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Abstract

An immediately observable feature of bacteria is that cell size and shape are remarkably constant 

and characteristic for a given species in a particular condition, but vary quantitatively with 

physiological parameters such as growth rate, indicating both genetic and environmental 

regulation. However, despite decades of research, the molecular mechanisms underlying bacterial 

morphogenesis have remained incompletely characterized. We recently demonstrated that a wide 

range of bacterial species exhibit a robust surface area to volume ratio (SA/V) homeostasis. 

Because cell size, shape, and SA/V are mathematically interconnected, if SA/V is indeed the 

natural variable that cells actively monitor, this finding has critical implications for our 

understanding of bacterial morphogenesis, placing fundamental constraints on the sizes and shapes 

that cells can adopt. In this Opinion article we discuss the broad implications that this novel 

perspective has for the field of bacterial growth and morphogenesis.

Quantitative Bacterial Physiology

For quantitative laboratory experiments, bacteria are extraordinarily reliable partners for 

scientists interested in uncovering fundamental laws governing cell growth and form. Not 

only do they grow quickly, but their behavior from day to day and from culture to culture is 

so reproducible that all the complexities associated with their biological function can often 

be accurately summarized in simple mathematical equations [1,2]. In recent years there have 

been a number of technical advances that have made it possible to extend this quantitative 

analysis to dynamic observations of individual cells. These advances include improved 

methods for culturing bacteria under steady-state conditions for many generations on a 

microscope [3,4], improvements in the extraction of data from videomicroscopy experiments 

that enable precise, dynamic measurements on individual cells [5,6], and improvements in 
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data analysis and storage that have enabled even subtle variations across large populations to 

be compared in statistically robust ways [7,8].

Using this kind of approach, we investigated the growth of aberrantly shaped Caulobacter 
crescentus mutants, and noticed that, although their overall sizes and shapes could vary 

wildly, cells moved toward and maintained a specific, condition-dependent SA/V [9]. This 

apparent SA/V homeostasis could not be explained using models of size and shape 

determination current in the field, which primarily focused on width and length of rod-

shaped bacteria as separately controlled parameters [10–12]. We therefore hypothesized that 

SA/V might instead be the most illuminating property to consider – the ‘natural variable’ for 

this problem. By thus reframing the question of size control in terms of SA/V homeostasis, 

we were able to develop a unified model of bacterial growth and form with broad 

explanatory powers [13], the implications of which the bacterial research community has 

only just begun to explore [14–16]. In this Opinion article, we discuss the ‘relative rates’ 

mechanism by which cells appear to achieve SA/V homeostasis, we use this model to 

reconsider reports in the literature of changes in growth rate and/or cell wall biosynthesis 

altering SA/V, we re-examine Schaechter’s classic growth law relationship between cell size 

and growth rate from an SA/V-centric perspective, we speculate about what molecular cues 

might provide the signal to increase or decrease SA/V in different conditions, and finally we 

propose specific molecular mechanisms that rod-shaped bacteria could employ to alter their 

width and length in order to achieve SA/V homeostasis.

Cell Size, Shape, and SA/V Are Interconnected Variables

In considering the origins of bacterial morphogenesis it is essential to make explicit the 

necessary geometric connections between size (meaning volume), shape, and SA/V. If 

volume is held constant, cells of different shapes will typically adopt different SA/V values 

(Figure 1A). However, in many species, it is shape and not volume that is constant. In 

Escherichia coli, for instance, cell volume can vary over nearly an order of magnitude for 

cells grown at different growth rates, but cells typically maintain roughly the same shape – a 

rod with aspect ratio 4:1 [17]. So, if we now consider the scenario where shape is held 

constant, we find that increases in volume necessarily correspond to reductions in SA/V 

(Figure 1B). Thus, once shape is constrained, specification of a given volume is sufficient to 

determine SA/V, and vice versa. While many studies have treated volume as the actively 

controlled parameter in this scenario, our recent work suggests that it is likely the other way 

around, and that SA/V is the actively regulated variable, with size following along as 

necessary [13].

Focusing specifically on rod-shaped bacteria, many studies have described the impact of 

various genetic, nutritional, and pharmacological perturbations on cell width and/or length 

[10–12]. However, changes in either of these dimensions will also lead to changes in SA/V. 

