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Abstract

Survival bias is a long-recognized problem in case-control studies, and many varieties of bias can 

come under this umbrella term. We focus on one of them, termed Neyman’s bias or “prevalence-

incidence bias.” It occurs in case-control studies when exposure affects both disease and disease-

induced mortality, and we give a formula for the observed, biased odds ratio under such 

conditions. We compare our result with previous investigations into this phenomenon and consider 

models under which this bias may or may not be important. Finally, we propose three hypothesis 

tests to identify when Neyman’s bias may be present in case-control studies. We apply these tests 

to three data sets, one of stroke mortality, another of brain tumors, and the last of atrial fibrillation, 

and find some evidence of Neyman’s bias in the former two cases, but not the last case.
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1 Introduction.

Survival bias is a frequent source of concern in case-control studies (Sackett, 1979; Rothman 

et al., 2008). Sackett describes nine types of bias common in case-control studies, and we 

focus our investigation on one of them, first identified by Jerzy Neyman and now known as 

Neyman’s bias or “prevalence-incidence bias” (Neyman, 1955). It is a bias that occurs when 

prevalent cases are sampled and exposure affects disease and disease-associated mortality. 

Since Neyman’s article was written in the 1950’s when the relationship between smoking 

and lung cancer was under debate, he uses an example that focuses on that subject. He 

disregards competing risks and supposes that if, in fact, smoking is protective against lung 

cancer, but lung cancer mortality is far higher among non-smokers than smokers, then the 

odds ratio would suggest that smoking is a risk factor for disease as was being observed at 

the time. In our study of the subject, we focus on three other examples, one coming from a 

study of brain tumors and chemotherapy, another coming from a GWAS of ischemic stroke, 

and the last coming from a study of atrial fibrillation in the Framingham Heart Study. 

Prevalence-incidence bias could arise in the study of brain tumors if certain patients are 

assessed to have disease too progressed to benefit from chemotherapy and therefore do not 

undergo treatment. The GWAS could suffer from prevalence-incidence bias if a certain 
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subset of patients die before admission to a hospital and study entry. We use our study of 

atrial fibrillation in the Framingham Heart study as an example of a prospective design that 

should therefore not suffer from prevalence-incidence bias. We consider these data as being 

generated under the null hypothesis of no prevalence-incidence bias in order to substantiate 

the validity of the test.

Despite Neyman’s early identification of this bias, methodological investigation into it has 

been limited. Hill (2003) uses a compartment model to show how bias arises when 

performing case-control studies on prevalent cases if the risk factor impacts both disease and 

mortality from disease. He also shows that any impact of the risk factor on mortality from 

other causes does not impact the observed odds ratio, which demonstrates that Neyman was 

justified in ignoring competing risks. While trying to draw inference on incidence instead of 

the odds ratio, Fluss et al. (2012), Keiding (1991), and Keiding (2006) all consider the 

problem of using cross-sectional designs and their resultant sampling biases.

Anderson et al. (2011) performs a computational investigation into Neyman’s bias, 

recognizing that genome-wide association studies (GWAS) and their use of prevalent cases 

in case-control study designs were susceptible to it. If an allele is a risk factor for both 

disease and mortality from disease, then the common practice of calculating an odds ratio 

from prevalent cases and controls could lead to biased inference. Since the odds ratios in 

such studies are usually small, differences in disease-associated mortality between the 

exposed and unexposed would not be required for a risk allele to be observed as protective, 

or vice versa. Their own investigation is motivated by a locus found to be significantly 

associated with ischemic stroke in longitudinal studies that did not replicate using a case-

control design. As a solution, they simulate data under different disease and mortality risk 

models and then fit regression models for percent bias of the odds ratio to the disease and 

mortality risk model parameters. These fitted models give researchers a means to investigate 

the potential biases of estimated odds ratios in their own studies.

In this paper, we propose a framework for consideration of Neyman’s bias and examine it 

from a modeling perspective. We suggest three hypothesis tests to assess whether Neyman’s 

bias is present in a study and then apply these tests to three data sets mentioned: one of brain 

tumors and chemotherapy, another a GWAS of ischemic stroke, and the last focused on atrial 

fibrillation in the Framingham Heart Study. We propose hypothesis tests rather than methods 

to recover the true, unbiased odds ratio, since that quantity is unrecoverable under the 

framework we consider.

2 Methods.

2.1 Notation and background.

Suppose that we have a setting similar to that described in Anderson et al. (2011), where we 

have some binary risk SNP or gene, G, that takes on the value 1 with probability p 
(“exposed”) and 0 with probability 1 - p (“unexposed”). Let D denote age of disease onset, 

and suppose that G may be associated with D. Let {Ma,j}, j = 1,...,n, denote age at mortality 

from all other causes not associated with disease. Let {Xi}, i = 1,...,m, denote latent time 

from disease onset to the ith mortality cause related to disease and let X = min{Xi}. Thus, 
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Ma,j ⫫ (X D)T | G for all j, where W ⫫ Y | Z denotes statistical independence of W and Y 
conditional on Z (Dawid, 1979). We define Ma ≡ min{Ma,j}, and thus Ma ⫫ (X D)T | G. Let 

Md,i ≡ D+Xi and Md = min(Md,i) = D+X. If Xi ⫫ D, then Md,i is necessarily associated with 

D because Md,i ≡ D + Xi (i.e., Md,i denotes the age at disease-associated mortality cause i). 
In fact, Xi would have to be associated with D in a specific way to have Md,i ⫫ D. We do not 

assume Xi is a positive random variable so that we can have P(Md,i < D) ≥ 0. While it may 

seem counterintuitive to allow for disease-associated mortality prior to disease, this 

flexibility fits into a realistic framework. For example, if the disease of interest is stroke, and 

there exists an association between death from myocardial infarction and stroke, then indeed 

mortality associated with disease, though not directly caused by it, can occur before disease 

and can bias the odds ratio, as we show later.

It is not a limitation of this conceptual framework to assume the existences of the Ma,j’s, 

ages at causes of mortality unrelated to our disease of interest. They are present to show 

their lack of effect on the observed odds ratio in the work to follow. Since there is no cap on 

the possible number of Md,i’s, all causes of mortality can be considered as disease-

associated if desired by the analyst.

2.2 Formulae.

Suppose we perform a case-control study of prevalent cases at age t*, and define Ca ≡ I(t* ≤ 

Ma), Cd ≡ I(t* ≤ Md), where I(·) is the indicator function, and C ≡ Cd × Ca. While Cd and Ca 

are functions of Md and Ma, mortality causes, we can consider Md and Ma more generally as 

anything that would render a subject unable to enter the study that is associated and 

unassociated with disease, respectively. A subject is available to enter the study at age t* if C 
= 1; i.e., if the subject has not died from any cause by age t*. Denote the cumulative 

distribution function associated with random variable Y as FY (t). Then the target odds ratio 

among the population at age t* is

ORtr(t*) = P(Case, Exposed) P(Control, Unexposed)
P(Control, Exposed) P(Case, Unexposed)

= P(D ≤ t*, G = 1)P(D > t*, G = 0)
P(D > t*, G = 1)P(D ≤ t*, G = 0)

=
FD G = 1(t*)p(1 − FD G = 0(t*))(1 − p)
(1 − FD G = 1(t*))pFD G = 0(t*)(1 − p)

=
FD G = 1(t*)(1 − FD G = 0(t*))
(1 − FD G = 1(t*))FD G = 0(t*) .

