technology. GWAS can be helpful to find genes or pathways associated 

with ROP. In other ophthalmological diseases such as AMD38,116–118, DR119,120, 

glaucoma121–123 and myopia124–126, GWAS has been successful in finding susceptibility 

loci. However, a large-scale GWAS has not been conducted in ROP. Massively parallel 

sequencing, also called next-generation sequencing (NGS), enables sequencing of specific 

regions, whole exome, or whole genome in a short period of time at high depth and 

affordable cost. Whole exome sequencing or targeted exome sequencing can be helpful for 

finding novel variants with possible functional consequences. Exome genotyping arrays may 

also provide a method of interrogating for SNPs involved in ROP.

In addition to these genetic evaluations, integration of sequence data with data regarding 

post-transcriptional and post-translational modification, including transcriptomics, 

metabolomics, and proteomics, will be important to identify biomarkers that may be useful 

for early detection, diagnosis, and prediction of treatment response. Studies of epigenetics in 

DR have also shown promise, with epigenetic changes associated with processes of 

microvasculature complications127, mitochondrial dysfunction128, microRNA expression129, 
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and capillary cell apoptosis.130,131 These findings suggest that interrogation of epigenetic 

factors may be an important method of discovering new treatments in ROP.

Second, large-scale multi-center collaboration of the type offered by consortium studies can 

help provide structure to such studies. Consortium approaches facilitate recruitment of larger 

cohorts and make available more sophisticated computational approaches allowing 

investigators to control for more complicated confounding effects. Previous large 

international consortium attempts at examining the role of genetics in multifactorial disease 

have met with success38,121,132–134, and two consortium studies investigating the genetic 

causes of ROP are currently ongoing at centers in North America.135,136

Third, standardization of ocular phenotypes and confounding factors is crucial. For this, 

ocular and systemic factors should be acquired systematically, and known risk factors 

including GA and BW should be assessed in a standardized fashion and strictly controlled 

for. Additionally, the importance of environmental effects should be noted, as differences 

between study populations and sites has the ability to have a profound effect on phenotype. 

Heterogeneity of study subjects in race, ethnicity, and physical covariates, as well as 

differences between treatment sites and attending clinicians can affect study outcomes. This 

is especially important to distinguish genetic variants associated with ROP from those 

associated with prematurity itself. Also, objective phenotyping such as image-based 

diagnosis should be considered. Compared to clinical ophthalmoscopic diagnosis, consensus 

image-based diagnosis may enable reduction of intra- and inter-grader discrepancy in ROP 

diagnosis.

It is also important to note that additional basic research studies using representative animal 

models such as mouse or rat OIR models are required to test hypotheses. While animal 

models face many limitations including differences in biology, most notably their use of full-

term rather than premature animals, these models’ ability to control for phenotypic, 

environmental, and genetic stratification factors distinguishes them as a valuable method of 

testing hypotheses and adding insight to human observational studies.

Expected benefits of genetic studies of ROP

Finding genetic variants affecting ROP will be useful in at least three ways. First, genetic 

risk factors may be incorporated into risk modelling to predict development and progression 

of ROP. A refined risk analysis system with clinical and genetic risk factors may help 

clinicians to identify both high- and low-risk patients. Second, identifying specific genes or 

biological pathways that contribute the pathogenesis of ROP may be helpful for 

development of new therapeutics. In AMD, genetic studies have revealed the importance of 

complement pathway in the pathogenesis of AMD, which has led to development of new 

investigational agents under clinical trials such as lampalizumab, an inhibitor of complement 

factor D. Third, studying ROP genetics can also contribute to the understanding of 

pathophysiologies of other ocular vascular diseases such as AMD or DR and other 

angiogenesis-related diseases like cancer.15 Fourth, a better understanding of the genetics of 

retinopathy of prematurity may lead to better understanding of the pathophysiologic 

mechanisms of common neonatal diseases of prematurity such as chronic lung disease.
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Conclusion

Evidence suggests a genetic contribution to ROP, including epidemiologic studies, twin 

studies and risk analysis studies. To date, a number of candidate gene studies have been 

performed. However, it is still unclear which genes or variants are significantly and strongly 

associated with development and progression of ROP. Large-scale studies using NGS and 

GWAS with standardized phenotyping have potential to expand understanding of genetic 

contributions and pathophysiology of ROP.
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ABBREVIATIONS

ROP Retinopathy of Prematurity

AP-ROP aggressive posterior retinopathy of prematurity

BW birth weight

GA gestational age

CRYO-ROP cryotherapy for ROP

OIR oxygen induced retinopathy

DR diabetic retinopathy

AMD age-related macular degeneration

FEVR familial exudative vitreoretinopathy

UTR untranslated region
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Table 1

Studies Investigating the Association Between VEGFA Genes and Retinopathy of Prematurity (ROP)

Polymorphism Study country Subjects Results Reference

rs2010963
(−634G>C, +405G>C)

United Kingdom

91 treatment-requiring ROP (BW 779g [440–
1185g], GA 25 wk [23–32 wk]), 97 non-
treatment-requiring preterm infants (BW 920 g 
[448–2302g], GA 26 wk ± 2.9 wk)