On their own, increases in width reduce SA/V, as do increases in length, albeit to a lesser 

degree (Figure 1C). This impact of cell lengthening can be understood by considering the 

relative contributions of the cylindrical cell body and hemispherical end caps: as cells get 

longer, the contribution of the high-SA/V end caps is diminished and the overall SA/V goes 

down (see Figure 1C, inset). For these reasons, changes in width and length in different 
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growth conditions must always be considered in the context of their combined impact on the 

overall SA/V of cells.

A ‘Relative Rates’ Model Quantitatively Explains SA/V Homeostasis

With the understanding that cell size, shape, and SA/V are intimately linked, and having 

observed individual cells alter both their size and shape in order to move toward a steady-

state SA/V [9], we chose to focus strictly on how cells might achieve such SA/V 

homeostasis. First, we knew that bacteria increase both their mass and volume exponentially 

– that is, the rate of volume growth scales with cell volume [1,18,19]. We then realized that 

if we make the simple assumption that the rate of surface growth also scales with cell 

volume, this model predicts that cells will move toward a steady-state SA/V over time, that 

is, exhibit SA/V homeostasis. At the molecular level, we hypothesized that the scaling 

between volume and surface growth is due to the fact that the biosynthesis of new surface 

material begins in the 3D cell cytoplasm, where cytosolic enzymes synthesize precursors of 

various envelope components, including the peptidoglycan (PG) cell wall [11]. In this way, 

the biosynthetic flux through one or more envelope synthesis pathways in the cell cytoplasm 

might limit surface growth, causing the rate of surface growth to scale with volume.

This phenomenological ‘relative rates’ model can be formulated mathematically, and makes 

several experimentally testable, nontrivial predictions (Figure 2A). Specifically, SA/V at 

steady state is expected to be equal to the ratio β/α, where α is the exponential volume 

growth rate of cells and β is the rate of surface material synthesis per unit volume. 

Essentially, this means that, at steady state, SA/V will be determined by the ratio of surface 

growth to volume growth. Because we expect both α and β to vary in different physiological 

conditions, we can plot what we predict will happen when cells are shifted between 

conditions (Figure 2B). After the shift, cells are initially not at the ‘correct’ SA/V for their 

final condition (βfinal/αfinal), and the model predicts that cells will move toward that value in 

a trajectory that is described by a decaying exponential function with decay constant equal to 

αfinal. Dynamic, single-cell imaging of distantly related bacterial species undergoing 

different types of physiological perturbations revealed that cells indeed move toward a new 

steady-state SA/V in this manner, providing strong, quantitative support for this mechanism 

of SA/V homeostasis [13]. Given the predictive power of this model, we propose that SA/V 

is the critical natural variable to consider when looking at bacterial morphogenesis. 

Importantly, achieving a particular SA/V does not dictate one specific size or shape, but 

rather the range of sizes and shapes that cells can adopt (Figure 1). Thus, any questions of 

bacterial size and shape determination must be considered within the context of their 

combined impact on SA/V.

PG Synthesis Connects Surface Growth to Cell Volume

The central hypothesis underlying the ‘relative rates’ model is that surface growth rate scales 

with cell volume. It is critical, therefore, to identify the molecular mechanisms that give rise 

to this scaling. Given the hypothesis that the flux through one or more surface biosynthesis 

pathways in the cytoplasm sets the rate of surface growth, we wondered whether cell wall 

biosynthesis might be the primary pathway mediating this connection. The cell wall is a 
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stiff, covalently linked network composed of PG that surrounds the cell, counteracts turgor 

pressure, and is a major structural component of the cell envelope. Additionally, PG 

precursor synthesis begins in the cytoplasm, after which precursors are attached to a lipid 

anchor (undecaprenyl phosphate, Und-P), flipped across the cytoplasmic membrane into the 

periplasm, and incorporated into the surrounding network [11,12]. For these reasons, PG 

biosynthesis was an attractive candidate for linking volume to the rate of surface growth.

Recently, a variety of pharmacological and genetic experiments from our laboratory and 

others support the proposal that PG biosynthesis does indeed serve as a significant 

connection between volume and surface growth rate. When diverse bacterial species were 

treated with very low doses of the antibiotic fosfomycin, which inhibits the first committed 

step of PG biosynthesis, cells continued growing their volume essentially uninterrupted (i.e., 

α did not change), but slowed down the rate of surface growth per unit volume (i.e., β was 

reduced) [13]. This implies that the scaling between volume and surface growth, at least in 

this regime, is determined by the flux through the PG biosynthesis pathway. Furthermore, 

cells treated with fosfomycin became larger and reduced their SA/V as predicted by the 

