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Abstract

Accurate segmentation of infant hippocampus from Magnetic Resonance (MR) images is one of 

the key steps for the investigation of early brain development and neurological disorders. Since the 

manual delineation of anatomical structures is time-consuming and irreproducible, a number of 

automatic segmentation methods have been proposed, such as multi-atlas patch-based label fusion 

methods. However, the hippocampus during the first year of life undergoes dynamic appearance, 

tissue contrast and structural changes, which pose substantial challenges to the existing label 

fusion methods. In addition, most of the existing label fusion methods generally segment target 

images at each time-point independently, which is likely to result in inconsistent hippocampus 

segmentation results along different time-points. In this paper, we treat a longitudinal image 

sequence as a whole, and propose a spatial-temporal hypergraph based model to jointly segment 

infant hippocampi from all time-points. Specifically, in building the spatial-temporal hypergraph, 

(1) the atlas-to-target relationship and (2) the spatial/temporal neighborhood information within 

the target image sequence are encoded as two categories of hyperedges. Then, the infant 

hippocampus segmentation from the whole image sequence is formulated as a semi-supervised 

label propagation model using the proposed hypergraph. We evaluate our method in segmenting 

infant hippocampi from T1-weighted brain MR images acquired at the age of 2 weeks, 3 months, 6 

months, 9 months, and 12 months. Experimental results demonstrate that, by leveraging spatial-

temporal information, our method achieves better performance in both segmentation accuracy and 

consistency over the state-of-the-art multi-atlas label fusion methods.

1 Introduction

Since hippocampus plays an important role in learning and memory functions of human 

brain, many early brain development studies are devoted to finding the imaging biomarkers 

specific to hippocampus from birth to 12-month-old [1]. During this period, the 

hippocampus undergoes rapid physical growth and functional development [2]. In this 

context, accurate hippocampus segmentation from Magnetic Resonance (MR) images is 

important to imaging-based brain development studies, as it paves way to quantitative 
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analysis on dynamic changes. As manual delineating of hippocampus is time-consuming and 

irreproducible, automatic and accurate segmentation method for infant hippocampus is 

highly needed.

Recently, multi-atlas patch-based label fusion segmentation methods [3–7] have achieved the 

state-of-the-art performance in segmenting adult brain structures, since the information 

propagated from multiple atlases can potentially alleviate the issues of both large inter-

subject variations and inaccurate image registration. However, for the infant brain MR 

images acquired from the first year of life, a hippocampus typically undergoes a dynamic 

growing process in terms of both appearance and shape patterns, as well as the changing 

image contrast [8]. These challenges limit the performance of the multi-atlas methods in the 

task of infant hippocampus segmentation. Moreover, most current label fusion methods 

estimate the label for each subject image voxel separately, ignoring the underlying common 

information in the spatial-temporal domain across all the atlas and target image sequences. 

Therefore, these methods provide less regularization on the smoothness and consistency of 

longitudinal segmentation results.

To address these limitations, we resort to using hypergraph, which naturally caters to 

modeling the spatial and temporal consistency of a longitudinal sequence in our 

segmentation task. Specifically, we treat all atlas image sequences and target image 

sequence as whole, and build a novel spatial-temporal hypergraph model, for jointly 

encoding useful information from all the sequences. To build the spatial-temporal 

hypergraph, two categories of hyperedges are introduced to encode information with the 

following anatomical meanings: (1) the atlas-to-target relationship, which covers common 

appearance patterns between the target and all the atlas sequences; (2) the spatial/temporal 

neighborhood within the target image sequence, which covers common spatially- and 

longitudinally-consistent patterns of the target hippocampus. Based on this built spatial-

temporal hypergraph, we then formulate a semi-supervised label propagation model to 

jointly segment hippocampi for an entire longitudinal infant brain image sequence in the 

first year of life. The contribution of our method is two-fold:

First, we enrich the types of hyperedges in the proposed hypergraph model, by leveraging 

both spatial and temporal information from all the atlas and target image sequences. 

Therefore, the proposed spatial-temporal hypergraph is potentially more adapted to the 

challenges, such as rapid longitudinal growth and dynamically changing image contrast in 

the infant brain MR images.

Second, based on the built spatial-temporal hypergraph, we formulate the task of 

longitudinal infant hippocampus segmentation as a semi-supervised label propagation 

model, which can unanimously propagate labels from atlas image sequences to the target 

image sequence. Of note, in our label propagation model, we also use a hierarchical strategy 

by gradually recruiting the labels of high-confident target voxels to help guide the 

segmentation of less-confident target voxels.

