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Abstract

Phototrophic sessile organisms, such as reef corals, adjust their photosynthetic apparatus

to optimize the balance of light capture versus protection in response to variable light avail-

ability (photoacclimation). In shallow marine environments, daily light integrals (DLI) can

vary several-fold in response to water clarity and clouds. This laboratory study investigated

the responses of two coral species to fluctuations in DLI. Corals were exposed to four con-

trasting DLI treatments: ‘high-light’ (potentially photoinhibiting conditions, 32 mol photons m-

2 d-1), ‘low-light’ (potentially light-limiting conditions, 6 mol photons m-2 d-1), and two ‘variable

light’ treatments that alternated between high and low conditions every 5 days. In the vari-

able treatments, the shade-tolerant coral Pachyseris speciosa displayed cycles of rapid

declines in maximum quantum yield during high-light and subsequent recoveries during

low-light, showing photoacclimation at a time scale of 3–5 days. In contrast, the shallow-

water coral Acropora millepora showed slow (>20 days) photoacclimation, and minimal

changes in photosynthetic yields despite contrasting light exposure. However, growth

(change in buoyant weight) in A. millepora was significantly slower under variable light,

and even more so under low-light conditions, compared with high-light conditions. The

responses of yields in P. speciosa match their preference for low-light environments, but

suggest a vulnerability to even short periods of high-light exposure. In contrast, A. millepora

had better tolerance of high-light conditions, however its slow photoacclimatory responses

limit its growth under low and variable conditions. The study shows contrasting photoaccli-

matory responses in variable light environments, which is important to identify and under-

stand as many coastal and midshelf reefs are becoming increasingly more turbid, and may

experience higher variability in light availability.

Introduction

Phenotypic plasticity can increase the fitness of organisms by enabling them to cope with vari-

able environmental conditions [1, 2]. Plasticity can be based on phenotypic expression during

PLOS ONE | https://doi.org/10.1371/journal.pone.0203882 September 21, 2018 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: DiPerna S, Hoogenboom M, Noonan S,

Fabricius K (2018) Effects of variability in daily light

integrals on the photophysiology of the corals

Pachyseris speciosa and Acropora millepora. PLoS

ONE 13(9): e0203882. https://doi.org/10.1371/

journal.pone.0203882

Editor: Maya Dimova Lambreva, National Research

Council of Italy, ITALY

Received: April 5, 2018

Accepted: August 29, 2018

Published: September 21, 2018

Copyright: © 2018 DiPerna et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was funded by the Australian

Government’s National Environmental Science

Program - Tropical Water Quality Hub (NESP

Project 2.3.1), and the Australian Marine Institute

of Marine Science, Australia. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0001-9795-3817
https://doi.org/10.1371/journal.pone.0203882
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203882&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203882&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203882&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203882&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203882&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203882&domain=pdf&date_stamp=2018-09-21
https://doi.org/10.1371/journal.pone.0203882
https://doi.org/10.1371/journal.pone.0203882
http://creativecommons.org/licenses/by/4.0/


development (developmental acclimation) or from reversible and dynamic changes in

response to changes in environmental conditions [1]. In shallow water environments, light

reaching the seafloor (benthic irradiance) is highly variable. Light fluctuates within seconds

through wave lensing, but also throughout the day due to sun angle and intermittent cloud

cover [3]. Variable clouds and turbidity can alter the cumulative amount of light a benthic

organism receives (daily light integrals; DLI) up to five-fold from one day to the next [4], on

top of seasonal changes due to varying day length and sun angle [5]. As such, benthic marine

organisms grow in constantly changing light environments. Light intensity can range from

suboptimal for maximal photosynthesis rate (light-limiting conditions) up to levels that cause

damage to the photosynthetic apparatus (photoinhibitory conditions) [6, 7]. Plasticity that

optimizes photosynthesis under different light intensities is known as photoacclimation,

enhancing the fitness of phototrophic organisms [1, 8] and affecting ecosystem functioning

and biodiversity [9].

For sessile photosynthetic organisms in marine environments, such as corals, seagrasses

and algae, the ability to photoacclimate is critical to their survival and growth. Reef-building

corals use a combination of morphological and physiological strategies, manifest by both coral

host and symbiotic dinoflagellates (together termed the coral holobiont), to photoacclimate in

variable light environments. Over their lifetime, coral colonies can change their morphology

to optimize light exposure [10]. At time scales of days to weeks, the coral host also physiologi-

cally adjusts concentrations of photoprotective and antioxidant compounds within their tissue

[11, 12]. However, much of corals’ capacity for short-term photoacclimation is driven by

adjustment of various components of the photosynthetic apparatus in the symbiotic dinofla-

gellates [13]. For instance, the coral holobiont can photoacclimate via changing the size and

number of photosynthetic units (PSU) in the symbionts to optimize absorption of light energy

[14, 15]. This can include increasing the concentration of photosynthetic pigments (such as

chlorophyll a, c2 and peridinin) to increase light harvesting ability, and increasing photopro-

tective pigmentation (such as xanthophylls and β-carotene) to dissipate excess photon energy

and/or act as antioxidants to combat destructive reactive oxygen species formed during high-

light exposure [13, 16, 17]. Such changes ensure sufficient light energy is harvested under

light-limiting conditions while reducing damage under photoinhibiting conditions, thereby

maximizing photosynthetic energy gains for growth and reproduction.

Different coral species use different strategies for photoacclimation (physiological versus

morphological changes), and strategies depend on the direction of change in light. For

instance, Browne et al [18] showed that Pachyseris speciosa and Merulina ampliata responded

rapidly to decreased light availability by increasing the photosynthetic potential, or maximum

quantum yield of photosystem II (Fv/Fm), whereas Platygyra sinensis did not respond. Other

studies also indicate a general increase in Fv/Fm, after a decrease in light intensity in the envi-

ronment [6, 14, 19]. Similarly, Anthony and Hoegh-Guldberg [7] compared Turbinaria mesen-
terina photosynthesis to irradiance curves (P-I curve) constructed from oxygen-respirometry

techniques to assess the short-term change in the irradiance level at which photosynthesis

becomes saturated (saturating irradiance, denoted as Ik) when transitioning from high-light to

low-light and vice versa. Irradiance levels that are higher or lower than Ik can reduce the

organism’s efficiency to capture and utilize incoming light energy, so being able to quickly

adjust this parameter demonstrates photosynthetic flexibility to changing environments [20].