‘relative rates’ model, where SA/Vsteady-state = β/α. While it may seem counterintuitive that 

cells treated with a cell wall biosynthesis inhibitor should get bigger, this makes sense from 

an SA/V-centric point of view: because volume continued growing at the same rate while 

surface growth was slightly reduced, SA/V had to go down because cells simply had less 

surface material available to encapsulate the same amount of volume. Remarkably, three 

extremely divergent species – the Gram-negatives C. crescentus and Escherichia coli and the 

Gram-positive Listeria monocytogenes – all responded to fosfomycin in the same way, 

reducing their SA/V by increasing both their width and length in a dose-dependent manner, 

implying that the ability to flexibly change dimensions in response to PG precursor 

availability is a widely conserved trait.

Other groups have also observed that changes in the flux through the PG biosynthesis 

pathway can lead to alterations in cellular SA/V. Our fosfomycin results have been 

replicated by others [17], and it has also been shown in Bacillus subtilis that depletion of 

MurB, the second enzyme in the PG biosynthesis pathway, leads to wide, elongated cells 

[20]. Recently, a comprehensive, CRISPRi-based analysis of essential genes in B. subtilis 
revealed that knockdowns of several different enzymes in the PG biosynthesis pathway also 

led to wider cells, and that, of all essential genes, only cell wall biosynthesis and patterning 

genes were significantly enriched in this metric [21]. Additionally, a two-component system 

in Vibrio cholerae was identified, WigKR, that allows cells to tune the expression of the 

entire PG biosynthesis pathway. Activation of the system increased cell wall content and led 

to a 20% reduction in cell width, while blocking the system led to a comparable increase in 

cell width [22]. These results are exactly what the ‘relative rates’ model would predict: 

increased PG production led to thin cells with high SA/V, while reduced PG production led 

to wide cells with low SA/V.

The above examples all support the notion that PG biosynthesis serves as a significant link 

between cell volume and surface growth, and that PG availability somehow mediates 

changes in SA/V. Interestingly, disruption of late steps in the biosynthesis of two other 

envelope constituents – O-antigen and enterobacterial common antigen (ECA) – have also 
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been shown to increase cell size [23,24]. However, in both cases it was shown that these 

effects are also ultimately due to a reduction in PG biosynthesis. O-antigen, ECA, PG, and 

many other surface constituents are synthesized in a similar manner, where precursors are 

attached to the same lipid anchor, Und-P, before being incorporated into their final 

structures. Disruption of late steps in the O-antigen and ECA biosynthesis pathways leads to 

a buildup of Und-P-linked dead end intermediates, which sequester Und-P away from PG 

biosynthesis [23,24]. The authors of these studies demonstrated that the observed increases 

in cell size are due specifically to reduced production of PG, not the other envelope 

constituents, further supporting the proposal that PG biosynthesis provides the main 

molecular link between cell volume and surface growth in the ‘relative rates’ model. 

Additional details of envelope biosynthesis pathways that go through Und-P-linked 

intermediates, and interesting possible implications of competition between these pathways 

and PG biosynthesis, have recently been reviewed [15].

Growth Rate Plays a Critical Role in Size Determination

So far we have focused on the role of surface material biosynthesis in determining SA/V and 

cell size. However, it is the ratio of surface growth (β) to volume growth (α) that sets the 

steady-state SA/V of cells. Therefore, changes in volume growth rate can also have profound 

impacts on SA/V and thus cell size. Because of this, it is important to always consider the 

possibility that changes in cell size in response to a genetic or pharmacological perturbation 

could be due primarily to changes in growth rate. For example, it has been proposed that 

fatty acid (FA) biosynthesis, a necessary precursor to synthesis of membrane lipids, is 

involved in setting cell size because disruption of this pathway leads to a reduction in cell 

size and an increase in SA/V [25,26]. However, this perturbation also leads to a severe 

growth rate defect – a 50% reduction in α. Because SA/V ~ β/α, this drop in α could cause 

an increase in SA/V, and hence the observed reduction in cell size.

In support of this idea, there is evidence that the reduction in cell size in response to FA 

inhibition is mediated by the small-molecule alarmones (p)ppGpp. These molecules are part 

of the stringent response in bacteria, and slow growth by dramatically altering the 

transcriptional profile of cells and facilitating a transition to a slow-growing state [27]. 