In contrast, the observed odds ratio among prevalent cases at age t* is

ORob(t*) = P(Case, Exposed, Observed) P(Control, Unexposed, Observed
P(Control, Exposed, Observed P(Case, Unexposed, Observed)

= P(D ≤ t*, G = 1, C = 1)P(D > t*, G = 0, C = 1)
P(D > t*, G = 1, C = 1)P(D ≤ t*, G = 0, C = 1)

=
P(D ≤ t*, G = 1, Ca = 1, Cd = 1)P(D > t*, G = 0, Ca = 1, Cd = 1)
P(D > t*, G = 1, Ca = 1, Cd = 1)P(D ≤ t*, G = 0, Ca = 1, Cd = 1) .
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Now consider the term P(D ≤ t*,G = 1,Ca = 1,Cd = 1). We can factor the probability as

P(D ≤ t*, G = 1, Ca = 1, Cd = 1)
= P(D ≤ t*, Cd = 1 Ca = 1, G = 1)P(Ca = 1 G = 1)P(G = 1) .

Since Ma ⫫ (X D)T | G and Md ≡ X +D, Ma ⫫ Md | G, and since Ca and Cd are functions of 

only Ma and Md (with fixed and known t*), respectively, (D Cd)T ⫫ Ca | G. Using this 

conditional independence, the probability further simplifies to

P(D ≤ t*, Cd = 1 G = 1)P(Ca = 1 G = 1)P(G = 1),

which is equal to

∫0
t*

(1 − FX D = t, G = 1(t* − t))∂FD G = 1(t)(1 − F
Ma G = 1

(t*))p .

Analogous simplifications of the other terms of ORob(t*) yield

=
∫ 0

t*(1 − FX D = t, G = 1(t* − t))∂FD G = 1(t)(1 − F
Ma G = 1(t*))p

∫ t*
∞(1 − FX D = t, G = 1(t* − t))∂FD G = 1(t)(1 − F

Ma G = 1(t*))p

∫ t*
∞(1 − FX D = t, G = 0(t* − t))∂FD G = 0(t)(1 − F

Ma G = 0(t*))(1 − p)

∫ 0
t*(1 − FX D = t, G = 0(t* − t))∂FD G = 0(t)(1 − F

Ma G = 0(t*))(1 − p)

=
∫ 0

t*(1 − FX D = t, G = 1(t* − t))∂FD G = 1(t) ∫ t*
∞(1 − FX D = t, G = 0(t* − t))∂FD G = 0(t)

∫ t*
∞(1 − FX D = t, G = 1(t* − t))∂FD G = 1(t) ∫ 0

t*(1 − FX D = t, G = 0(t* − t))∂FD G = 0(t)

.

(1)

Note that when X ⫫ D | G, we observe

ORob(t*) = P(Case, Exposed, Observed) P(Control, Unexposed, Observed)
P(Control, Exposed, Observed) P(Case, Unexposed, Observed)

=
∫ 0

t*(1 − FX G = 1(t* − t))∂FD G = 1(t) ∫ t*
∞(1 − FX G = 0(t* − t))∂FD G = 0(t)

∫ t*
∞(1 − FX G = 1(t* − t))∂FD G = 1(t) ∫ 0

t*(1 − FX G = 0(t* − t))∂FD G = 0(t)
.
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This assumption may be reasonable for some exposures that are risk factors for diseases 

whose course is independent of the age of onset given G.

Returning to the general case (1), we consider ways in which ORob(t*) = ORtr(t*) holds. 

Recall that Md ≡ D + X, and that X need not be a positive random variable. Suppose that X 
≡ A - D, for some positive random variable A independent of D, conditional on G. Then Md 

≡ D + X = D + (A - D) = A. So Md = A and is independent of D given G, or in notation, Md 

⫫ D | G (Dawid, 1979). Notice that when Md is defined in this way, an association 

necessarily exists between X and D, conditional on G, since X is itself a function of D. If Md 

⫫ D | G holds, then (1) reduces to

ORob(t*) =
(1 − F

Md G = 1(t*))∫ 0
t* ∂FD G = 1(t) (1 − F

Md G = 0(t*))∫ t*
∞ ∂FD G = 0(t)

(1 − F
Md G = 1(t*))∫ t*

∞ ∂FD G = 1(t) (1 − F
Md G = 0(t*))∫ 0

t* ∂FD G = 0(t)

=
FD G = 1(t*)(1 − FD G = 0(t*))
(1 − FD G = 1(t*))FD G = 0(t*) = ORtr(t*),

(2)

where (2) follows from

FX D = t, G = g(t* − t) = FX + t D = t, G = g(t*)

= FX + D D = t, G = g(t*) = F
Md D = t, G = g

(t*) = F
Md G = g

(t*) .

So when Md ⫫ D | G, Md behaves like Ma in the sense that ORob(t*) is no longer a function 

of the distribution of Md and ORtr(t*) = ORob(t*). While Md ⫫ D | G is a sufficient condition 

for ORtr(t*) = ORob(t*), it is not necessary; there exist multivariate distributions (X D G)T 

such that ORtr(t*) = ORob(t*), but Md  D | G (Md is not independent of D conditional on 

G). For example, consider the case in which FMd D = t, G = g(x) = 0 if x ≤ t* or x ≤ t and 

FMd D = t, G = g(x) = 1, otherwise for g ∈ {0,1}; i.e., no disease-related death occurs prior to 

t* and in this way cannot bias ORob(t*), but in the region D > t*, Md is perfectly correlated 

with D so that Md  D | G. Nonetheless, in § 5 we propose tests of deviations from Md ⫫ D | 

G since the cases in which Md  D | G, but ORtr(t*) = ORob(t*) holds are unlikely to occur 

as is the case in this example.

3 Scientific hypotheses versus sampling bias hypotheses.

We distinguish between H0S : ORtr(t*) = 1 (at some time t*, the true odds ratio is one), 

which we term the “scientific null hypothesis” and H0B : ORtr(t*) = ORob(t*) (there is no 

bias in the odds ratios at time t*), which we term the “sampling bias null hypothesis.” The 

alternative hypothesis in each case is the complement of the null hypothesis. We describe 

characteristics of these hypotheses.
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Under H0S : ORtr(t*) = 1 and H0S
c : ORtr(t*) ≠ 1:

Even if mortality from other causes, Ma, depends on G, it does not affect the bias of the 

observed odds ratio; in other words, ORob(t*) and ORtr(t*) are not a function of the 

distribution of Ma. Thus, we may assume, as Neyman (1955) does in his original example 

and Hill (2003) confirms, that mortality from other causes is not present and death can only 

occur from disease. Similarly, the probability of exposure, p, does not affect ORob(t*). Also, 

if FMd|G=g(t*) = 0 for g 2 {0,1} (which is the case when no disease-associated mortality 

occurs prior to t*), then ORob(t*) is unbiased: ORob(t*) = ORtr(t*). This result is expected 

since it is disease-related mortality that results in the bias-inducing differential selection 

between the exposed and unexposed.

Under H0S
c : ORtr(t*) ≠ 1:

Under the following four conditions, bias exists (i.e., ORob(t*) ≠ ORtr(t*)):

1. FX|D=t,G=0(t* − t) = FX|G=0(t* − t) = FX|G=1(t* − t) = FX|D=t, G=1(t* − t) for all t 
(i.e., the mortality distribution from disease-onset is identical between the 

exposed and unexposed and not dependent on age at disease-onset).

2. FX|G=g(t**) > 0 for some g ∈ {0,1}. In other words, either the exposed or 

unexposed have positive probability of dying from disease by t**, where t** is 

defined as the time between t* and the first possible presence of disease among 

the exposed or unexposed (i.e., inf{FD|G=g(t) > 0 : t ∈ [0,∞),g 2 {0,1}}) so that 

the bias-inducing event will have some chance of occurring prior to study entry 

at age t*).