We evaluate the proposed method in segmenting hippocampi from longitudinal T1-weighted 

MR image sequences acquired in the first year of life. More accurate and consistent 
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hippocampus segmentation results are obtained across all the time-points, compared to the 

state-of-the-art multi-atlas label fusion methods [6, 7].

2 Method

For labeling the longitudinal target images with T time-points {IO,t|t = 1, …, T, the first step 

is to linearly align S longitudinal atlas image sequences {Is,t|s = 1, …, S; t = 1,…,T} into the 

target image space. Then, the spatial-temporal hypergraph is constructed as detailed in Sect. 

2.1. Finally, hippocampus is longitudinally segmented through the label propagation based 

on the semi-supervised hypergraph learning, as introduced in Sect. 2.2.

2.1 Spatial-Temporal Hypergraph

Denote a hypergraph as  = ( , ℰ, w), composed of the vertex set  = {vi|i = 1, …, | |}, 

the hyperedge set ℰ = {ei|i = 1, …, |ℰ|} and edge weight vector w ∈ ℛ|ℰ|. Since each 

hyperedge ei allows linking more than two vertexes included in ,  naturally characterizes 

groupwise relationship, which reveals high-order correlations among a subset of voxels [9]. 

By encoding both spatial and temporal information from all the target and atlas image 

sequences into the hypergraph, a spatial-temporal hypergraph is built to characterize various 

relationships in the spatial-temporal domain. Generally, our hypergraph includes two 

categories of hyperedges: (1) the atlas-to-target hyperedge, which measures the patch 

similarities between the atlas and target images; (2) the local spatial/temporal neighborhood 

hyperedge, which measures the coherence among the vertexes located in a certain spatial 

and temporal neighborhood of atlas and target images.

Atlas-to-Target Hyperedge—The conventional label fusion methods only measure the 

pairwise similarity between atlas and target voxels. In contrast, in our model, each atlas-to-

target hyperedge encodes groupwise relationship among multiple vertexes of atlas and target 

images. For example, in the left panel of Fig. 1, a central vertex vc (yellow triangle) from the 

target image and its local spatial correspondences v7 ∼ v12 (blue square) located in the 

atlases images form an atlas-to-target hyperedge e1 (blue round dot curves in the right panel 

of Fig. 1). In this way, rich information contained in the atlas-to-target hyperedges can be 

leveraged to jointly determine the target label. Thus, the chance of mislabeling an individual 

voxel can be reduced by jointly propagating the labels of all neighboring voxels.

Local Spatial/Temporal Neighborhood Hyperedge—Without enforcing spatial and 

temporal constraints, the existing label fusion methods are limited in labeling each target 

voxel at each time-point independently. We address this problem by measuring the 

coherence between the vertexes located at both spatial and temporal neighborhood in the 

target images. In this way, local spatial/temporal neighborhood hyperedges can be built to 

further incorporate both spatial and temporal consistency into the hypergraph model. For 

example, spatially, the hyperedge e2 (green dash dot curves in the right panel of Fig. 1) 

connects a central vertex vc (yellow triangle) and the vertexes located in its local spatial 

neighborhood v1 ∼ v4 (green diamond) in the target images. We note that v1 ∼ v4 are 

actually very close to vc in our implementation. But, for better visualization, they are shown 

with larger distance to vc in Fig. 1. Temporally, the hyperedge e3 (red square dot curves in 
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the right panel of Fig. 1) connects vc and the vertexes located in its local temporal 

neighborhood v5 ∼ v6 (red circle), i.e., the corresponding positions of the target images at 

different time-points.

Hypergraph Model—After determining the vertex set  and the hyperedge set ℰ, a | | × |

ℰ| incidence matrix H is obtained to encode all the information within the hypergraph . In 

H, rows represent | | vertexes, and columns represent |ℰ| hyperedges. Each entry H(v, e) in 

H measures the affinity between the central vertex vc of the hyperedge e ∈ ℰ and each 

vertex v ∈ e as below:

H(v, e) = exp −
p(v) − p(vc)2

2

σ2 if v ∈ e

0 if v ∉ e

(1)

where ‖.‖2 is the L2 norm distance computed between vectorized intensity image patch p(v) 

for vertex v and p(vc) for central vertex vc. σ is the averaged patchwise distance between vc 

and all vertexes connected by the hyperedge e.