To date, many studies examining photoacclimation in reef corals have focused on photoac-

climatory responses after a single transition event between two constant light environments

(e.g. [7, 21, 22], or else they compared deep versus shallow water corals [23, 24]. While these

studies have greatly expanded our understanding of photoacclimation in reef corals, they pro-

vide limited insight into photoacclimation under the fluctuating light conditions that occur in
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nature. Studies on other photosynthetic organisms, such as phytoplankton and higher plants,

reveal they photoacclimate to the DLI, regardless of how variable the light is during the day

period [25, 26], or that they photoacclimate to average light conditions when light fluctuates

faster than acclimation rates [27, 28]. In addition, other studies suggest photoacclimation is

asymmetrical between acclimation to high versus low-light, as high-light intensities can rapidly

damage pigments and proteins involved in photosynthesis, and their repair is slow [24, 29, 30],

which slows rates of acclimation.

No coral studies thus far have directly compared coral photoacclimation and performance

under fluctuating and fixed light environments. For plants, however, a study by Mischra et al

[31] found Arabidopsis plants grown indoors with relatively consistent DLI had a reduced abil-

ity to cope with high-light exposure compared to plants grown under natural sunlight. For cor-

als, indirect evidence of changes in photoacclimation capacity under fixed light conditions

comes from studies showing that photosynthetic potential (Fv/Fm) is often lower in the field or

under outdoor laboratory experiments [32] compared to fixed lighting laboratory studies [22,

33] at similar DLI. The aim of this study was to understand photoacclimatory patterns of two

reef coral species, the plating Pachyseris speciosa and branching Acropora millepora, to diurnal

light profiles that either did not change from day to day (referred hereto as constant condi-

tions), or that varied between days (variable conditions). The latter mimicked changes in ben-

thic irradiance for several days resulting from pulses of turbidity or overcast periods. We

aimed to investigate the general mechanisms and capacity of corals with contrasting morphol-

ogies to deal with this type of variable light, as seen in many shallow reef environments. Specif-

ically, the study investigated whether corals exposed to variable conditions (i) acclimate to the

average, lowest or highest DLI they experience, or constantly and rapidly adjust to the chang-

ing light regimes. The study also addressed (ii) how rapidly the corals adjust their photosyn-

thetic processes to their new light environment when transferring from high-light to low-light

and vice versa, (iii) whether levels of light stress (either photoinhibition or light-limitation)

decrease after repeated exposure under variable conditions, and (iv) the implications of vari-

able light on the corals’ net oxygen production and growth rates.

Methods

Experimental setting

Eight partial colonies each of Pachyseris speciosa (from 5–8 m depth) and Acropora millepora
(from 3–5 m depth) were collected from Davies Reef, central Great Barrier Reef, Australia in

July 2016, and taken to outdoor flow-through aquaria of the National Sea Simulator at the Aus-

tralian Institute of Marine Science (AIMS), Townsville. Samples were collected under permit

from the Great Barrier Reef Marine Park Authority issued to the Australian Institute of Marine

Science. Five days post-collection, corals were cut into nubbins (P. speciosa: discs of ~5 cm

diameter, A. millepora: three to five branches/nubbin ~5 cm tall). Colony identity of each nub-

bin was recorded to account for differences between colonies [15]. A total of 64 nubbins per

species (n = 8 per parental colony) were glued to labeled ceramic plugs and placed in indoor

flow-through holding tanks for a three-week acclimation and recovery period at controlled

temperature (25.0˚C, which corresponded the temperature at Davies Reef at the time of collec-

tion) and light regime (~7.5 mol photons m-2 d-1, light ramping up over six hours, a one hour

at maximum irradiance of 250–350 μmol photons m-2 s-1, then 6 h light ramping down, and

11 h darkness). Due to logistical constraints, pre-experimental light conditions were lower

than ideal and the subsequent transition into the high-light conditions for the experiment may

have induced additional stress.

Effects of light variability on the photophysiology of corals
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For the 20-days experiment, four nubbins per species, each from a different colony, were

placed in each of sixteen 110 L aquaria. Each aquaria was equipped with a pump for circula-

tion, and had a water exchange rate of 800 mL min-1. Water temperature was kept well below

bleaching thresholds, between 25.0–26.0˚C. Tanks in high-light treatments were, on average,

0.5˚C warmer during periods of noontime irradiance than those in low-light; such tempera-

ture differences due to sunlight are not uncommon in shallow reef environments (e.g. [34]).

Tanks were cleaned every two days to minimize algal growth. Corals were fed Artemia at con-

centrations of 0.5 nauplii mL-1, five times per week, two hours prior to ‘sunrise’.

Four DLI treatments (four tanks per treatment) were established, using Hydra LED lamps

(Aquaillumination, USA) above each tank that were controlled to follow the ramping as out-

lined above with an extended noontime to emphasize differences between treatments. DLI

treatments consisted of: high-light (HL: noontime irradiance 750–850 μmol photons m-2 s-1,

corresponding to ~32 mol photons m-2 d-1), low-light (LL: noontime irradiance 125–175 μmol

photons m-2 s-1, ~6 mol photons m-2 d-1), and two variable light groups (VL1 and VL2). The

variable light treatments systematically alternated between 4 days of HL and LL, with each

transition containing one additional day of intermediate light. VL1 was first exposed to LL

conditions, whereas VL2 was first exposed to HL. VL1 and VL2 corals experienced on average

~17 mol photons m-2 d-1. Treatments reflected the magnitude of daily variation in light (~5

fold) and light extremes experienced by corals on shallow reefs during summer months (see

examples [19, 21, 35–37], and [5] for a compilation), and the experimental daily integrated

light levels and maximum noon irradiance were within the range of what corals naturally expe-

rience at Davies Reef (see S2 Fig). Black plastic sheets placed between tanks limited light spill-

over between treatments.

