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Abstract

In this work, Ni(I) aryl species that are directly relevant to cross-coupling have been synthesized. 

Transmetalation of (dppf)NiIX (dppf = 1,1′-bis(diphenylphosphino)-ferrocene, X = Cl, Br) with 

aryl Grignard reagents or aryl boronic acids in the presence of base produces Ni(I) aryl species of 

the form (dppf)NiI(Ar) (Ar = Ph, o-tolyl, 2,6-xylyl, 2,4,6-mesityl, 2,4,6-iPr3C6H2). The stability of 

the Ni(I) aryl species is inversely correlated to the steric bulk on the aryl ligand. The most unstable 

Ni(I) aryl species are the most active precatalysts for Suzuki–Miyaura reactions because they 

rapidly decompose to generate the active Ni(0) catalyst. This study shows that Ni(I) aryl species 

are initially formed in the activation of Ni(I) halide precatalysts for Suzuki–Miyaura reactions and 

establishes their stoichiometric and catalytic reactivity profile.
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INTRODUCTION

There is significant current interest in the replacement of precious-metal catalysts with 

systems based on inexpensive and sustainable earth-abundant metals such as Ni.1 A major 

challenge in the development of Ni catalysts for applications such as cross-coupling2 is the 

propensity for these systems to readily access odd-electron oxidation states such as Ni(I).3 In 

some reactions such as Ni/photoredox dual catalysis,4 and alkyl–alkyl5 and cross-

electrophile6 couplings, Ni(I) species are proposed to be catalytically active and facilitate 

novel reactivity. In contrast, in other reactions such as Suzuki–Miyaura7 and Buchwald–

Hartwig8 couplings involving aryl substrates, as well as trifluoromethylation reactions,9 

Ni(I) complexes are proposed to be off-cycle species. In both cases, our lack of fundamental 

knowledge about the reactivity and stability of Ni(I) species complicates the rational design 

of improved catalysts for variety of reactions including cross-coupling by promoting or 

inhibiting the formation of Ni(I) complexes.10–13

One important class of Ni(I) complexes are Ni(I) aryl species, which have been proposed to 

be present in many Ni-catalyzed cross-coupling reactions. For example, in Suzuki–Miyaura,
7,11d Buchwald–Hartwig,11e and Kumada11d couplings, Ni(I) aryl species are hypothesized 

to form through transmetalation from Ni(I) halide species or through comproportionation 

reactions between catalytically active Ni(0) and Ni(II) aryl species. Additionally, in reactions 

related to cross-coupling, Ni(I) aryl complexes are postulated as intermediates in the 

carboxylation of aryl halides,11f,g triflates,11p and pivalates,11j and in the reductive cleavage 

of aryl ethers with silanes.11h However, despite their widely presumed existence in catalytic 

cycles, there have been almost no direct experimental studies exploring the role of Ni(I) aryl 

species in cross-coupling reactions. In fact, there are only two examples of well-

characterized Ni(I) aryl species and in both cases the unusual steric or electronic properties 

of the aryl ligand limits their applicability to species likely to be generated in catalysis 

(Figure 1).14 Accordingly, there is almost no fundamental information about the formation 

and properties of Ni(I) aryl species.

Previously, we explored the speciation of dppf-ligated (dppf = 1,1′-

bis(diphenylphosphino)ferrocene) Ni precatalysts in Suzuki–Miyaura reactions. We found 

that, regardless of the starting oxidation state of the precatalyst, Ni(I) species are formed 

during catalysis.7,11l Although like others, we postulated that Ni(I) aryl species were formed 

in catalysis, and there was no direct evidence to support this hypothesis. Here, the 
preparation of a catalytically relevant family of dppf-ligated Ni(I) aryl species is described. 

We provide information about how these species are formed under catalytic conditions and 

their stability, stoichiometric and catalytic activity, and decomposition pathways. Further, it 

is demonstrated that Ni(I) halide precatalysts activate through the formation of Ni(I) aryl 

species, which decompose to catalytically active Ni(0) species.
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RESULTS AND DISCUSSION

Synthesis and Properties of Nickel(I) Aryl Species

Past attempts to prepare Ni(I) aryl species via transmetalation of Ni(I) halide species with 

aryl Grignard reagents resulted in intractable mixtures of products with no evidence for the 

formation of the desired complex.11d,12d Consistent with these results, the reaction of 