Based on Eq. (1), the degree of a vertex v ∈  is defined as d(v) = Σe∈εw(e)H(v, e), and the 

degree of hyperedge e ∈ ℰ is defined as δ(e) = Σv∈vH(v, e). Diagonal matrices Dv, De and 

W are then formed, in which each entry along the diagonal is the vertex degree d(v), 

hyperedge degree δ(e) and hyperedge weights w(e), respectively. Without any prior 

information on the hyperedge weight, w(e) is uniformly set to 1 for each hyperedge.

2.2 Label Propagation Based on Hypergraph Learning

Based on the proposed spatial-temporal hypergraph, we then propagate the known labels of 

the atlas voxels to the voxels of the target image sequence, by assuming that the vertexes 

strongly linked by the same hyperedge are likely to have the same label. Specifically, this 

label propagation problem can be solved by a semi-supervised learning model as described 

below.

Label Initialization—Assume Y = [y1, y2] ∈ ℛ| |×2 as the initialized labels for all the | | 

vertexes, with y1 ∈ ℛ| | and y2 ∈ ℛ| | as label vectors for two classes, i.e., hippocampus 

and non-hippocampus, respectively. For the vertex v from the atlas images, its corresponding 

labels are assigned as y1(v) = 1 and y2(v) = 0 if v belongs to hippocampus regions, and vice 

versa. For the vertex v from the target images, its corresponding labels are initialized as 

y1(v) = y2(v) = 0.5, which indicates the undetermined label status for this vertex.

Hypergraph Based Semi-Supervised Learning—Given the constructed hypergraph 

model and the label initialization, the goal of label propagation is to find the optimized 

relevance label scores F = [f1,f2] ∈ ℛ| |×2 for vertex set , in which f1 and f2 represent the 

preference for choosing hippocampus and non-hippocampus, respectively. A hypergraph 

based semi-supervised learning model [9] can be formed as:
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arg minF λ ⋅ ∑i = 1
2 f i − yi

2 + Ω(F, H, W) (2)

There are two terms, weighted by a positive parameter λ, in the above objective function. 

The first term is a loss function term penalizing the fidelity between estimation F and 

initialization Y. Hence, the optimal label prorogation results are able to avoid large 

discrepancy before and after hypergraph learning. The second term is a regularization term 

defined as:

Ω(F, H, W) = 1
2 ∑i = 1

2 ∑e ∈ ℰ
2 ∑vc, v ∈ 𝒱

w(e)H(vc, e)H(v, e)
δ(e) ×

f i(vc)
d(vc)

−
f i(v)
d(v)

2
(3)

Here, for the vertexes vc and v connected by the same hyperedge e, the regularization term 

tries to enforce their relevance scores being similar, when both H(vc, e) and H(v, e) are 

large. For convenience, the regularization term can be reformulated into a matrix form, i.e., 

∑i = 1
2 f i

TΔ f i, where the normalized hypergraph Laplacian matrix Δ = I − Θ is a positive 

semi-definite matrix, Θ = Dv
− 1

2 HWDe
−1HT Dv

− 1
2  and I is an identity matrix.

By differentiating the objective function (2) with respect to F, the optimal F can be 

analytically solved as F = λ
λ + 1 (I − 1

λ + 1 ⋅ Θ)
−1

Y. The anatomical label on each target vertex 

v ∈  can be finally determined as the one with larger score: arg max
i

f i(v).

Hierarchical Labeling Strategy—Some target voxels with ambiguous appearance (e.g., 

those located at the hippocampal boundary region) are more difficult to label than the voxels 

with uniform appearance (e.g., those located at the hippocampus center region). Besides, the 

accuracy of aligning atlas images to target image also impacts the label confidence for each 

voxel. In this context, we divide all the voxels into two groups, such as the high-confidence 

group and the less-confidence group, based on the predicted labels and their confidence 

values in terms of voting predominance from majority voting. With the help of the labeling 

results from high-confident region, the labeling for the less-confident region can be 

propagated from both atlas and the newly-added reliable target voxels, which makes the 

label fusion procedure more target-specific. Then, based on the refined label fusion results 

from hypergraph learning, more target voxels are labeled as high-confidence. By iteratively 

recruiting more and more high-confident target vertexes in the semi-supervised hypergraph 

learning framework, a hierarchical labeling strategy is formed, which gradually labels the 

target voxels from high-confident ones to less-confident ones. Therefore, the label fusion 

results for target image can be improved step by step.
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3 Experimental Results