Measurements of coral photoacclimation

Four sets of photoacclimation and physiological responses were measured as outlined in the

sections below. They included (i) changes in photosynthetic potential and non-photochemical

quenching, (ii) photosynthetic and photoprotective pigment content of the algal symbionts,

(iii) photosynthesis to irradiance curves based on oxygen respirometry to understand the diur-

nal dynamics of photosynthesis and respiration [38], and (iv) buoyant weight change in A.

millepora to measure growth [39, 40]. These approaches were chosen for consistency with the

literature and to target symbiont responses (PAM and pigment quantification), to understand

effects at the whole-colony level (respirometry) and to link to demographic rates (growth).

Symbiont photobiology measured using chlorophyll fluorescence. Fluorescence mea-

surements were conducted using a diving pulse-amplitude modulated fluorometer (DPAM;

Walz, Germany) [41], with a consistent distance between fiber optic tip and coral tissue, and

standard settings (measuring intensity = 8, saturation intensity = 8, saturation width = 0.6 s,

gain = 2, damping = 2). Each day (excluding ramp days) measurements were taken twice with

the DPAM: once at 0.5 h before sunrise, to assess the maximum quantum yield of photosystem

II (Fv/Fm), and at noon, after 0.5 h exposure to maximum irradiance, to assess effective quan-

tum yield (PSIIϕ). Fv/Fm represents the maximum potential for photosynthesis through quan-

tification of ‘open’ photosystems (fully relaxed and oxidized, ready to process photon energy),

and can be a useful proxy for photodamage [41]. Reductions in Fv/Fm suggest that the rate of

repair of PSII is too slow to keep up with the damage, and hence can show photodamage over

time [42]. For each nubbin, at least five measurements were taken from different regions on

each nubbin and the values averaged. Nubbins were split into two groups (n = 32 nubbins /

group) based on colony ID and one group was measured daily, alternating groups each day.

The excitation pressures on PSII, Qm = 1 –(PSIIF / Fv/Fm) was assessed to estimate the degree

Effects of light variability on the photophysiology of corals
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of photoinhibition versus light limitation [29]. This measurement demonstrates the relative

amount of open and closed versus available photosystems to give an estimation of the type of

light stress (photoinhibitory vs. light-limited). High values of Qm (above ~0.3) would indicate

that the majority of available PSII reaction centers are closed at noontime irradiance levels (i.e.

photoinhibition stress), whereas low values (~0) indicate most PSII reaction centers are open

and not being utilized (light limitation). Non-photochemical quenching (NPQ), also derived

from PAM pre-dawn and noontime measurements based on equations by Genty et al [43],

was measured to assess the amount of excess photon energy dissipated safely as heat, and can

act as a proxy for xanthophyll cycle activity [28, 44].

Symbiont pigment concentration via spectrophotometry. At the end of the experiment,

the concentration of chlorophyll a (photosynthetic) and total carotenoids (photosynthetic and

photoprotective) of nubbins were compared between treatments. Tissue was removed from

the skeleton with an air gun and filtered seawater, and homogenized. The slurry was centri-

fuged for 6–8 min at 1,500 g and the coral host supernatant was separated from the symbiont

pellet. The pellet was then rinsed with filtered seawater and re-centrifuged at 10,000 g for 3

min prior to extraction. Pigments were obtained via a double extraction procedure (1 mL 95%

ethanol at 4˚C for 20 minutes each, with sonicator), and the absorbance was spectrophoto-

merically measured at 665, 664, 649 and 470 nm wavelengths. Concentrations of chlorophyll a
and total carotenoids (μg/mL) were calculated based on equations by Lichtenthaler [45] and

Ritchie [46] and standardized to nubbin surface area, which was estimated via a single wax dip

protocol [47]. Chlorophyll a concentration demonstrates photosynthetic potential, whereas

carotenoids can suggest a photoprotective capability when considered with up-regulation of

NPQ [42].

Photosynthesis and respiration measured by oxygen-respirometry. At the end of the

experiment, 18 nubbins were selected for respirometry measurements. Their ceramic plugs

were carefully cleaned to remove algal growth. Nubbins were individually placed in 634 mL

sealed stirred chambers that contained oxygen sensor spots (optodes), and the Firesting hard-

ware/software (Pyroscience, Germany) was used to measure oxygen concentrations within the

chambers every minute. Incubations ran for an hour each at ten light levels (0, 15, 40, 80, 120,

200, 300, 500, 700 and 1000 μmol photons m-2 s-1), measured with an upwards facing, cali-

brated, cosine correctedlight sensor (meter LI-250A, sensor LI-192, Li-COR, USA). Water was

flushed in the chambers at the beginning of each light level measurement. Rates of oxygen con-

sumption (estimated respiration in the dark) and production (estimated net photosynthesis in

the light) were standardized to coral surface area estimates derived from the wax dipping pro-

cedure. Photosynthesis to irradiance (P-I) curves were fitted to the data using a hyperbolic tan-

gent fit, as described by Jassby and Platt [38] using the ‘stats’ package (version 3.6.0) in the

statistical platform R (version 3.4.0, R Development Core Team 2017). Parameters for maxi-

mum photosynthetic production (Pmax), saturation irradiance (Ik) and dark respiration (Rdark)

for each treatment were estimated from fitted models. Net daily oxygen production (Pn) was

calculated by predicting production using the P-I curves at actual logged experimental light

levels, over a 24 h period. Net oxygen production acts as a proxy for daily net photosynthetic

production and gives an indication of potential energy reserves [48].

Colony growth rate. Growth rates of A. millepora were assessed as differences in buoyant

weight over time [40]. Nubbins were individually weighed to the nearest 0.001 g by suspending

them on a tray below a semi-micro balance (Shimadzu AUW220D, Japan) in a water bath at

~25 OC. The percent change in buoyant weight between days 8 and 20 was assessed. Growth

data were unavailable for P. speciosa as its slow growth prevents measurable changes in buoy-

ant weight over the time scale of the experiment.