3. P(X > 0) = 1, implying P(D < Md) = 1.

4. FD|G=0(x) = FD|G=1(x − k) for all x for some k ≠ 0 , and FD|G=0(t*) > 0 or 

FD|G=1(t*) > 0 (i.e., the disease distributions for the exposed and unexposed are 

in the same location family, and k ≠ 0 implies ORtr(t*) ≠ 1).

These assumptions seem plausible if some exposure affects the mean age of disease, though 

the shape of the disease distribution is approximately the same between exposed and 

unexposed, and after disease occurrence, hazard of mortality is identical among those with 

and without the exposure and not a function of age at disease onset. The theorem and proof 

of this result is found in the Appendix (Theorem 1). As becomes evident upon examination 

of that theorem, we expect greater bias with a higher hazard function of death, holding all 

else constant. Additionally, in that proof we examine the direction of bias; we find that when 

ORtr(t*) < 1, then ORob(t*) > ORtr(t*), and when ORtr(t*) > 1, then ORob(t*) < ORtr(t*). 

Thus, if the degree of bias is relatively small, then it can be viewed as a bias toward an 

observed odds ratio of 1. However, ORob(t*) is by no means bounded by 1 and so if the 

amount of bias is great, ORob(t*) and ORtr(t*) can lie on opposite sides of 1, leading to 

wrongly inferring a truly protective exposure as a risk factor for the outcome or a true risk 

factor as protective against the outcome.

Swanson et al. Page 6

J Appl Stat. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This result of ORob(t*) ≠ ORtr(t*) will not necessarily hold if conditions 1 − 3 hold, but 

condition 4 is not satisfied (the distributions of disease of exposed and unexposed are not in 

the same location family). Under such a scenario, there may not be bias, as Example 1 in the 

Appendix illustrates. Additionally, if we only assume that conditions 2 − 3 are satisfied, then 

there may or may not be bias. See Examples 2 and 3 in the Appendix for instances of 

ORob(t*) = ORtr(t*) and ORob(t*) ≠ ORtr(t*), respectively, when X is associated with G (but 

is independent of D given G: X ⫫ D | G). It follows that if there exist no conditional 

independences, one can make no conclusions regarding the relationship between ORtr(t*) 

and ORob(t*) as there is even greater flexibility in the joint model. Lastly, if only X ⫫ G | D 
is assumed so that X may depend on D (i.e., time to disease-induced mortality may depend 

on age at disease-onset), again ORtr(t*) and ORob(t*) may or may not be equal. This result 

follows from the proof with location families and Example 1 because they are special cases 

of only assuming X ⫫ G | D.

Under H0S : ORtr(t*) = 1:

If we only assume that ORtr(t*) = 1 with no conditions on ORtr(t) for t < t*, and also that X 
⫫ D | G and FX|G=0(t) ≠ FX|G=1(t) for some t < t**, one cannot conclude anything regarding 

the relationship between ORtr(t*) and ORob(t*). Consider Examples 4 and 5 in the Appendix 

for instances of ORob(t*) = ORtr(t*) = 1 and ORob(t*) ≠ ORtr(t*) = 1, respectively. We also 

observe that if ORtr(t) = 1 for all t ≤ t* and FX|D,G=0(t) = FX|D,G=1(t) for all t < t**, ORtr(t*) 

= ORob(t*) = 1.

4 The odds ratio when T* is not fixed.

If the case-control study consists of people of many ages, then t*, previously considered 

fixed, can be considered random. Let us denote this random variable T*. Under these 

conditions, the target odds ratio becomes

ORtr(T*) = P(Case, Exposed) P(Control, Unexposed)
P(Control, Exposed) P(Case, Unexposed)

= P(D ≤ T*, G = 1)P(D > T*, G = 0)
P(D > T*, G = 1)P(D ≤ T*, G = 0)

=
∫ FD G = 1(u)∂FT*(u)p(1 − ∫ FD G = 0(u)∂FT*(u))(1 − p)
(1 − ∫ FD G = 1(u)∂FT*(u))p∫ FD G = 0(u)∂FT *(u)(1 − p)

=
∫ FD G = 1(u)∂FT*(u)(1 − ∫ FD G = 0(u)∂FT*(u))
(1 − ∫ FD G = 1(u)∂FT*(u))∫ FD G = 0(u)∂FT*(u) .

Making no assumptions about the joint model (D X Ma G)T, the observed odds ratio is
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ORob(T*) = P(Case, Exposed, Observed) P(Control, Unexposed, Observed)
P(Control, Exposed, Observed) P(Case, Unexposed, Observed)

=
P(D ≤ T*, T* < Md, T* < Ma, G = 1)P(D > T*, T* < Ma, T* < Ma, G = 0)
P(D > T*, T* < Md, T* < Ma, G = 1)P(D ≤ T*, T* < Md, T* < Ma, G = 0)

=
P(D ≤ T*, T* < Md, T* < Ma G = 1)P(G = 1)

P(D > T*, T* < Md, T* < Ma G = 1)P(G = 1)
P(D > T*, T* < Md, T* < Ma G = 0)P(G = 0)

P(D ≤ T*, T* < Md, T* < Ma G = 0)P(G = 0)

=
P(D ≤ T*, T* < Md, T* < Ma G = 1)P(D > T*, T* < Md, T* < Ma G = 0)

P(D > T*, T* < Md, T* < Ma G = 1)P(D ≤ T*, T* < Md, T* < Ma G = 0)
.

While P(G = 1) = p cancels from ORob(T*) as before with ORob(t*), we see that even if (D 
X)T ⫫ Ma | G, we cannot factor P(T* < Ma|G = g) out of the expression. So ORob(T*) 

becomes a function of Ma, causes of mortality unassociated with the disease under 

investigation. Additionally, regardless of whether P(T* < Ma|G = g) factors out of the 

expression, D ⫫ Md | G, which we have stated before as being sufficient for ORob(t*) = 

ORtr(t*), is not sufficient for ORob(T*) = ORtr(T*). This point is relevant as we propose 

hypothesis tests below. This is also important to remember since ORob(T*) is generally what 

would be measured in a real-world case-control study where ages of subjects vary. While 

outside the scope of this investigation, investigators might want to only pool those groups of 

subjects where FD|G(·) is relatively constant across their age ranges, in which case D ⫫ Md | 

G would be sufficient for ORob(T*) = ORtr(T*). Also, if the sample size of a case-control 

study is sufficient, stratifying subjects by age and calculating age-specific odds ratios would 

be another way to be assured that D ⫫ Md | G is sufficient for those stratum-specific odds 

ratios.

5 Hypothesis testing.

5.1 Description.

We develop three methods for testing for the presence of Neyman’s bias in a study. Again, 

the “bias null hypothesis” of these tests is ORtr(t*) = ORob(t*), and the alternative is 

ORtr(t*) ≠ ORob(t*). While power may vary as a function of ORtr(t*), the tests we propose 

are valid under all values of ORtr(t*). Each of these three methods makes use of 

characteristics unique to the data when Neyman’s bias is absent, and each test may be more 

fitting to use than the other two under certain study designs. So, for example, Tests 1 and 2 

require study observations to have some variation in age at study entry, a random variable 

we denote T*, while Test 3 does not, though Test 3 requires external knowledge of 

population prevalence of disease and exposure, while neither Test 1 nor Test 2 does.

We have demonstrated above that Md ⫫ D | G is a sufficient condition for ORtr(t*) = 

ORob(t*). Ideally, we would have data on all of D, Md, and G and could test for conditional 

independences. However, in practice, it may be unlikely that one would have follow-up data 
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on controls and perhaps even cases, in which case Md would be unknown for one or both 

groups. Thus, we propose these tests with real-world data limitations in mind.