(dppf)NiICl (1) or (dppf)NiIBr (2) with excess phenylmagnesium bromide in C6D6 at room 

temperature resulted in the rapid formation of an unidentified black precipitate. In contrast, 

the reaction of 1 or 2 with 2,4,6-triisopropylphenylmagnesium bromide resulted in the 

immediate appearance of identical signals from a paramagnetic molecule in the 1H NMR 

spectrum, which are assigned to the Ni(I) aryl complex (dppf)NiI(2,4,6-iPr3C6H2) (3). Even 

though 3 is only metastable in solution (vide infra), isolation was possible through the 

reaction of 1 with excess 2,4,6-triisopropylphenylmagnesium bromide at room temperature 

in 10:1 pentane:THF. The EPR spectrum of 3 is rhombic (gx = 2.03, gy = 2.15, and gz = 

2.28) with hyperfine coupling to the phosphorus nuclei (see SI). The solid-state structure of 

3 shows a distorted trigonal planar geometry around Ni (Figure 2), with a dppf bite angle of 

103.430(19)° and P–Ni–C angles of 134.15(5)° and 122.42(5)°. The Ni–C bond length of 

1.9762(17) Å is similar to those reported in the other two examples of Ni(I) aryl complexes, 

but direct comparison is difficult as one system is a two-coordinate complex with a sterically 

bulky aryl group (Ni–C = 1.944(2) Å),14a and the other contains a perfluorinated aryl group 

(Ni–C = 1.973(2) Å).14b

The effect of steric bulk on the formation of Ni(I) aryl species was probed through the 

reactions of 1 or 2 with o-tolyl-, 2,6-xylyl- and 2,4,6-mesityl-magnesium bromide. In all 

cases, new paramagnetic signals were present in the 1H NMR spectra, analogous to those 

observed in the corresponding reaction between 2 and 2,4,6-triisopropylphenylmagnesium 

bromide (see SI). On this basis, the new signals are assigned to (dppf)NiI(o-tolyl) (4), 

(dppf)NiI(2,6-xylyl) (5), and (dppf)-NiI(2,4,6-mesityl) (6). As the size of the aryl group 

decreases, the stability of the Ni(I) aryl species decreases significantly, with 4 decomposing 

completely in approximately 6 h at room temperature. The instability of these species 

prevented isolation; however, single crystals of 5 and 6 were obtained using a related 

synthetic procedure to that described for 3 (Figure 2b,c). The solid-state structures of 5 and 6 
are similar to 3, but the Ni–C bond lengths of 1.954(6) Å and 1.948(2) Å, respectively, are 

shorter, presumably due to the decreased size of the aryl group.

EPR spectroscopy provided additional evidence for the in situ formation of 4, 5, and 6. The 

low-temperature (7 K), X-band EPR spectra obtained from treatment of 2 with excess o-
tolyl-, 2,6-xylyl-, or 2,4,6-mesityl-magnesium bromide at room temperature in toluene 

showed similar features to the spectrum of 3 (Figure 3). Further, when 2 was treated with 

phenyl-magnesium bromide at −90 °C in toluene and the reaction mixture frozen after 1 

min, a signal was obtained using EPR spectroscopy. We propose that this signal is from 

(dppf)-NiI(Ph) (7), which is too unstable to observe at higher temperature. Comparison of 

the EPR spectra of 3–7 shows that complexes with relatively small aryl groups (4 and 7) can 

be accurately modeled as axial species with hyperfine contributions from two increasingly 

inequivalent phosphorus nuclei (see SI). In contrast, the complexes with larger aryl groups 
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(3, 5, and 6) are best modeled as rhombic species. This suggests that increased steric bulk on 

the aryl group causes a distortion of the molecule and a lowering of the symmetry. Overall, 
our synthetic results conclusively establish that it is possible to form nickel(I) aryl species 
with a catalytically relevant ligand set and aryl groups.

The decomposition of the different Ni(I) aryl complexes was compared. When 3 is left to 

stand for 5 days at room temperature in C6D6, there is a 22% decrease in the concentration 

of the Ni(I) aryl species (see SI). The major organic product is 1,3,5-triisopropylbenzene,13e 

but no new Ni-containing products were observed by NMR spectroscopy. Monitoring the 

decomposition of 3 in the presence of 1,5-cyclooctadiene (COD) allowed identification of a 

Ni product. In this case, after 5 days at room temperature, there is 29% decomposition of 3, 

and (dppf)Ni0(COD) (8) (29% yield) and 1,3,5-triisopropylbenzene (29% yield) are 

observed. This suggests that 3 decomposes to a coordinatively unsaturated Ni(0) complex, 

which is trapped with COD. Notably, no biaryl products are observed when monitoring the 

decomposition of 3. However, when Ni(I) aryl species with smaller aryl groups, 4–6, are 

generated in situ, monoaryl and biaryl decomposition products are observed (see SI). One 

explanation for our observations is that the biaryl products arise from a decomposition 

pathway involving two Ni centers,15 whereas the monoaryl products involve a single Ni 

center. The sterically large aryl group on 3 could inhibit these pathways involving two Ni 

centers leading to only monoaryl products. Experiments examining the rate of 

decomposition as a function of the Ni(I) aryl concentration support this hypothesis. 