Similar to E. coli, C. crescentus typically slows down growth and reduces cell size in 

response to FA inhibition. However, in a (p)ppGpp null strain, cells no longer grew slowly or 

became small during FA inhibition [28]. This implies that the decrease in growth is mediated 

through (p)ppGpp, and that the reduction in size is indeed due to the impact on growth rate, 

not some other effect of FA inhibition. Interestingly, when a similar experiment was 

performed in E. coli, (p)ppGpp null cells exposed to a FA biosynthesis inhibitor lost 

membrane integrity and were killed at higher rates than wild-type cells [25]. This suggests 

that, for this species and inhibitor concentration, cells must slow down their volume growth 

using (p)ppGpp, lest volume growth outpace membrane capacity. More broadly, this 

example highlights the potential of (p)ppGpp signaling to coordinate volume growth with 

the physiological state of the cell, potentially tuning cytoplasmic expansion to keep it in 

balance with other biosynthetic rates [27].
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A Re-examination of Schaechter’s Growth Law

The observation that growth rate has a profound impact on cell size is not new. Indeed, it 

was first reported 60 years ago that E. coli cells grown quickly in nutrient-rich medium are 

larger than those grown slowly in nutrient-poor medium [29]. Specifically, it was observed 

that, for E. coli and closely related species, the average volume of cells appears to increase 

exponentially with growth rate when the nutritional content of the growth medium is varied. 

This relationship, termed Schaechter’s growth law, has held up beautifully over the years, 

and recent work from Si et al. – using multiplexed turbidostats to measure the size and shape 

of E. coli cells growing at steady state in different media conditions – confirmed that the 

average cell volume appears to increase exponentially with growth rate (reproduced in 

Figure 3A) [17]. However, it is not just volume that varies monotonically with growth rate in 

these conditions. In addition to being large, fast-growing cells also have lower SA/V values 

(reproduced in Figure 3B) [17]. Biochemically, this drop in SA/V corresponds to less 

envelope material per unit dry cell mass. In fact, the amount of surface material per unit dry 

weight was measured to be inversely proportional to growth rate [30]. This supports the idea 

that large, fast-growing cells are simply producing less surface material (PG) compared to 

volume (mass) – that is, β/α is lower. Interestingly, these experimental results were invoked 

in several theoretical papers in the 1970s in order to explain the changes in cell size observed 

when growth rates are shifted [31,32], similar to the recently proposed ‘relative rates’ model.

Given our evidence that SA/V homeostasis underlies size determination, we wondered 

whether Schaechter’s observation that size varies with growth rate might actually be due to 

SA/V varying with growth rate. To investigate this, we examined the correlation between 

SA/V and growth rate using measurements from Si et al., and observed a remarkably simple 

relationship: SA/V appears to decrease linearly with growth rate (Figure 3B). This linear 

trend fits the data just as well as an exponential fit to volume (Figure 3A), meaning that even 

this very high quality dataset does not have the resolution to distinguish between these two 

models. Although it is not immediately clear why SA/V should vary linearly with growth 

rate, we can interpret this observation within the context of the ‘relative rates’ model as 

follows. If SA/V is linear with respect to growth rate (α), and given that SA/V is equal to β/

α, we can conclude that β has a parabolic dependence on α in these conditions (Figure 3C). 

In other words, the amount of surface material synthesized per unit cytoplasm (β) increases 

with α at slow growth rates, but tapers off at rates close to the maximal growth rate for E. 
coli. Specifically, using the data from Si et al. we find that β = α (−2.8 α + 9.38). 

Essentially, β is comprised of one component that increases with growth rate (α), convolved 

with a component that decreases with growth rate (−2.8 α + 9.3). There are several 

intriguing hints from the literature about why this might be the case, which we highlight 

below.

First, we recall that increases in α correspond to increases in nutritional content of the 

medium. We therefore propose that the increasing component of β could be due to the 

increased availability of raw material available for PG biosynthesis – that is, the substrates 

for this reaction. For the decreasing component, we hypothesize that the concentration of 

surface biosynthesis enzymes decreases linearly with growth rate. It is well documented that 

the relative concentrations of many enzymes decrease with increasing growth rate [33,34]. 
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This is because the global RNA/protein ratio increases linearly with growth rate as an 

increasing fraction of the cell mass is composed of ribosomes, allowing cells to achieve 

faster growth rates. Additionally, more of the proteome itself is dedicated to ribosome-

associated proteins at fast growth rates, further reducing the relative concentration of other 

enzymes [34]. These changes in cell composition are both quantitative and reproducible, and 

if the relative concentrations of PG biosynthesis enzymes indeed decrease linearly with 

growth rate, then this enzyme activity decrease, combined with the increasing availability of 

substrates, could readily explain the parabolic dependence of β on α. Future work must 

directly measure both enzyme and substrate concentrations at different growth rates, and 

determine whether these trends can in fact explain the observed dependence of SA/V – and 

thus size – on growth rate.