We evaluate the proposed method on a dataset containing MR images of ten healthy infant 

subjects acquired from a Siemens head-only 3T scanner. For each subject, T1-weighted MR 

images were scanned at five time-points, i.e., 2 weeks, 3 months, 6 months, 9 months and 12 

months of age. Each image is with the volume size of 192 × 156 × 144 voxels at the 

resolution of 1 × 1 × 1 mm3. Standard preprocessing was performed, including skull 

stripping, and intensity inhomogeneity correction. The manual delineations of hippocampi 

for all subjects are used as ground-truth.

The parameters in the proposed method are set as follows. The patch size for computing 

patch similarity is 5 × 5 × 5 voxels. Parameter λ in Eq. (2) is empirically set to 0.01. The 

spatial/temporal neighborhood is set to 3 × 3 × 3 voxels. The strategy of leave-one-subject-

out is used to evaluate the segmentation methods. Specifically, one subject is chosen as the 

target for segmentation, and the image sequences of the remaining nine subjects are used as 

the atlas images. The proposed method is compared with two state-of-the-art multi-atlas 

label fusion methods, e.g., local-weighted majority voting [6] and sparse patch labeling [7], 

as well as a method based on a degraded spatial-temporal hypergraph, i.e., our model for 

segmenting each time-point independently with only spatial constraint.

Table 1 gives the average Dice ratio (DICE) and average surface distance (ASD) of the 

segmentation results by four comparison methods at 2-week-old, 3-month-old, 6-month-old, 

9-month-old and 12-month-old data, respectively. There are two observations from Table 1. 

First, the degraded hypergraph with only the spatial constraint still obtains mild 

improvement over other two methods. Second, after incorporating the temporal consistency, 

our method gains significant improvement, especially for the time-points after 3-month-old. 

Figure 2 provides a typical visual comparison of segmenting accuracy among four methods. 

The upper panel of Fig. 2 visualizes the surface distance between the segmentation results 

from each of four methods and the ground truth. As can be observed, our method shows 

more blue regions (indicating smaller surface distance) than red regions (indicating larger 

surface distance), hence obtaining results more similar to the ground truth. The lower panel 

of Fig. 2 illustrates the segmentation contours for four methods, in which our method shows 

the highest overlap with the ground truth. Figure 3 further compares the temporal 

consistency from 2-week-old to 12-month-old data between the degraded and full spatial-

temporal hypergraph. From the left panel in Fig. 3, it is observed that our full method 

achieves better visual temporal consistency than the degraded version, e.g., the right 

hippocampus at 2-week-old. We also use a quantitative measurement to evaluate the 

temporal consistency, i.e. the ratio between the volume of the segmentation result based on 

the degraded/full method and the volume of its corresponding ground truth. From the right 

panel in Fig. 3, we can see that all the ratios of full spatial-temporal hypergraph (yellow 

bars) are closer to “1” than the ratios of the degraded version (blue bars) over five time-

points, showing the better consistency globally.
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4 Conclusion

In this paper, we propose a spatial-temporal hypergraph learning method for automatic 

segmentation of hippocampus from longitudinal infant brain MR images. For building the 

hypergraph, we consider not only the atlas-to-subject relationship but also the spatial/

temporal neighborhood information. Thus, our proposed method opts for unanimous 

labeling of infant hippocampus with temporal consistency across different development 

stages. Experiments on segmenting hippocampus from T1-weighted MR images at 2-week-

old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old demonstrate improvement in 

terms of segmenting accuracy and consistency, compared to the state-of-the-art methods.
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Fig. 1. 
The construction of spatial-temporal hypergraph.
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Fig. 2. 
Visual comparison between segmentations from each of four comparison methods and the 

ground truth on one subject at 6-month-old. Red contours indicate the results of automatic 

segmentation methods, and yellow contours indicate their ground truth. (Color figure online)
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Fig. 3. 
Visual and quantitative comparison of temporal consistency between the degraded and full 

spatial-temporal hypergraph. Red shapes indicate the results of degraded/full spatial-

temporal hypergraph methods, and cyan shapes indicate their ground truth. (Color figure 

online)
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