Specifically, changing the concentration of (dppf)NiI(2,4,6-iPr3C6H2) does not result in an 

observable change in the rate of decomposition, whereas more concentrated solutions of in 

situ generated (dppf)NiI(o-tolyl) lead to an increase in the rate of decomposition. Results 

from catalytic Suzuki–Miyaura reactions, where the concentration of Ni is low, are also 

consistent with this proposal, as the biaryl products proposed to arise from bimolecular 

degradation of putative Ni(I) aryl complexes are seen in smaller amounts than the monoaryl 

products.7

Stoichiometric Reactivity of Nickel(I) Aryl Species

Using the isolated Ni(I) aryl species 3 as a model, stoichiometric reactions were performed. 

Treatment of 3 with 2,6-lutidinium chloride at room temperature results in complete 

conversion to 1 over 1 h, with concomitant formation of 1,3,5-triisopropylbenzene (Figure 

4a). In contrast, performing the reaction with 2,6-lutidinium tetrakis(3,5-

bis(trifluoromethyl)-phenyl)borate (BArF
4) generates a number of unidentified diamagnetic 

and paramagnetic species in addition to 1,3,5-triisopropylbenzene (see SI). In this reaction, 

the BArF
4 anion presumably does not stabilize the nickel(I) species that forms after 

protonation, resulting in rapid decomposition to a mixture of products. Interestingly, 3 also 

reacts with sources of H• as well as H+. Reaction of 3 with TEMPOH (TEMPOH = 2,2,6,6,-

tetramethyl-1-piperidinol) in the presence of COD as a Ni(0) trapping agent in C6D6 results 

in the degradation of 68% of the Ni(I) aryl species over 24 h at room temperature (Figure 

4b). 1,3,5-Triisopropylbenzene is formed as an organic byproduct in 55% yield, along with 

the Ni(0) product 8 (61% yield). Additionally, the TEMPO radical was identified using room 

temperature X-band EPR spectroscopy (see SI). These results suggest that the Ni-aryl bond 

can be formally cleaved homolytically, resulting in H• transfer from TEMPOH to the aryl 
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ligand and a reduced Ni(0) center that is trapped by COD, even though the exact mechanistic 

pathway for this reaction is unclear.

Although we have no evidence that 3 disproportionates into Ni(0) and Ni(II) complexes by 

itself, treatment of one equivalent of 3 with one equivalent of 2 in the presence of COD 

results in full conversion to (dppf)NiII(2,4,6-iPr3C6H2)-(Br) (9) (see SI for characterization) 

and 8 (Figure 4c). The reverse process, comproportionation, can be modeled by the reaction 

of 9 with a Ni(0) source, (dppf)Ni0(C2H4) (11). Consistent with our observation of complete 

disproportionation from 3 and 2 (in the presence of COD), we see no evidence for the 

reverse comproportionation reaction. This finding may be important for the rational design 

of improved Ni(II) precatalysts, as an analogous comproportionation reaction between Ni(0) 

and Ni(II) aryl halides with less sterically bulky aryl groups is proposed to produce off-cycle 

species in Suzuki–Miyaura reactions and reduce catalyst efficiency (see SI).7

The Role of Nickel(I) Aryl Species in Suzuki–Miyaura Reactions Using Nickel(I) Halide 
Precatalysts

It has previously been demonstrated that Ni(I) halide precatalysts are active for Suzuki–

Miyaura and Kumada couplings involving aryl halides.7,11c,d,l Given that 1 and 2 do not 

react with excess aryl halide, even at elevated temperature,7,11l transmetalation is likely the 

first step in precatalyst activation. Our experiments above show that transmetalation is 

feasible in Kumada couplings, however, it is unclear if transmetalation is possible with 

weaker nucleophiles such as boronic acids. Treatment of 1 with excess 2,6-xylylboronic acid 

or 2,4,6-mesitylboronic acid in the presence of K3PO4 in C6D6 results in new paramagnetic 

resonances in the 1H NMR spectra at room temperature (Figure 5). These resonances have 

the same chemical shifts as those generated through the reactions of 1 or 2 with 2,6-xylyl- 

and 2,4,6-mesityl-magnesium bromide, indicating that 5 and 6 are formed (see SI). The 

transmetalation reactions are slower using boronic acids and base compared with Grignard 

reagents, and even after 24 h some starting material is still present. Nevertheless, the rate of 

transmetalation is comparable to the rate of product formation in Suzuki–Miyaura reactions 

with Ni(I) halide precatalysts.7

When 5 and 6 are generated via transmetalation with Grignard reagents, it takes 

approximately 2 days in solution at room temperature for complete decomposition to occur. 