Effects of light variability on the photophysiology of corals
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Data analysis

Analyses were performed for each species separately in the statistics platform R (version 3.4.0,

R Development Core Team 2017). All data were tested for normality and homogeneity of vari-

ance, and growth and pigment data were square-root transformed prior to analysis. Changes

in Fv/Fm and Qm over time were assessed for each treatment separately using general additive

mixed effects models (GAMM) as individual nubbins were measured repeatedly over time and

are not independent. The ‘mgcv’ package (version 1.8–18) in R was used, with models assess-

ing the PAM variable over time for each treatment including fragment identity as random

effect. Significant changes (positive or negative) for the full 20 days in the constant light treat-

ments indicated how long corals took to acclimate (denoted as stabilization of Fv/Fm), and

changes in photoinhibition/light-limitation stress over time (Qm). In the variable light treat-

ments, significant changes in the measured variables were assumed to represent active photo-

acclimation and/or photodamage.

To determine whether corals acclimate towards the average DLI, the minimum/maximum

DLI, or continually adjusted as DLI changed, comparisons of Fv/Fm between treatments

were made at on days 5, 10, 15 and 20 (i.e., after four days exposure to unchanged light levels

for the variable treatments) via one-way ANOVAs to assess the relative photoacclimatory

state in each treatment. A Bonferroni correction was applied to account for these multiple

comparisons.

To determine changes in photosynthetic potential and photoprotective xanthophyll cycling

in response to changing light conditions, GAMMs were also applied to Fv/Fm and NPQ data

over the three transition periods (a six-day period including the final day of one segment, the

day with intermediate light, and all four days of the following segment) (Bonferroni correction

also applied). To assess rates of acclimation during the three transition events, the change in

Fv/Fm (slope) for each colony was compared between treatments. Fv/Fm data during the transi-

tion periods were approximately linear, so linear mixed effects models (GLMM) were used to

assess whether corals acclimated within this time frame (significant slopes represent active

adjustment). Models included fragment identity as random effect and were run using the

‘lme4’ package (version 1.1–17) in R. To assess how quickly acclimation occurred (acclimation

coefficient ε = ΔFv/Fm d-1), the absolute value of the slopes (|ε|) at the end of each five-day seg-

ment was compared using a one-way repeated measures ANOVA (rmANOVA—as data points

were not independent) to determine if |ε| decreased or increased over time. |ε| was also com-

pared between light conditions using a Wilcoxon Signed Rank test to determine if acclimation

rates were equal when going into high versus low-light conditions.

To investigate whether light stress (Qm) decreased throughout the experiment, Qm data

were compared between days 5, 10, 15 and 20 using one-way rmANOVAs, separately for con-

stant high-light and low-light conditions. For variable light treatments, data were divided into

high and low-light events to test if stress levels (photoinhibition and light-limitation) changed

over time.

Pigment concentrations of A. millepora were compared between treatments using two-way

ANOVA, also testing for variation due to colony identity. For P. speciosa, one-way ANOVA

was used (too few replicates per treatment were available to consider this factor statistically in

this species, due to difficulties separating tissue from skeleton). Tukey HSD post-hoc analyses

were run for both species where there was no interaction effect. Differences in Ik, Pmax, Rdark

and Pn between treatments were assessed using one-way ANOVAs. Finally, to investigate rela-

tive impact of variable versus constant light on growth in A. millepora, a one-way ANOVA

with Tukey HSD post-hoc test was used to compare percent buoyant weight changes between

treatments.

Effects of light variability on the photophysiology of corals
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Results

Photosynthetic potential of corals (maximum quantum yield, Fv/Fm)

In Pachyseris speciosa, maximum quantum yield (Fv/Fm) decreased in the constant high DLI

treatment (HL) during the first five days, then stabilized and began to increase during the sec-

ond half of the experiment (GAMM edf = 2, F = 9.091, P< 0.001; Fig 1A). Fv/Fm in the low

DLI treatment (LL) remained stable (GAMM edf = 1, F = 1.732, P = 0.191). In variable DLI

treatments, Fv/Fm consistently tracked the levels of light, approaching values found within the

constant light counterparts at the third to fifth day of all four segments (Fig 1 and S1 Table).

Fv/Fm in the variable DLI treatments were on average 0.59 ± 0.008 SE by the end of the low

DLI segments (~5% less than the average LL values of 0.62 ± 0.005 SE), whereas by the end of

high DLI segments, they averaged 0.49 ±0.014 SE (6.5% above of the average HL value of

0.46 ± 0.014 SE).

Fig 1. Photosynthetic potential, light stress and non-photochemical quenching under constant high and low DLI, and under two variable DLI treatments.

Mean maximum quantum yield (Fv/Fm), excitation pressure on PSII (Qm) and non-photochemical quenching (NPQ) of Pachyseris speciosa (A, C, E)—and

Acropora millepora (B, D, F), over the 20-days experiment in high DLI treatment (HL, orange), low DLI treatment (LL, purple), variable DLI 1 treatment (VL1,

blue dashed lines) and variable DLI 2 treatment (VL2, green dashed lines). Values represent means over 16 colonies per treatment per species, with shaded areas

representing standard error.

https://doi.org/10.1371/journal.pone.0203882.g001
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In Acropora millepora, Fv/Fm in HL remained stable (GAMM edf = 1, F = 0.545, P = 0.462,

Fig 1B), whereas in LL there was a slight but steady increase (~3.5%) over 20 days (GAMM

edf = 1, F = 9.932, P< 0.01). In VL1 and VL2, Fv/Fm of A. millepora averaged 0.67 ± 0.0025 SE

and 0.67 ± 0.0019 SE, respectively, throughout the 20-day experiment, similar to the value in

the HL constant treatment (0.662 ± 0.0086) and remained constant throughout the experiment

(GAMM, P > 0.05). There were no significant differences in Fv/Fm between the four treat-

ments by the end of each segment for A. millepora (S1 Table), although LL had the greatest

photosynthetic potential at day 20 (0.709 ± 0.0044 SE), 6.6% greater than in HL (0.662 ±
0.0086 SE) and 4% more than the average of VL1 and VL2 (0.68 ± 0.0097 SE).