Higher frequency G allele 
among infants with threshold 
ROP

41

Hungary
115 treatment-requiring ROP (BW 1160g 
± 270g, GA 28.5 wk ± 2.0 wk), 86 mild or no 
ROP (BW 1200g ±270g, GA 29.2 wk ± 2.9 wk)

Higher frequency C allele 
among treated infants

137

Turkey

42 treatment-requiring ROP (BW 1097.5g 
± 264.3g, GA 28.2 wk ± 2.4 wk), 50 regressed 
ROP (BW 1253.0g ± 212.2g, GA 29.7 wk ± 2.0 
wk), 31 no ROP (BW 1345.6g ± 225.9g)

No significant association 138

United States
61 stage 4/5 ROP (BW 882g [600–1300g], GA 
26 wk [23–30 wk]), 61 normal controls (BW 
2430–3960g, GA 34–40 wk)

No significant association 139

Japan
127 ROP (944g [3778–2168g], GA 27 wk [22–
33 wk]), 77 no ROP (BW 1596g [692–2400g], 
GA 32 wk [22–33 wk])

No significant association 140

Egypt
62 ROP (BW 1400g [1000–2110g], GA 32 wk 
[28–34 wk]), 40 no ROP (BW 1640g [1009–
2800g], GA 33 wk [29–35 wk])

High frequency of G allele in 
ROP

42

Poland

60 treatment-requiring ROP (BW 900g ± 225g, 
GA 26.7 wk ± 2.3 wk), 20 regressed ROP (BW 
1029g ±231g, GA 27.5 wk ± 1.6 wk), 101 no 
ROP (BW 1153g ±225g, GA 29.2 wk ± 2.05 
wk)

No significant association 141

Iran

15 treatment-requiring ROP (BW 879g ± 81g, 
GA 27 wk ± 13 wk), 30 regressed ROP (BW 
884g ± 63g, GA 27 wk ± 12 wk), 66 no ROP 
(BW 980g ± 81 g, GA 27 wk ± 10 wk)

No significant association 142

rs1547651 Caucasian 43 ROP, 299 no ROP (all subjects GA ≤ 28 
weeks) No significant association 43

rs3025039
(+936C>T)

Caucasian 43 ROP, 299 no ROP (all subjects GA ≤ 28 
weeks) No significant association 43

Iran

15 treatment-requiring ROP (BW 879g ± 81g, 
GA 27 wk ± 13 wk), 30 regressed ROP (BW 
884g ± 63g, GA 27 wk ± 12 wk), 66 no ROP 
(BW 980g ± 81 g, GA 27 wk ± 10 wk)

No significant association 142

United States 33 stage 4/5 ROP, 49 normal controls No significant association 143

Egypt
62 ROP (BW 1400g [1000–2110g], GA 32 wk 
[28–34 wk]), 40 no ROP (BW 1640g [1009–
2800g], GA 33 wk [29–35 wk])

No significant association 42

rs833058 Italy 43 ROP, 299 no ROP (all subjects GA ≤ 28 
weeks) No significant association 43

rs833061
(−460C>T)

Italy 43 ROP, 299 no ROP (all subjects GA ≤ 28 
weeks) No significant association 43

Hungary

115 treatment-requiring ROP (BW 1160g 
± 270g, GA 28.5 wk ± 2.0 wk), 86 mild or no 
ROP (BW 1200g ± 270g, GA 29.2 wk ± 2.9 
wk)

High frequency of 460TT/
405CC haplotype in 
treatment-requiring ROP

137

Turkey

42 treatment-requiring ROP (BW 1097.5g 
± 270g, GA 28.2 wk ± 2.4 wk), 50 regressed 
ROP (BW 1253.0g ± 212.2g, GA 29.7 wk ± 2.0 
wk), 31 no ROP (BW 1345.6g ± 225.9g)

No significant association 138
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Polymorphism Study country Subjects Results Reference

United States
61 stage 4/5 ROP (BW 882g [600–1300g], GA 
26 wk [23–30 wk]), 61 normal controls (BW 
2430–3960g, GA 34–40 wk)

No significant association 139

+13553C>T Japanese
127 ROP (BW 944g [378–2168g], GA 27 wk 
[22–33 wk]), 77 no ROP (BW 1596g [692–
2400g], GA 32 wk [22–33 wk])

A significant association 
between the TT genotype and 
non-severe ROP for 
gestational age

140

+702C>T United States 33 stage 4/5 ROP, 49 normal controls No significant association 143

+1612G>A United States 33 stage 4/5 ROP, 49 normal controls No significant association 143

−2578C>A United States
ROP (BW 2430–3960g, GA 34–40 wk), no 
ROP (BW 600–1300g, GA 23–30 wk) (number 
of patients not reported)

No significant association 144

Hungary

90 treatment-requiring ROP (BW 1160g 
± 300g, GA 28.5 wk ± 2.4 wk), 110 mild (stage 
1 or 2) or no ROP (BW 1200g ± 280g, GA 28.5 
wk ± 2.4 wk)

No significant association 145

Table lists investigated polymorphism and presence of statistical significance. Where noted in the original study, information is provided in 
parentheses regarding the birth weight (BW) and gestational age (GA) of patients. Brackets denote range of patient values and ± denotes one 
standard deviation of range of each variable.
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