In contrast, these species are less stable when generated using the appropriate boronic acid 

and K3PO4 and decay relatively rapidly to the homoleptic Ni(0) species (dppf)2Ni0 (11), as 

indicated by 31P NMR spectroscopy, and an unidentified product. The generation of 11 
requires two equivalents of starting material, and therefore the maximum yield of 11 is 50%. 

The rapid formation of these zerovalent species suggests that boronic acid and base increase 

the rate of decomposition of Ni(I) aryl complexes. Consistent with this hypothesis, treatment 

of isolated 3 with excess o-tolylboronic acid and K3PO4 at room temperature results in 

essentially complete decomposition of the Ni(I) aryl species in 6 h (see SI). The increased 

rate of decomposition of Ni(I) aryl species in the presence of boronic acid and base may 

explain why they have not been observed in situ in Suzuki–Miyaura reactions where Ni(I) 

halide species were identified.7,11l Further, the observed decomposition of Ni(I) aryl species 
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to 11 provides an explanation for the catalytic activity of Ni(I) halide precatalysts in Suzuki–

Miyaura reactions, as 11 is known to be a highly active precatalyst.7,11l

On the basis of the results above, we propose that in Suzuki–Miyaura reactions using 1 as a 

precatalyst, generation of the catalytically active species occurs via initial transmetalation to 

form a Ni(I) aryl species. The Ni(I) aryl species could subsequently (i) undergo 

decomposition to form a catalytically active Ni(0) species (vide supra), or (ii) directly react 

with the electrophile. The preparation of Ni(I) aryl species allows us to examine the viability 

of pathway (ii). Addition of one equivalent of 1-chloronaphthalene to 3 in C6D6 did not 

result in any consumption of the electrophile. After 24 h at room temperature, the decrease 

in the amount of 3 was the same as when no electrophile was present, consistent with no 

reaction with electrophile occurring (see SI). Similar results were observed when 4 and 5 
were generated in situ and treated with 1-chloronaphthalene. On this basis, it is proposed 

that pathway (i) is more likely, which indicates that even when Ni(I) halide precatalysts are 
used in Suzuki–Miyaura reactions, the catalytic cycle ultimately involves Ni(0) and Ni(II) 
complexes. These results also imply that Ni(I) aryl complexes are off-cycle species in 

Suzuki–Miyaura reactions (vide infra and see SI).

Nickel(I) Aryl Species as Precatalysts for Suzuki–Miyaura Reactions

Based on our knowledge that Ni(I) aryl species decompose into Ni(0) species, and that some 

of these zerovalent species are catalytically competent, we hypothesized that pretreatment of 

Ni(I) halide precatalysts with Grignard reagents in situ could result in improved catalytic 

activity for Suzuki–Miyaura reactions. By itself, 1 cannot couple naphthalen-1-yl sulfamate 

with 4-methoxyphenylboronic acid at room temperature over 4 h (Table 1, entry 1). 

However, premixing 1 with aryl Grignard reagents to form Ni(I) aryl species, followed by 

addition to a mixture containing electrophile, boronic acid and base resulted in conversion to 

the coupled product. The yield of product is inversely correlated to the stability of the Ni(I) 

aryl complex, which is consistent with more rapid generation of Ni(0) giving improved 

catalytic activity. The most stable Ni(I) aryl species, 3, formed in situ by mixing 1 with 

2,4,6-triisopropylphenyl-magnesium bromide, only gave a 19% yield of cross-coupled 

product (Table 1, entry 6), while the relatively unstable 4 reached full conversion (Table 1, 

entry 3). The only exception to this trend was the yield of cross-coupled product from the 

reaction catalyzed by in situ generated 7. In this case, the Ni aryl complex is so unstable 

(vide supra) that significant decomposition to a black precipitate occurred before mixing 

with the substrates, even when 7 was generated at low temperature (see SI). Notably, the 

catalytic activity of in situ generated 4 is comparable to the best Ni(0) and Ni(II) precatalysts 

for this reaction.7 When isolated 3 was used as the precatalyst a low yield (10%) of cross-

coupled product was obtained, presumably due to the relative stability of 3 (Table 1, entry 