Rate of transition between light environments in variable light

P. speciosa demonstrated significant changes in Fv/Fm within one day after changing DLI in

both variable light groups (Table 1). Comparisons of the acclimation rate (ε) between the three

transitions demonstrated that the magnitude of change during the first transition (0.036 ΔFv/

Fm d-1 ± 0.007 SE) was most pronounced, approximately 50% and 70% greater than transitions

two (0.023 ΔFv/Fm d-1 ± 0.003 SE) and three (0.021 ΔFv/Fm d-1 ± 0.003 SE), respectively (rmA-

NOVA F1,33 = 15.203, P< 0.001). ε was on average -0.022 ΔFv/Fm d-1 ± 0.002 SE when transi-

tioning into high DLI and 0.018 ΔFv/Fm d-1 ± 0.002 SE when transitioning into low DLI,

Table 1. Analysis of the extent of change in FvFm and NPQ after transitioning between high and low levels of light.

Species Treat-ment Para-meter Transition Edf F-value P-value

P. speciosa VL1 FvFm 1 (LL!HL) 1.00 35.05 < 0.001

2 (HL!LL) 1.66 24.39 < 0.001

3 (LL!HL) 1.86 26.63 < 0.001

NPQ 1 (LL!HL) 1.99 147.90 < 0.001

2 (HL!LL) 1.99 93.96 < 0.001

3 (LL!HL) 1.98 90.17 < 0.001

VL2 FvFm 1 (HL!LL) 1.68 42.21 < 0.001

2 (LL!HL) 1.00 43.05 < 0.001

3 (HL!LL) 1.00 14.94 < 0.001

NPQ 1 (HL!LL) 1.98 101.20 < 0.001

2 (LL!HL) 1.99 141.50 < 0.001

3 (HL!LL) 1.99 115.20 < 0.001

A. millepora VL1 FvFm 1 (LL!HL) 1.00 4.03 0.052

2 (HL!LL) 1.51 3.75 0.045

3 (LL!HL) 1.00 0.19 0.667

NPQ 1 (LL!HL) 1.00 2.59 0.116

2 (HL!LL) 1.00 5.81 0.021

3 (LL!HL) 1.00 10.09 < 0.016

VL2 FvFm 1 (HL!LL) 1.88 4.31 0.023

2 (LL!HL) 1.61 1.55 0.217

3 (HL!LL) 1.00 5.52 0.024

NPQ 1 (HL!LL) 1.00 0.26 0.610

2 (LL!HL) 1.00 6.10 0.018

3 (HL!LL) 1.42 9.40 < 0.016

General additive mixed effects model result summaries for both variable light treatments (VL1 and VL2): change in maximum quantum yield (Fv/Fm) and non-

photochemical quenching (NPQ) during transitions 1, 2 and 3 for Pachyseris speciosa and Acropora millepora. N = 5/transition/species. Critical P-value with Bonferroni

correction α/3 = 0.016.

https://doi.org/10.1371/journal.pone.0203882.t001
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without statistical difference between the absolute values of ε going either way (WSR V = 83,

P = 0.165).

On average, Fv/Fm of A. millepora did not change significantly during the transition between

high and low DLI (Table 1), although six nubbins (14%) showed significant change (S2 Table).

On average, ε of A. millepora was 0.003 ΔFv/Fm d-1 ± 0.0009 SE when transferring into low DLI,

and -0.00002 ΔFv/Fm d-1 ± 0.0008 SE when transferring into high DLI. There was no significant

difference in the magnitude of ε between transitions (rmANOVA F1,34 = 0.362, P = 0.551), nor

between transition from high to low and vice versa (WSR V = 146, P = 0.3038).

Energy dissipation–non-photochemical quenching

Levels of NPQ under constant HL gradually increased over the course of the experiment for

both P. speciosa (GAMM edf = 1.013, F = 16.1, P< 0.0001) and A. millepora (GAMM edf = 1,

F = 6.542, P< 0.05), although, for P. speciosa, NPQ increased ten times more than for A. mille-
pora (Fig 1E and 1F). Under constant LL, NPQ did not change for P. speciosa (GAMM edf = 1,

F = 2.066, P = 0.153) or for A. millepora (GAMM edf = 1.669, F = 0.672, P = 0.378).

In variable DLI, P. speciosa showed significant up-regulation of NPQ the day after transi-

tions into high DLI, and down-regulation after transition to low DLI (Table 1). On average,

levels of NPQ during high DLI were ~10-fold greater than those in low DLI (2.131 ± 0.06 SE vs

0.195 ± 0.02 SE). A. millepora showed only significant up/down-regulation of NPQ during the

final transition. Levels remained similarly low in both treatments throughout the experiment

(on average -0.065 ± 0.11 SE and -0.12 ± 0.09 SE for high and low DLI episodes, respectively).

Light stress proxy—excitation pressure on PSII

For P. speciosa in HL, the excitation pressure on PSII (Qm) decreased steadily during the exper-

iment (GAMM edf = 1, F = 11.84, P< 0.001; Fig 1C), from 0.39 ± 0.0632 SE on day 2 (suggest-

ing light inhibition) to 0.32 ± 0.0293 SE on day 20 (8% decrease). In LL, Qm remained stable

(GAMM edf = 1, F = 2.76, P = 0.099), demonstrating chronic light-limitation (on average

0.006 ± 0.004 SE throughout the experiment). Under variable DLI, Qm alternated between

photoinhibited (0.35 ± 0.011 SE) and light limited states (0.016 ± 0.005 SE) within a day of

changing DLI. During low DLI segments (i.e. light limiting conditions), the degree of light

stress did not change over time (rmANOVA F1,14 = 0.151, P = 0.704), remaining on average

0.018 ± 0.01 SE throughout the experiment. During the high-light segments (i.e. photoinhibit-

ing conditions), there was a significant decrease in Qm the second time P. speciosa nubbins

were exposed to high-light (rmANOVA F1,14 = 17.148, P< 0.001); Qm was on average

0.38 ± 0.03 SE by the end of each high DLI segment during the first phase of the experiment

(days 5 and 10), then dropped ~20% to 0.3 ± 0.03 SE during the second phase (days 15 and

20).