The first two hypothesis tests we propose attempt to test whether this independence 

condition holds. Both of these hypothesis tests make use of previous work coming from the 

truncation methodology literature for tests of “quasi-independence,” which refers to 

independence of random variables in a certain “observable” region of their joint distribution, 

which we explain further below (Martin and Betensky, 2005; Tsai, 1990). Tests for quasi-

independence are based on U-statistics, a class of statistics with broad application outside of 

these tests and first described in Hoeffding et al. (1948).

The last hypothesis test we propose assumes P(D < Md) = 1, which may be unreasonable in 

some settings, but reasonable in others, and depends on whether causes of mortality 

associated with disease can come before disease onset. The test uses the fact that with data 

collected under a case-control study design along with population disease prevalence, one 

can estimate the population exposure proportion. If one has knowledge of the true exposure 

proportion, any comparison between the true, known value and the calculated quantity can 

reveal bias in the odds ratio from which it was calculated. Thus, in contrast to the first two 

tests that detect a sufficient, though not necessary, condition for ORtr(t*) = ORob(t*), 

rendering the test potentially slightly conservative (though likely not very conservative), this 

last test achieves its nominal type 1 error rate under the null of ORtr(t*) = ORob(t*) and has 

power greater than it under the alternative of ORtr(t*) ≠ ORob(t*).

5.2 Test 1: Testing for “quasi-independence” using D and Md.

We are interested in testing independence of D and Md given G, and our observable region is 

D < T* < Md given G; i.e., realizations of observed (because T* < Md) cases (because D < 

T*) of a given exposure status. To accomplish this, we modify a U-statistic test of 

association of Austin et al. (2013), whose null hypothesis assumes in our context mutual 

independence of D, T*, Md; this is stronger than our null hypothesis. This is a valid 

approach to testing D ⫫ Md | G, which is sufficient for no Neyman’s bias, because D ⫫ Md | 

G necessarily implies independence in the region we are defining as observable, D < T* < 

Md given G. Additionally, we focus on the cases in the study, under the assumption that 

follow-up data on Md is more likely to be available among them. While the power of this test 

may suffer in comparison to one that makes use of all observations, the approach makes 

fewer assumptions on data availability, and in settings in which P(D < Md) is close to 1, 

power will not suffer significantly.

To implement the hypothesis test, first we categorize all causes of mortality as Md, since if D 
and Md are associated given G, and D ⫫ Ma | G, then categorizing Ma as Md will maintain 

that association and avoid the need to censor observations. Doing so is not an approximation 

nor does it invalidate the test; rather, the test could become invalid if mortality related to 

disease (Md) are incorrectly categorized as unrelated to disease (Ma). Also, if D ⫫ Md | G 
and D ⫫ Ma | G, categorizing Ma as Md will maintain D ⫫ Md | G. This approach is also 

legitimate from the perspective that Md was originally defined as causes of mortality 

potentially, though not necessarily, associated with disease. Now suppose that we have 1,...,n 
realizations of (Gi Di Ti* Md,i)T, all cases so that one can assume D < T* and on whom there 
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is follow-up so Md is known, and that Ci j
0 = 1 (alternatively, Ci j

1 = 1) if G = 0 (alternatively, 

G = 1) and max{Di,Dj} ≤ min{Md,i,Md,j}, the comparability criterion, is satisfied, and 

Ci j
0 = 0 (alternatively, Ci j

1 = 1 otherwise. Define n0 ≡ ∑i = 1
n − 1 ∑ j = (i + 1)

n Ci j
0  and 

n1 ≡ ∑i = 1
n − 1 ∑ j = (i + 1)

n Ci j
1 .

The test statistic for the stratum G = g, Tg, with g ∈ {0,1}, is

Tg = 1
ng

∑
i = 1

n − 1
∑

j = i + 1

n
sgn((Di − D j)(Md, i − Md, j))Ci j

g .

Then Tg ~ N(0,vg), where

vg = E(sgn((D1 − D2)(Md, 1 − Md, 2)(D1 − D3)(Md, 1 − Md, 3))C12
g C13

g G = g) − (τD, Md
g μD, Md

)2

and where τD, Md
g = E(sgn((D1 − D2)(Md, 1 − Md, 2)) C12 = 1, G = g) and μD, Md

= P(C12 = 1), 

with sgn(x) = 1 for x > 0, −1 for x < 0, and 0 for x = 0.

Since we would reject if either T0 or T1 falls in some predetermined critical region because 

dependence between D and Md given either G = 0 or G = 1 may mean ORtr(t*) ≠ ORob(t*), 

in order to achieve a size α test, we can use a p-value threshold of α* for T0 and T1, where 

α* satisfies the equation α = 1 − (1 − α*)2. So we propose a test that rejects for 

max abs(T0/v0
1/2), abs(T1/v1

1/2)) > z1 − α*/2, where abs(x) denotes the absolute value of x and 

z1 − α*/2is the (z1 − α*/2)th quantile of a standard normal random variable.

Also, though D ⫫ Md | G characterizes a subset of situations for which ORtr(t*) = ORob(t*), 

our test is likely not overly conservative. The majority of situations in which ORtr(t*) = 

ORob(t*) holds result from D ⫫ Md | G being satisfied.

Power curves for Test 1 as a function of the association between D and Md are shown in 

Figs. 1 and 2. These curves were generated at 11 different values of Kendall’s 𝜏, used as a 

measure of the association between D and Md. In our case a Kendall’s 𝜏 value of 0 

corresponds to independence between D and Md, and the power of the test at that value 

demonstrates the desired type 1 error rate of 0.05. The power curve in Fig. 1 was generated 

using 3000 iterations at each value, while that in Fig. 2 was generated using 1000 iterations 

at each value, and power was estimated by averaging over these iterations. In Fig. 1, at each 

iteration the test statistic was calculated using 1000 comparable pairs (i.e., those pairs that 

satisfy the comparability criterion mentioned in the description of Test 1). In Fig. 2, the test 

statistic was calculated using approximately 670 comparable pairs at each iteration–a subset 

of the 1000 comparable pairs used for Test 2, described below, that satisfied Test 1’s more 

stringent comparability criterion. Fig. 2 also demonstrates a type 1 error rate of 0.05. D, T, 

and Md were all distributed normal with means of 5, 9, and 9, respectively, and standard 

deviations of 0.7.
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We now consider realistic settings in which age of entry, T*, is random. In § 4 above, we 

saw that the distribution for Ma did not factor out of the odds ratio even when (D X) ⫫ Ma | 

G, and that additionally even under the assumption of D ⫫ Md | G, whether or not the 

previous assumption held, ORob(T*) could be biased; we needed a fixed t* for these 

conditional independencies to result in ORtr(t*) = ORob(t*). Thus, it may seem illogical to 

propose a test that requires variation in T*, which is precisely when the odds ratio will 

almost certainly be biased as shown in § 4. If we do find that D ⫫ Md | G, sufficient for no 

Neyman’s bias, we would need to then stratify our sample according to similar values of T* 

such that, within each stratum, T* can be effectively considered fixed, and then calculate the 

odds ratio for these different strata. We could then combine these strata into a average odds 

ratio if desirable or just consider each stratum-specific odds ratio separately.

5.3 Test 2: Testing “quasi-independence” with D and T*.

We now describe a test related to Test 1, which does not require knowledge of Md and again 

focuses on cases, those observations for whom D < T* is true. Such a test is appropriate if a 

study did not obtain follow-up on subjects, but did record age at onset of disease for cases. 

The foundation for the test is based on causal directed acyclic graphs (DAGs), borrowed 

from the causal inference literature (Hernan and Robins, ress). We use DAGs not for the 

sake of justifying causal interpretations of ORob, but rather as a convenient means of 

encoding conditional independencies. If DAGs are unfamiliar with the reader, Hernan and 

Robins (ress) describes them well.