7). Improved activity (76% yield) was obtained when a mixture containing a 1:1 ratio of 

TEMPOH and 3 was premixed and then added to a solution containing the substrates and 

base (Table 1, entry 8). We attribute this improvement in performance to the increased rate 

of formation of zerovalent Ni in the presence of H• donors, which provides further evidence 

in support of zerovalent Ni complexes being the true active species. A comparative 

selectivity experiment in which aryl sulfamate electrophiles with different electronic 

properties were coupled in a Suzuki–Miyaura reaction shows that 3, as well as Ni(I) halides 
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mixed with different aryl Grignard reagents, give the same selectivity as a related Ni(0) 

precatalyst, providing more evidence that all systems react through the same active species 

(see SI). This experiment also provides further support to the hypothesis that Ni(I) aryl 

complexes are intermediates in the activation of Ni(I) halide precatalysts.

CONCLUSIONS

We have synthesized a family of Ni(I) aryl species with catalytically relevant ligands and 

demonstrated that Ni(I) aryl species can be generated under conditions relevant to cross-

coupling. Based on our results that Ni(I) aryl species can be formed via transmetalation, we 

propose that Ni(I) halide precatalysts activate through this pathway in catalysis. 

Additionally, in the Suzuki–Miyaura reactions studied in this work, Ni(I) aryl complexes are 

likely unstable off-cycle species that undergo decomposition to generate catalytically active 

Ni(0) complexes; thus, it is proposed that Ni(I) and Ni(0) precatalysts generate the same 

active species. The rate of decomposition of the Ni(I) aryl complexes increases as the size of 

the aryl substituent decreases, and they are less likely to form in comproportionation 

reactions between Ni(II) aryl halide complexes and Ni(0) complexes when the aryl group is 

large. We intend to utilize this latter observation to design improved Ni(II) precatalysts for 

Suzuki–Miyaura reactions, where the formation of off-cycle Ni(I) complexes is detrimental 

to catalysis. Our studies on well-defined Ni(I) aryl species may also assist in the 

improvement of many other catalytic reactions where these elusive complexes are implicated 

as either on-cycle or off-cycle species.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of previous examples of Ni(I) aryl species and this work.
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Figure 2. 
(a) Synthesis of 3. Inset: ORTEP of 3 with ellipsoids drawn at 50% probability. Hydrogen 

atoms and solvent of recrystallization are omitted for clarity. (b) and (c) Reactions of 1 with 

2,4,6-mesitylmagnesium bromide or 2,6-xylylmagnesium bromide to generate 6 or 5, 

respectively, in situ. Insets: ORTEP of 6 or 5 with ellipsoids drawn at 50% probability. 

Hydrogen atoms and solvent of recrystallization is omitted for clarity. For 5, disorder in the 

xylyl ring is omitted for clarity.
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Figure 3. 
Low temperature (7 K) X-band EPR spectra in toluene glass of Ni(I) aryl species formed 

from the reaction of 2 with Grignard reagents at room temperature. Samples were frozen 

after 2 min of reaction in all cases except 7, which was prepared at −90 °C and frozen after 1 

min. The spectrum of 2 (black, top) is provided for comparison. Detailed EPR parameters 

are provided in the SI.
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Figure 4. 
Stoichiometric reactivity of 3 with (a) 2,6-lutidinium chloride, (b) TEMPOH in the presence 

of COD, and (c) 2 in the presence of COD.
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Figure 5. 
Reaction of 1 with (a) excess 2,6-xylylboronic acid and K3PO4, and (b) excess 2,4,6-

mesitylboronic acid and K3PO4.
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Table 1

Comparison of Ni(I) Precatalysts for the Suzuki–Miyaura Reaction of Naphthalen-1-yl Sulfamate and 4-

Methoxyphenylboronic Acida

entry [Ni] additive yield

1 1 none <1%

2 1 (Ph)MgBr 70%

3 1 (o-tolyl)MgBr >99%

4 1 (2,6-xylyl)MgBr 79%

5 1 (2,4,6-mesityl)MgBr 79%

6 1 (2,4,6-iPr3C6H2)MgBr 19%

7 3 none 10%

8 3 TEMPOH 76%

a
Reaction conditions: 0.133 mmol naphthalene-1-yl dimethylsulfamate, 0.333 mmol 4-methoxyphenylboronic acid, 0.599 mmol K3PO4, 0.0665 

mmol naphthalene (internal standard), 2.5 mol % precatalyst and 2.5 mol % additive, and 1 mL of toluene. Nickel precatalyst was premixed with 
additive prior to addition of other reagents (see SI). Yields are the average of two runs and were determined by GC.
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