For A. millepora, Qm did not change throughout the experiment in any of the treatments

(GAMMs, all P> 0.1; Fig 1D), suggesting chronic light-limitation under all conditions, with

negative values potentially indicating occurrence of chlororespiration (i.e. an alternative elec-

tron transport chain providing symbionts with an additional inorganic carbon source).

Photosynthetic and photoprotective pigmentation

Concentrations of chlorophyll a and total carotenoids were highest in LL and lowest in HL in

both species (Fig 2). For P. speciosa, both chlorophyll a and total carotenoid concentrations in

the variable DLI were ~50% and ~40% lower than in LL, but more than double compared with

HL treatments (ANOVA for chlorophyll a; F3,17 = 10.59, P < 0.0001 and total carotenoids;

F3,17 = 14.82, P< 0.0001).
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In A. millepora, HL nubbins had generally less chlorophyll a and total carotenoids than

those in LL, and variable DLI treatments had ~30% higher concentrations than HL and 40%

and 32% less chlorophyll a and total carotenoids than LL, respectively. However, some colonies

showed different magnitudes of change between treatments, resulting in a significant interac-

tion between treatments and colony (ANOVA chlorophyll a F20,35 = 2.021, P< 0.05; total

carotenoids F20,35 = 2.017, P< 0.05).

Photosynthesis to irradiance curves and net daily production

No significant photoinhibition was observed for either species of coral when generating the

photosynthesis to irradiance curves (P-I curves). Parameters derived from P-I curves, namely

maximum photosynthetic production (Pmax), saturation irradiance (Ik), dark respiration

(Rdark), and daily net production (Pn) did not greatly differ between the four treatments for P.

speciosa (Fig 3A). LL had the greatest Pmax (3.1 μmol O2 cm-2 h-1 ± 0.09 SE), almost twice that

of HL (1.6 μmol O2 cm-2 h-1 ± 0.07 SE), and 30% and 37% more than VL1 (2.2 μmol O2 cm-2

h-1 ± 0.09 SE under low DLI) and VL2 (1.9 μmol O2 cm-2 h-1 ± 0.09 SE under high DLI),

respectively (S3 Table), however differences were not statically significant (ANOVA F3,5 =

3.569, P = 0.102). Ik and Rdark values of variable light treatments were most similar to the corre-

sponding constant light treatment, however again neither parameter was statistically different

between treatments (ANOVA Ik F3,5 = 3.569, P = 0.102; Rdark F3,5 = 2.558, P = 0.168). Mean Pn

in HL was almost three times of that in LL, and Pn in the variable treatments were in between,

Fig 2. Effects of constant and variable light on pigment concentrations. Concentration of chlorophyll a (μg cm-2) and

total carotenoids (μg cm-2) in Pachyseris speciosa (N = 5–6 nubbins/treatment) and Acropora millepora (N = 16 nubbins/

treatment) under high DLI (white), low DLI (black), and variable DLI (VL1, light gray, and VL2, dark gray) treatments at

the end of the 20-days experiment. Tukey HSD post-hoc results from one-way ANOVA comparison superimposed. Error

bars represent standard error.

https://doi.org/10.1371/journal.pone.0203882.g002
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but variability was high and values did not differ statistically between treatments (ANOVA

F3,5 = 0.98, P = 0.472; Fig 4).

A. millepora showed similar P-I curves in the HL and variable treatments (Fig 3B), and

mean Pmax in these three treatments varied only between 2.6 and 2.9 μmol O2 cm-2 h-1. In con-

trast, the LL group showed a characteristic low-light P-I curve, with lower Pmax (1.8 μmol O2

cm-2 h-1 ± 0.05 SE), while Ik (387.3 μmol photons m-2 s-1 ± 28.5 SE) was on average ~40–60%

lower than the other treatments, although no significant differences were found (ANOVA

Pmax F3,5 = 1.647, P = 0.292; Ik F3,5 = 4.109, P = 0.0811). The LL group had significantly lower

dark respiration than all other treatments (ANOVA Rdark F3,5 = 26.71, P< 0.01). A. millepora
corals under the variable treatment ending in low DLI (VL2) was the only one treatment dem-

onstrating consistent and significant negative Pn (ANOVA, F3,5 = 15.53, P < 0.01; Fig 4).

Relative colony growth (buoyant weight change of A. millepora)

A. millepora in HL had significantly greater increases in buoyant weight (i.e., growth) after 12

days compared to corals in the other three treatment groups (ANOVA F3,51 = 33.3 P< 0.0001;

Fig 5). Mean growth in HL was nearly 10 times greater than in LL (2.11% change d-1 ± 0.17 SE,

vs. 0.22% d-1 ± 0.10 SE). Corals in the variable DLI treatments showed intermediate growth

compared to LL and HL corals, with VL1 (1.18% change d-1 ± 0.15 SE) and VL2 (0.97% change

d-1 ± 0.13 SE) growing 5.5 and 4.5 times faster than LL, respectively.

Fig 3. Photosynthesis-irradiance curves describing the contrasting photosynthetic features of the study species.