By definition, the event I(T* < Md) = 1 must be satisfied for any subject in the study and can 

therefore betreated as a conditioning event. Additionally, by definition of I(T* < Md), there 

exists an association between it and both T* and Md; to borrow language from the causal 

inference literature, I(T* < Md) is called a “collider” in this instance because both T* and 

Md cause it. Thus, we see in Figs. 3 and 4 arrows between these random variables, indicative 

of a possible association, and a square around I(T* < Md), indicative of a conditioning event. 

Assuming 0 < P(T* < Md) < 1 so the conditioning event is non-trivial, an association 

between D and T* given G implies D  Md | G, and the converse of this statement is also 

true. Association between D and T* given G therefore serves as a powerful and valid proxy 

for association between D and Md given G. These associations result from conditioning on 

the “collider” I(T* < Md); association paths are opened between D and T* given G. Were 

I(T* < Md) not to be conditioned on, D and T* would be independent given G. The structure 

of this DAG is identical to that found in classic selection bias (even if the variables are not), 

where exposure and outcome both cause some indicator that is conditioned on in the 

analysis, which results in a spurious association between exposure and outcome even under 

the null.

We could assume D and T* are known for all observations in our data set and propose a test 

of association for these random variables under the framework described above. However, 

doing so is unrealistic as it assumes follow-up data on age at disease, D, for those observed 

at T* as controls (i.e., those with D > T*). Thus, we assume D and T* are observed only for 

cases (i.e., those realizations satisfying D < T*) and propose a test of “quasi-independence” 

between D and T* given G in the region of D < T* given G. If we assume that the 
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independence which holds on the region D < T* also holds for the entire joint distribution of 

(D T*)T, then since there is an association between D and T* given G if and only if D and 

Md are associated given G, this test is valid. We do not feel this assumption is an overly 

strong one, but is instead reasonable. In general, a joint distribution that exhibits dependence 

will not have that structure isolated to a certain region–examination of just a single region 

will reveal it, even if there are pathological counterexamples where this behavior does not 

hold.

We describe here this proposed test of quasi-independence. As before, let there be n 

realizations of (Gi Di T i*)T, and again define Bi j
0  (alternatively, Bi j

1 ) similarly to how we did 

with Ci
0 (alternatively, Ci

1), where Bi j
0 = 1 if G = 0 and max Di, D j ≤ min T i*, T j*  and Bi j

0  = 0 

otherwise, and where Bi j
1  = 1 if G = 1 and max Di, D j ≤ min T i*, T j*  and Bi j

1  = 0 otherwise. 

Also, define m0 ≡ ∑i = 1
n − 1 ∑ j = (i + 1)

n Bi j
0  and m1 ≡ ∑i = 1

n − 1 ∑ j = (i + 1)
n Bi j

1 .

Then the test statistic for the stratum G = g, Wg, with g 2 {0,1}, is

Wg = 1
mg

∑
i = 1

n − 1
∑

j = (i + 1)

n
sgn((Di − D j)(Ti* − T j*))Bi j

g .

Then Wg ~ N(0,ug), where

ug = E(sgn((D1 − D2)(T1* − T2*)(D1 − D3)(T1* − T3*))B12
g B13

g G = g) − (τD, T*
g μD, T*)2

and where τD, T*
g = E(sgn((D1 − D2)(T1* − T2*)) B12 = 1, G = g) and μD, T* = P(B12 = 1). As with 

Test 1, since we would reject if either W0 or W1 falls in some predetermined critical region 

because dependence between D and Md given either G = 0 or G = 1 may mean ORtr(t*) ≠ 

ORob(t*), for a size α test, our p-value threshold α* for W0 and W1 satisfies α = 1− (1 – 

α*)2. Thus, our test rejects for max abs(W0/u0
1/2), abs(W1/u1

1/2)) > z1 − α*/2.

Power curves for Test 2 as a function of the association between D and Md are shown in 

Figs. 1 and 2. As with the simulations for Test 1, these curves were generated at 11 different 

values of Kendall’s 𝜏, used as a measure of the association between D and Md. In our case a 

Kendall’s 𝜏 value of 0 corresponds to independence between D and Md. The power curve for 

Test 2 in Fig. 1 was generated using 3000 iterations at each value, while that in Fig. 2 was 

generated using 1000 iterations at each value, and power was again estimated by averaging 

over these iterations. In both Figs. 1 and 2, at each iteration the test statistic was calculated 

using 1000 comparable pairs. D, T, and Md were distributed multivariate normal with means 

of 5, 9, and 9, respectively, and standard deviations of 0.7. The correlation between D and 

Md varied as measured by Kendall’s 𝜏, while T was assumed independent of (T, Md)T.

As mentioned at the end of the description of Test 1 and for reasons given there, if this test 

does not reject D ⊥ ⊥ T* | G, implying D ⫫ Md | G, we would again need to stratify the data 
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by T* in order for ORob(t*) to be unbiased for ORtr(t*). In other words, one could split the 

data in subsets based on age at entry, T*, and calculate stratum-specific odds ratios. It is 

important to note that the reason for doing so applies no more in the context of testing for 

Neyman’s bias than it would any standard case-control study, where a mixture of ages at 

study entry results in an odds ratio that is difficult to interpret and possibly biased as shown 

in § 4.

5.4 Test 3: Estimating population exposure proportion.

With knowledge of disease prevalence, we can construct an estimate of the exposure in the 

general population from case-control study data that is unbiased in the absence of Neyman’s 

bias, but biased otherwise. Thus, if the exposure proportion in the population is also known, 

as might be the case in GWAS where minor allele frequencies (MAFs) are oftentimes known 

for SNPs in different populations, we can test for the presence of Neyman’s bias by 

examining their discrepancy. We develop one possible hypothesis test below where, again, 

H0 is ORtr(t*) = ORob(t*), and Ha is the complement of H0.

If we make an assumption of P(D < Md) = 1, then in comparing ORtr(t*) and ORob(t*), we 

see that their equivalence depends on

FD G = 1(t*)(1 − FD G = 0(t*))
(1 − FD G = 1(t*))FD G = 0(t*)

=
∫ 0

t*(1 − FX D = t, G = 1(t* − t))∂FD G = 1(t) (1 − FD G = 0(t*))
(1 − FD G = 1(t*)) ∫ 0

t*(1 − FX D = t, G = 0(t* − t))∂FD G = 0(t)

(3)

if and only if

FD G = 1(t*)
FD G = 0(t*) =

∫ 0
t (1 − FX D = t, G = 1(t* − t))∂FD G = 1(t)

∫ 0
t*(1 − FX D = t, G = 0(t* − t))∂FD G = 0(t)

So define p2(t*) ≡ P(G = 1|D < t*) = P(G = 1 | Case at t*). Then defining

h(t*) ≡
FD G = 1(t*)
FD G = 0(t*) = P(G = 1 Case at t*)

P(G = 0 Case at t*) = P(G = 1 Case at t*)
1 − P(G = 1 Case at t*) ,

we have p2(t*) = h(t*)/(1 + h(t*)), and defining

h*(t*) ≡
∫ 0

t*(1 − FX D = t, G = 1(t* − t))∂FD G = 1(t)

∫ 0
t*(1 − FX D = t, G = 0(t* − t))∂FD G = 0(t)

= P(G = 1 Case at t*, Not censored from disease by t*)
P(G = 0 Case at t*, Not censored from disease by t*) ,
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then we have p2
N(t*) ≡ P(G = 1 | Case at t*,Not censored from disease by t*) = h*(t*)/(1 + 

h*(t*)). When equation 3 does not hold,

p2
N(t*) ≡ h*(t*)

1 + h*(t*) ≠ h(t*)
1 + h(t*) ≡ p2(t*) .