Mean light-dependent oxygen production or consumption (μmol O2 cm-2 h-1) for Pachyseris speciosa (A) and Acropora
millepora (B) at the end of the 20-day experiment in the high DLI (HL, solid grey), low DLI (LL, solid black), and

variable DLI (VL1, dashed light gray, and VL2, dashed dark gray) treatments. N = 2–3 colonies/treatment/species.

https://doi.org/10.1371/journal.pone.0203882.g003
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Discussion

This study provides novel insights into photoacclimatory responses of reef corals to short-term

(3–4 days) variation in daily light integrals (DLI), as would arise from changes in turbidity and

cloud cover. The experiment showed that variable DLIs exerted physiological stress on both a

low-light and a high-light tolerant coral species. The low-light coral Pachyseris speciosa photo-

acclimated to changing DLI within two days, with photoinhibition declining slightly under

prolonged and repeated exposure to high DLI. At the colony level, oxygen production was rel-

atively stable among the different constant and variable light treatments. In contrast, Acropora

Fig 4. Effects of constant versus variable light on daily net oxygen production. Net daily production, Pn (μmol O2

cm-2 d-1), for Pachyseris speciosa and Acropora millepora in high DLI (HL, white), low DLI (LL, black), variable DLI

treatment ending in high-light (VL1, light gray) and variable DLI treatment ending in low-light (VL2, dark gray)

derived from P-I curves. Error bars represent standard error, N = 2-3/treatment/species.

https://doi.org/10.1371/journal.pone.0203882.g004

Fig 5. Relative growth of Acropora millepora between constant and variable DLI treatments. Mean percent change

of Acropora millepora buoyant weight in the high DLI (HL, white), low DLI (LL, black), and two variable DLI

treatments (VL1, light grey & VL2, dark grey) after 12 days. Tukey HSD post-hoc results from one-way ANOVA

comparisons superimposed. Error bars represent standard error, n = 16 per treatment.

https://doi.org/10.1371/journal.pone.0203882.g005
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millepora, which is typically found in high-light environments, showed only minor and slow

photoacclimatory responses, with limited oxygen production and growth under both low and

variable DLI compared to under high DLI.

Symbiont strategies for coping with variable DLI conditions

Symbionts within P. speciosa appear to adopt a photoacclimation strategy of continually and

rapidly adjusting to new light environments. The observed immediate drop in Fv/Fm when

transitioning into high DLIs and decreased chlorophyll a pigmentation likely denotes a degree

of photodamage and/or photoprotective dissociation of antenna complexes from PSII [49, 50],

as previously observed in other corals that displayed Fv/Fm levels of ~0.45 under high-light

conditions [49, 51]. Low pigmentation in the high-light treatments likely indicates stress

under high-light conditions, which is expected for the shade-adapted P. speciosa. Although Fv/

Fm was stable in both species under the high-light treatment, it is possible that repeated and/or

continued exposure to high-light conditions would lead to bleaching and potentially even

mortality, especially for P. speciosa. However, after several days in high DLI, P. speciosa’s grad-

ual increase in Fv/Fm and slow reduction in Qm provides evidence of diminishing photoinhibi-

tion and suggests active acclimation to these conditions. Full acclimation, however, takes more

than 4–5 days [29, 52], and hence adjustment of physiology to reach a steady-state was only

observed in the constant high DLI and not in the variable treatments.

Importantly, the rapid onset of recovery towards near-baseline levels of Fv/Fm [18] suggests

that P. speciosa is quite resilient to short periods of high DLI exposure. The literature reports

that other shade-adapted corals also demonstrate this immediate initiation of photorecovery

following a shift in DLI levels, including deep water Porites [53], Platygyra sinensis and P. spe-
ciosa [18] and Pavona spp [54] in various short-term temperature and turbidity stress experi-

ments. Such rapid recovery could be achieved through up-regulating mechanisms that

dissipate excess light energy, such as the xanthophyll pigment cycle [55]. It is likely that pig-

ments such as the xanthophylls and β-carotene may be the dominant carotenoids in high-light

corals, as these pigments are known to act as photoprotectants so as to maintain higher con-

centrations of photosynthetic pigments [13, 16, 24]. Rapid up-regulation of NPQ during high-

light episodes suggests that the xanthophylls were likely present and active in dissipating excess

light energy [16, 28]. Increase in xanthophylls likely explains the intermediate concentration of

carotenoids present in the variable treatments. The rapid recovery of photosynthetic potential

is likely beneficial for corals such as P. speciosa in turbid, inshore Indo-Pacific reefs where sig-

nificant declines in light availability are common events [18, 56, 57].

In contrast, A. millepora responded to variable DLI with few, minor and slow changes in

their symbiont photoacclimatory responses, Fv/Fm and pigmentation. A. millepora typically

grows on the upper slopes and flats of reefs (2–5 m deep), where they can experience high-

light exposure (>30 mol photons m-2 d-1, see S1 and S2 Figs), while their natural estimated

minimum light threshold is ~5 mol photons m-2 d-1 [58]. The vertical alignment and dense

spacing of branchlets in corymbose colony morphologies facilitate self-shading on all surfaces

except the symbiont-free growing tips, reducing exposure to light [49, 59, 60]. Consistent with

the habitat distribution of this species, our experiment showed that A. millepora experienced

the greatest photosynthetic challenges under low DLI, and that acclimation took�20-days,

meaning that the 5-day variations in light levels in the variable DLI treatments in this experi-

ment are far shorter than the acclimation time for this species. This result is consistent with a

previous study showing limited photoacclimation (to fixed light levels) over a 9-day experi-

mental period for A. millepora and three other Acropora species [61]. Similarly, durations of a

minimum of 10–20 days for short-term acclimation have been previously reported for
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Turbinaria mesenterina [7], although some other species, such as Stylophora pistillata, begin to

acclimate within two to four days [23]. Moreover, between-colony variations in responses

from both species suggest that additional physiological processes, such as host pigments and

nutrient uptake, may significantly contribute to photoacclimation. These include accumula-

tion of antioxidants and mycosporine-like amino acids [11, 62], green fluorescent proteins and

GFP-like proteins [12, 30, 63], as well as tissue expansion/retraction [59] and differences in

algal symbiont identity [64].

Importance of light history on symbiont response

The observed trends in light stress experienced by Pachyseris speciosa (as measured by Qm),

the degree of up-regulation of photoprotective NPQ, and rates of acclimation, all suggest that

light history plays an important role in determining coral responses to fluctuating DLI. Our

results showed that P. speciosa experienced lower photoinhibitory stress over repeated cycles

of high DLIs, balancing declining photosynthetic pigments and increasing reliance on light-

energy dissipation, for example through NPQ and intermediate carotenoid concentrations.

Similar effects of light history on photoacclimation and NPQ are seen for short-term light

changes on the scale of seconds to minutes [55, 65], however this is the first study that shows

this influence on a larger scale (days).

Interestingly, there was no significant improvement in the light-limitation stress (Qm) in

either species under variable conditions. Qm is known to remain consistently low in corals

under light-limiting conditions [29, 51], suggesting that deeper-water corals rely on other

strategies to cope with low-light in the long term. Alternatively, physiological adjustments to

avoid light-limitation (e.g. increasing chlorophyll a content) might be limited by other pro-

cesses (e.g. nitrogen availability [14]), or require more than 20 days time for acclimation (e.g.

adjusting symbiont densities [23]).

Effects of variable DLI on coral net oxygen production and growth

The results of this study demonstrate two contrasting photosynthetic responses of corals to

variable DLI. P. speciosa in the present study seemed to have been able to maintain net oxygen

production, potentially in part due to rapid photosynthetic adjustment to the changing light

environment to optimize light harvest. This is corroborated by slightly reduced respiration

rates seen in the low and variable low treatment corals; low respiration can conserve energy in

light-limited environments [21, 66]. Organic carbon and energy produced by photosynthesis

can be utilized to build and repair proteins that are essential to mitigate photoinhibition, for

pigment upregulation and/or for photosystem repair [39, 55, 67] and hence being able to

maintain positive net oxygen production could be a valuable asset in variable light conditions.

In contrast, variable DLI is detrimental via lowered generation of photosynthetic production

during low DLI episodes for high-light tolerant corals such as A. millepora that are unable to

rapidly adjust their photophysiology and conserve energy with reduced respiration rates [21,

62, 63]. Intermediate growth rates in variable DLI and low growth in low DLI further demon-

strate the costs of living under low DLI. Our results also support the theory of light enhanced

calcification, wherein increased photosynthesis at high-light directly enhances colony calcifica-

tion and, thereby, reef accretion, by providing inorganic carbon and metabolic energy [68, 69].

It is important to note the 0.5˚C warming during noon in the high-light treatments may have

to a small degree further co-contributed to the faster growth observed under high-light. Fur-

ther investigations into tissue composition, use of heterotrophic feeding as a buffer, and repro-

ductive ability under variable DLIs are needed to fully understand the effects of increasing

variability in the natural environment on coral energy budgets and overall fitness.
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A. millepora’s slower growth under low and variable DLI and slow rates of symbiont photo-

acclimation have implications for its ability to endure in environments with fluctuating low-

light availability. Inshore and even mid- and outer-shelf regions along parts of the GBR have

experienced a distinct decrease in mean water clarity over the past decade or so [70–72]. These

regions are exposed to terrigenous sediments via flood plumes and repeated wind driven resus-

pension [71, 72], leading to increased frequency and degree of reduction in benthic DLIs.

Water clarity has been shown to have significant impact on coral health [73] and sufficient

light availability can increase resiliency of corals under high sedimentation conditions [74],

demonstrating the importance of light availability to corals when coping with stress. The

cumulative effects of variable and low-light on coral net photosynthetic production and

growth, as demonstrated in this study, suggest potentially negative implications for rates of

reef growth and recovery.

Conclusion

This study documented two different mechanisms through which variable light can affect cor-

als with contrasting morphologies and photophysiologies. Firstly, the rapid recovery of photo-

synthetic potential and maintenance of positive net daily production under low DLI allows

Pachyseris speciosa to quickly adjust to low DLI and to survive in turbid reef environments,

however the rapid declines in photosynthetic potential demonstrates acute vulnerability to

high DLI. In contrast, Acropora millepora’s photoprotective branching morphology enables it

to tolerate high DLI, whereas it’s slow photoacclimation, inability to rapidly reduce energeti-

cally expensive respiration rates and significant growth reductions under variable and low DLI

put this species at a disadvantage. This is especially relevant in the context of the globally

increasing exposure of coral reefs to coastal runoff and dredging, which lead to increasing vari-

ability in water clarity and hence DLI.

Supporting information

S1 Table. Analysis of photosynthetic potential between treatments at four time points.

ANOVA summaries comparing maximum quantum yield (Fv/Fm) between treatments on day

5, 10, 15 and 20 for Pachyseris speciosa and Acropora millepora. N = 16/treatment/species. Crit-

ical P-value with Bonferroni correction α/4 = 0.0125.

(DOCX)

S2 Table. LMM model summary for each nubbin/colony during transition periods. Change

in maximum quantum yield (ΔFv/Fm) and corresponding p-value from linear mixed effects

models for each coral nubbin (ID) of both Pachyseris speciosa and Acropora millepora in vari-

able light treatments (VL1 and VL2) during all three transition events. � denotes significance.

N = 6/nubbin.

(DOCX)

S3 Table. Photosynthetic characteristics derived from P-I curves. Parameters of maximum

photosynthetic potential (Pmax μmol O2 cm-2 h-1), saturation irradiance (Ik μmol photons m-2

s-1) and dark respiration rates (Rdark μmol O2 cm-2 h-1), derived from photosynthesis-irradi-

ance curves for Pachyseris speciosa and Acropora millepora between treatments, with ending

light condition italics next to treatment. Standard error in parentheses. N = 2-3/treatment/spe-

cies.

(DOCX)

S1 Fig. Light attenuation for Davies Reef, GBR, Australia. Irradiance (μmol photons m-2 s-1)

at depth (m) profile at 11am for Davies Reef, central Great Barrier Reef, at the time of coral
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collection in July 2016. N = 3

(TIF)

S2 Fig. PAR data at 0.8m for Davies Reef, GBR, Australia. Davies Reef (A) mean daily light

integrals (mol photons m-2 d-1) for May 2011 to May 2012 at 0.8m and (B) instantaneous PAR

(μmol photons m-2 s-1) over the day in January 2012, colours representing the different days of

the month. Data obtained via the AIMS Weather Station Program at: https://apps.aims.gov.au/

metadata/view/076c8641-6e72-4be7-9eb7-e21145cc6525 and specifically http://data.aims.gov.

au/aimsrtds/datatool.xhtml?from=1980-01-01&thru=2018-06-25&channels=9272,9273.

(TIF)

S1 Dataset. PAM, pigment, respirometry and growth datasets.

(XLSX)
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