Thus, if bias is present so that ORtr(t*) ≠ ORob(t*), then h(t*) ≠ h*(t*), and it will follow 

that p2(t*) ≠ p2
N(t*). This idea can be leveraged in a hypothesis test if there is external 

knowledge of the population exposure proportion and population prevalence of disease.

By definition of p2
N(t*), its estimator, p2

N(t*), is the observed exposure proportion among 

cases where E p2
N(t*) = p2

N(t*). Let p1(t*) ≡ P(G = 1 | D > t*, Md > t*), and since P(D < Md) 

= 1 by assumption, p1(t*) = P(G = 1 | D > t*) = P(G = 1 | Control at t*). Then p1(t*) is the 

observed exposure proportion among controls, and E p1(t*) = p1(t*) .

We will estimate pN(t*) ≡ p1(t*)(1 − p*(t*)) + p2
N(t*)p*(t*) with 

p1(t*)(1 − p*(t*)) + p2
N(t*)p*(t*). Also, define p*(t*) ≡ P(Case at t*) = P(D < t*), which 

implies (1 p*(t*b)) = P(Control at t*) =b P(D > t*). So p*(t*) is the population prevalence of 

disease at a common age t* and is considered fixed and known. Since

P(G = 1) = P(G = 1 D > t*)P(D > t*) + P(G = 1 D < t*)P(D < t*)
= p1(t*)(1 − p*(t*)) + p2(t*)p*(t*),

if p2(t*) = p2
N(t*), which indicates that ORob(t*) = ORtr(t*), then pN(t*) = P(G = 1). Since we 

consider P(G = 1) fixed and known, the discrepancy between pN(t*) and P(G = 1) will 

inform our test.

Define δ(t*) = p2(t*) − p2
N(t*). Then

pN(t*) + δ(t*)p*(t*) = p1(t*)(1 − p*(t*)) + p2
N(t*)p*(t*) + δ(t*)p*(t*)

= p1(t*)(1 − p*(t*)) + p2
N(t*)p*(t*) + (p2(t*) − p2

N(t*))p*(t*)

= p1(t*)(1 − p*(t*)) + p2(t*)p*(t*) = P(G = 1) .

So P(G = 1) and pN(t*) differ by δ(t*)p*(t*). The variance associated with our estimate of 

the exposure proportion pN(t*) is

v ≡ Var(pN(t*)) = (p*(t*))2
p2

N(t*)(1 − p2
N(t*))

n2
+ (1 − p*(t*))2

p1(t*)(1 − p1(t*))
n1

,
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where n2 is the number of cases and n1 the number of controls. We can estimate v with 

p1(t*) and p2
N(t*) and call the quantity v. So, using a large sample approximation, we can 

construct an 𝛼 level hypothesis test for the presence ofb Neyman’s bias by rejecting for

P(G = 1) − pN(t*)
v1/2 |Z | > z1 − α/2 .

The power becomes

P(G = 1) − pN(t*)
v1/2 > z1 − α/2

≈ P(G = 1) − (pN(t*) + δ(t*)p*(t*))
v1/2 Z > (z1 − α/2 − δ(t*)p*(t*))/v1/2),

assuming one tail probability negligible. We see that power decreases as p*(t*) decreases 

and increases with δ(t*), interpreted as the “degree of Neyman’s bias.”

Power curves for Test 3 are shown in Fig. 5. Consistent with our understanding of the test, 

power increases as p*(t*) increases. The type 1 error rate of the test is 0.05. The x-axis of 

Fig. 5, relative probability of observation, is defined as 

(1 − F
Md G = 0(t*))/(1 − F

Md G = 1(t*)); the x-axis begins at one and values greater than one 

imply that exposed cases are less likely to be sampled than unexposed cases because 

exposed subjects get disease earlier. Curves were generated using 300 cases and 300 controls 

in each simulated study, and the population-level exposure proportion was 0.09. Power was 

calculated based on 4000 iterations at each of the 11 total relative probabilities seen on the 

x-axis. This entire procedure was done for disease prevalences, p*(t*), of 0.1, 0.2, and 0.3. 

We assume that there is no variation in t* so that p*(t*) is also fixed.

6 Data analysis.

For illustration we apply our three hypothesis tests to three different data sets. The data sets 

are used for demonstrative purposes of interpretation and applicability of the proposed tests. 

Because the tests developed above make diverse assumptions about the nature of the data 

available, we found data sets with very different characteristics such that we could apply 

each test.

In general we do not know whether underlying Neyman’s bias exists, which is why we 

propose our hypothesis tests in the first place. However, in the case of the data set used for 

Test 1, we know the underlying truth by virtue of the prospective design of the Framingham 

Heart Study. Neyman’s bias cannot be present in a prospective cohort study because all 

relevant observations are in fact present in the sample, and bias is driven by the fact that 

some relevant ones are not. The data set therefore serves as a helpful “negative control” of at 

least Test 1. Indeed, as described below, the hypothesis test is not significant indicating a 

lack of Neyman’s bias.
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On the other hand, in the cases of tests 2 and 3 applied to two additional data sets, we do not 

know whether Neyman’s bias is in fact present. The high mortality of both conditions, brain 

tumor and stroke, respectively, in those data sets makes the presence of Neyman’s bias more 

likely than if mortality were to occur more slowly after those outcomes. This expectation is a 

direct result of Theorem 1, as we describe in Section 3 above: holding all else equal, we 
expect greater bias with a higher hazard function of death.

For these reasons, it is not unexpected for Neyman’s bias to be present in both of these data 

sets and so they are good ones on which to test. Consistent with our reasoning, we reject 

both hypothesis tests as written below, indicating that Neyman’s bias is likely present.

6.1 Test 1 applied to an atrial fibrillation data set.

We apply Test 1 to the Framingham Heart study, a longitudinal study where we would not 

expect to find evidence of Neyman’s bias; subjects would not be lost to high-mortality 

diseases by nature of the study design. We would hope that the null hypothesis for Test 1 

would not be rejected for each exposure stratum. We consider our exposure to be gender and 

the disease atrial fibrillation. Bear in mind we test not whether there is an association 

between gender and atrial fibrillation, but whether there would be bias in such an 

association. Among the cohort, there were 82 males and 188 females who had had atrial 

fibrillation and died of a related cause. Z-statistics calculated using the methodology of Test 

1 for the male and female strata are 0.84 and 0.68, respectively, with associated p-values of 

0.20 and 0.25. We do not reject the null hypothesis for either exposure stratum. The 

interpretation of this result is that, were we to calculate an odds ratio for atrial fibrillation 

and gender at some set age, we would not expect to encounter bias. Again, however, the test 

is used solely for illustration in this case because the study is prospective and not subject to 

the bias.

6.2 Test 2 applied to a brain tumor data set.

We apply Test 2 to a brain tumor data set. Seventy-five subjects with oligodendroglioma, a 

malignant brain tumor, were enrolled in a study at the London Regional Cancer Centre from 

1984–1999 (Betensky et al., 2003; Ino et al., 2001). The data set consisted of patient age at 

diagnosis of oligodendroglioma (i.e., age at disease, D) and age at start of chemotherapy 

(i.e., entry into the study, T*) in addition to genetic markers and other covariates. We 

consider the marker at the 1pLOH locus, thought to be potentially associated with tumor 

sensitivity to chemotherapy. Applying Test 2 to the data set, first within the exposed stratum 

of the 1pLOH marker, we obtain a Z-statistic of 6.85, significant at the 0.05 level (p < 

0.001). The sample size was insufficient to apply the test to the unexposed stratum. 

However, since a significant test statistic within any stratum is sufficient for rejection of the 

null hypothesis, we reject the null hypothesis of D ⫫ Md | G and conclude that there could be 

an association between D and Md within strata of G. The result of the test suggests that if 

one were to calculate an odds ratio of oligodendroglioma for the 1pLOH marker for subjects 

at a fixed age, the result is likely biased.

Consistent with the comparability criterion of Test 1 being more strict than that for Test 2, 

the sample size of 75 subjects was insufficient to additionally use Test 1. Had it been used, 
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conclusions drawn from it would not have changed a lack of faith put on the odds ratio in 

this data set due to results from Test 2.

6.3 Test 3 applied to a stroke-mortality data set.

We apply Test 3 to a GWAS data set of ischemic stroke coming from a cohort based at 

Massachusetts General Hospital consisting of 383 cases and 384 controls. We use a wide 

interval estimate of ischemic stroke prevalence, ranging from 0.5%−5%, based on a search 

of the stroke literature (Feigin et al., 2009; Johnston et al., 2009; CDC, 2012). With this 

range of p*(t*), we reconstruct what would be population exposure proportion, which is 

unbiased for the true population exposure proportion assuming that Neyman’s bias is not 

present. We calculate a test statistic based on the difference between the true population 

exposure proportion and our estimate of it, divided by an estimate of the standard error. 

Using a 0.0005 Bonferroni-adjusted significance level, we find that 42 of the 99 SNPs in the 

study suggest that Neyman’s bias may be present. The interpretation of this result is that any 

one of the odds ratios calculated for these 42 SNPs might be biased. We additionally 

perform a power calculation for this test using realized minor allele frequencies in the data 

set and generous estimates of both ν, δ(t*), and p*(t*). Doing so yields power calculations 

little above 𝛼, at 0.06, which we discuss below.

7 Discussion.

Test 2 with the brain tumor data suggests that Neyman’s bias may be present because the 

within exposure stratum association between D and T* suggests a within exposure stratum 

association of D and Md. However, we should restate that an association within strata does 

not necessary imply that bias is present; it is only when the D ⫫ Md | G holds that we can 

conclude that Neyman’s bias is not present. Additionally, the study design may contribute to 

a within stratum association between D and T* and so the authors suggest that more work is 

needed to form stronger conclusions regarding the potential presence of Neyman’s bias in 

this study.

As with the result from Test 2, the rejection of the null hypothesis of no Neyman’s bias in 

the stroke-mortality data by Test 3 needs confirmatory analyses. A primary concern is that if 

the population underlying the measurements in dbSNP, the source of our “true” population 

MAFs against which we compare the estimate, is significantly different than that composing 

the study subjects, the type 1 error could be inflated. Since, for many of the SNPs in the data 

set, the MAF among cases and the MAF among controls did not contain the population 

MAF, which should be the case as the sample size gets large, there is some evidence of 

different underlying populations. Another assumption that may not be satisfied is P(D < Md) 

= 1. While P(D < Md) = 1 is unlikely to ever be fully satisfied, ischemic stroke is an event 

with numerous comorbidities and so violations of the assumption may be too large for a 

valid test (Ostwald et al., 2006; Bots et al., 1997). Lastly, the description of Test 3 showed 

that the power for detection of bias goes to 𝛼 as the population prevalence of disease gets 

small. The implication of this result is that any bias detected when the population prevalence 

of disease ranges over a relatively small 0.5%−5% is more likely due to unsatisfied 

assumptions than genuine Neyman’s bias. The generous power calculation of 0.06 confirms 
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this belief–it is unlikely that a large proportion of SNPs would have significant p-values, as 

we have, when there is littler power to detect the bias. It is more likely that the reference 

population minor allele frequencies are unreflective of the population in the MGH study, 

which is an assumption that must be satisfied for a valid test.

We did not use Test 1 on the brain tumor and stroke data sets because of an insufficient 

sample size and insufficient covariates, respectively. The sample size was insufficient in the 

brain tumor data set because the comparability criterion for Test 1 is more stringent than that 

for Test 2, so there are only a limited number of pairs of observations that can contribute to 

estimation of the necessary parameters, especially when overlap between the multivariate 

random variables (D T* Md)T is minimal. Thus, while Test 2 might be thought of as 

somewhat removed from testing D ⫫ Md | G because it tests D ⫫ T* | G as a proxy, one 

advantage of Test 2 over Test 1 is that there are fewer restrictions imposed by the 

comparability criterion, allowing for more flexible use of the data.
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Refer to Web version on PubMed Central for supplementary material.
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9: Appendix: direction of bias and examples.

We provide a theorem regarding the direction of Neyman’s bias under certain modeling 

assumptions and examples of when Neyman’s bias does or does not occur.

Theorem 1

If G is associated with D such that OR(t*) ≠ 1 , the distribution of D | (G = 0) and D | (G = 
1) belong to the same location family, P(X > 0) = 1, P(X < t**) > 0 (where t** is defined as 
the time between t* and the first possible presence of disease among the exposed or 
unexposed), and X ⫫ (D G)T, then ORob(t*) ≠ ORtr(t*). Specifically, if D | (G = 0) is 
stochastically greater than D | (G = 1) (alternatively, stochastically less than) so that 
exposure is a risk factor for disease (alternatively, protective against disease), then ORob(t*) 

< ORtr(t*) (alternatively, ORob(t*) > ORtr(t*)).

Proof. Define 𝜕FD|G=0(x)/𝜕x = f0(x) and 𝜕FD|G=1(x)/𝜕x = f1(x), and suppose that f1(x) = f0(x 
− k) for some k positive, without loss of generality. Such a scenario corresponds to exposure 

being protective against disease, though below we will also consider it a risk factor. f1(x) and 
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f0(x) are in the same location family. Define F(x) as the cumulative distribution function of 

X evaluated at x and remember F(0) = 0 and F(t*) > 0. Consider the two quantities:

∫ 0
t*(1 − F(t* − x)) f 0(x)∂x

∫ 0
t* f 0(x)∂x

and
∫ 0

t*(1 − F(t* − x)) f 1(x)∂x

∫ 0
t* f 1(x)∂x

,

which we call the “percent erosion” of ∫ 0
t* f 0(x)∂x and ∫ 0

t* f 1(x)∂x, respectively. Then

∫ 0
t*(1 − F(t* − x)) f 1(x)∂x

∫ 0
t* f 1(x)∂x

=
∫ 0

t*(1 − F(t* − x)) f 0(x − k)∂x

∫ 0
t* f 0(x − k)∂x

=
∫ −k

(t* − k) 1 − F(t* − (x + k)) f 0(x)∂x

∫ −k
(t* − k) f 0(x)∂x

.

Since F(·) a cumulative distribution function and therefore increasing, we have

∫ 0
t*(1 − F(t* − x)) f 1(x)∂x

∫ 0
t* f 1(x)∂x

=
∫ −k

(t* − k) 1 − F(t* − (x + k)) f 0(x)∂x

∫ −k
(t* − k) f 0(x)∂x

>
∫ 0

t*(1 − F(t* − x)) f 0(x)∂x

∫ 0
t* f 0(x)∂x

,

(4)

because at every “successive” 𝜕x in each integral, 1 − F(t* − (x+k)) ≥ 1 − F(t* − x) and there 

is some 0 < x < t* for which 1 − F(t* − (x + k)) > 1 F(t* − x). Thus, the “percent erosion” of 

f0(x) will always be greater than that of f1(x) = f0(x − k), which is intuitive since f1(·) is 

located to the right of f0(·) and thus subject to the corrosive effects of F(·) for less “time.” 

Then using the inequality in (4),

1 >
∫ 0

t*(1 − F(t* − x)) f 0(x)∂x

∫ 0
t* f 0(x)∂x

/
∫ 0

t*(1 − F(t* − x)) f 1(x)∂x

∫ 0
t* f 1(x)∂x

=
∫ 0

t* f 1(x)∂xp

∫ 0
t* f 0(x)∂x(1 − p)

×
∫ 0

t*(1 − F(t* − x)) f 0(x)∂x(1 − p)

∫ 0
t*(1 − F(t* − x)) f 1(x)∂xp

= P(Case, Exposed)
P(Case, Unexposed) × P(Case, Unexposed, Observed)

P(Case, Exposed, Observed) ,

which implies that

P(Case, Exposed, Observed)
P(Case, Unexposed, Observed) > P(Case, Exposed)

P(Case, Unexposed) and ORob(t*) > ORtr(t*)

since P(X > 0) implies P(Control, Exposed, Observed) = P(Control, Exposed) and 

P(Control, Unexposed, Observed) = P(Control, Unexposed). Again, these inequalities only 

Swanson et al. Page 19

J Appl Stat. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hold when exposure is protective against disease. When exposure is a risk factor for disease 

and therefore shifts the mean age of disease onset to the left under the above assumptions,

P(Case, Exposed, Observed)
P(Case, Unexposed, Observed) < P(Case, Exposed)

P(Case, Unexposed) and ORob(t*) < ORtr(t*)

using analogous results. So we see that the bias is not toward the null, but in a definite 

direction depending on model assumptions.

Example 1. Consider D | (G = 1) uniform on (0,2), D | (G = 0) uniform on (0,1), and X 
uniform on (0,3), inde-pendent of G. Clearly the distributions of disease for exposed and 

unexposed are not in the same location family in this case, and the model for X corresponds 

to disease-induced mortality necessarily occurring within 3 times units after disease, D. We 

need only consider cases when investigating the odds ratio since we assume P(X > 0) = 1, 

implying P(D < Md) = 1. Taking t* = 1,

P(Case, Exposed, Observed)
P(Case, Unexposed, Observed) =

∫ 0
1(2/3 + x/3)(1/2)p∂x

∫ 0
1(2/3 + x/3)1(1 − p)∂x

=
1/2∫ 0

1(2/3 + x/3)p∂x

1∫ 0
1(2/3 + x/3)(1 − p)∂x

= 1p
2(1 − p) = P(Case, Exposed)

P(Case, Unexposed) .

So we have X independent of exposure status and time of disease-onset, as was the case 

above, but here ORob = ORtr.

Example 2. Consider again D | (G = 1) uniform on (0,2), and D | (G = 0) uniform on (0,1). 

However, consider X | (G = 1) uniform on (0,3) and X | (G = 0) with density fX|G=0(x) = 

2/3(1 x)2 on [0,1 + (9/2)1/3]. Again, we need only consider cases when investigating 

potential bias of the odds ratio since we assume P(D < Md) = 1 so that controls are not 

subject to the bias-inducing mortality event. Taking t* = 1,

P(Case, Exposed, Observed)
P(Case, Unexposed, Observed) =

∫ 0
1(2/3 + x/3)(1/2)p∂x

∫ 0
1(7/9 + 2x3/9)1(1 − p)∂x

=
1/2 ⋅ ∫ 0

1(2/3 + x/3)p∂x

1∫ 0
1(7/9 + 2x3/9)(1 − p)∂x

= 1/2(5/6)p
1(5/6)(1 − p) = 1p

2(1 − p) = P(Case, Exposed)
P(Case, Unexposed) ,

and so here we have no bias again.

Example 3. Assume the same models of D conditional on G, and suppose X | (G = 1) is 

uniform on (0,3) and X | (G = 0) has density fX|G=0(x) = 5/2(1 − x)4 on [0,1 + 21/5]. For the 

reasons given above, we again only consider cases for investigating the bias of the odds 

ratio. Taking t* = 1,
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P(Case, Exposed, Observed)
P(Case, Unexposed, Observed) =

∫ 0
1(2/3 + x/3)(1/2)p∂x

∫ 0
1(1/2 + x5/2)1(1 − p)∂x

=
1/2∫ 0

1(2/3 + x/3)p∂x

1∫ 0
1(1/2 + x5/2)(1 − p)∂x

= 1/2(5/6)p
1(7/12)(1 − p) ≠ 1p

2(1 − p) = P(Case, Exposed)
P(Case, Unexposed) ,

and so here we have bias.

Example 4. Take D | (G = 1) with density fD|G=1(x) = x2/4 on [0,121/3], D | (G = 0) with 

density fD|G=0(x) = x/3 [0,61/2]. Then let X | (G = 1) have density fX|G=1(x) = (2 x)2/4 on 

[0,2+41/3] and X | (G = 0) be uniform on [0,2]. As before, we need only consider cases when 

investigating the odds ratio since we assume P(D < Md) = 1 so that controls are not subject 

to the bias-inducing mortality event. Taking t* = 2,

P(Case, Exposed, Observed)
P(Case, Unexposed, Observed) =

∫ 0
2(1/3 + 1/12x3)(x2/4)p∂x

∫ 0
2(x/2)x/3(1 − p)∂x

= (4/9)p
4/9(1 − p) =

p∫ 0
2(x2/4)∂x

(1 − p)∫ 0
2x/3∂x

= p
1 − p = P(Case, Exposed)

P(Case, Unexposed) .

Remember that P(Case, Exposed)/P(Case, Unexposed) = p/(1 − p) implies ORtr(t*) = 1 

when P(D < Md) = 1, which is assumed from condition 3.

Example 5. On the other hand, we can obtain a biased odds ratio using the same conditional 

disease models as in the previous example and having X | (G = 1) with density fX|G=1(x) = (2 

− x)2/4 on [0,2 + 41/3] and X | (G = 0) uniform on [0,2]. We again assume P(D < Md) = 1 

from condition 3. Taking t* = 2,

P(Case, Exposed, Observed)
P(Case, Unexposed, Observed) =

∫ 0
2(1/2 + 1/16x3)(x2/4)p∂x

∫ 0
2(x/2)x/3(1 − p)∂x

= p(1/2)
(1 − p)4/9

≠ (4/9)p
4/9(1 − p) =

p∫ 0
2(x2/4)∂x

(1 − p)∫ 0
2x/3∂x

= p
1 − p = P(Case, Exposed)

P(Case, Unexposed) .
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Figure 1: 
Comparison of power between tests 1 (short dashes) and 2 (long dashes) as a function of the 

asso-ciation between D and Md, measured by Kendall’s 𝜏, holding the sample size constant.
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Figure 2: 
Comparison of power for tests 1 (short dashes) and 2 (long dashes) as a function of the D 
and Md as measured by Kendall’s 𝜏, holding the number of comparable pairs constant.
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Figure 3: 
This DAG provides the framework for Test 2. When D is not associated with Md, there is no 

association between D and T*, despite the conditioning event, using rules of DAGs. This 

figure represents these random variables within each stratum of G.
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Figure 4: 
This DAG provides the framework for Test 2. When D is associated with Md, an association 

between D and T* is induced due to the conditioning event using rules of DAGs. This figure 

represents these random variables within each stratum of G.
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Figure 5: 
Power for test 3 as a function of p*(t*) and the relative probability of observing the 

unexposed cases versus exposed cases. As the relative probability increases (i.e., it is more 

likely to observed unexposed cases than exposed cases) as is the case when there are a 

greater number of mortality-inducing events among the exposed, there is more bias and 

power. The solid, dashed, and dotted lines represent population prevalences of disease 

(p*(t*)) of 0.1, 0.2, and 0.3, respectively.
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