What is the Molecular Cue to Modulate SA/V?

In choosing to focus on SA/V when formulating the ‘relative rates’ model, we remained 

agnostic about what morphological changes cells employ to achieve a specific SA/V. In 

reality, rod-shaped bacteria have two major dimensions that they can alter in order to change 

their SA/V – length and width (Figure 1). Much work has already been done to identify 

genes that are involved in width and length control, and many mutations only seem to alter 

one or the other dimension, implying that width and length control are somewhat 

independent processes [12]. However, we consistently observed cells changing both length 

and width in order to achieve whatever SA/V was necessary [13]. What molecular 

mechanisms might underlie these changes in dimension, and how do they conform 

quantitatively to the predictions of the ‘relative rates’ model? In the rest of this Opinion 

article, we propose ways that cells could achieve SA/V homeostasis, with an emphasis on 

reconciling what is already known about the molecular mechanisms of width and length 

control in rod-shaped bacteria with the phenomenological observation of SA/V homeostasis.

We can think of at least two general classes of mechanism, which are not mutually 

exclusive, that could allow cells to detect whether their SA/V is consonant with the current 

rates of surface and volume synthesis: mechanisms that are sensitive to turgor pressure, and 

those that are sensitive to PG precursor availability. In both cases, an imbalance in the rates 

of surface synthesis and volume growth would lead to changes in a cell-scale property that 

could signal to cells to alter their pattern of growth in an appropriate way to change their 

SA/V (Figure 4). We will focus exclusively on mechanisms involving PG precursor 

availability because more experiments have been performed on this topic, providing 

molecular clues about how precursors might influence cell width and length control. In 

contrast, little is known about the impact of turgor pressure on bacteria, though it has been 

shown to alter cell growth [35,36]. In the future, it will be important to identify the 

molecular ramifications of changes in turgor pressure, and determine if such changes play a 

role in SA/V homeostasis.

Length and width control mechanisms that respond to the relative availability of PG 

precursors are appealing for several reasons. First, the evidence presented above suggests 

that the flux through the PG biosynthetic pathway provides the molecular link between cell 

volume and surface growth, making this pathway an ideal candidate for orchestrating SA/V 
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homeostasis. Second, the level of precursors in a cell would be expected to change 

depending on whether the cell is at the correct SA/V (Figure 4). Third, the same pool of PG 

precursors is used by the lateral and septal PG insertion machineries, which catalyze the 

elongation and division of cells respectively. Because of this, width and length could be 

modulated separately, but in a concerted fashion, by these two different machineries both 

responding to changes in the shared pool of PG precursors. This idea is similar to the ‘two 

competing sites’ model, which states that competition between the elongation and septation 

machineries dictates the balance between elongation and division [37]. Building on this 

model, we propose that, as PG precursors become more or less available, these machineries 

would both respond, tuning length and width as necessary to reach the proper SA/V. We 

believe that this type of coordinated response to changes in the shared pool of PG precursors 

could underlie the remarkable ability of some bacterial species to maintain a constant aspect 

ratio across a wide range of sizes and growth rates [17]. Interestingly, when C. crescentus 
cells were genetically prevented from dividing, cells became very long, a morphological 

change that would lead to a drop in SA/V if cells remained the same width (Figure 1C). 

However, as cells became longer, they also became thinner and maintained the same SA/V 

[13]. Thus, changes in width and length can be decoupled, but cells still retain the ability to 

achieve SA/V homeostasis – if not with one dimension, then with the other. This result 

supports a fluid sharing of PG precursors between the lateral and septal insertion 

machineries that robustly facilitates SA/V homeostasis. In the next sections we therefore 

consider mechanisms of width and length control separately, though in the future it will be 

critical to determine how and to what extent these systems interact in both time and space.

How Might Width Be Modulated in Response to SA/V Requirements?

Most rod-shaped bacteria under normal, constant conditions elongate by incorporating new 

PG into their sidewall such that they elongate at a specific width. The lateral PG insertion 

machinery is therefore an obvious candidate effector of width control. During lateral wall 

synthesis, lipid-anchored PG precursors are polymerized into a growing glycan strand by a 

processive enzyme with PG transglycosylase (PGT) activity. This nascent strand is then 

cross-linked into the surrounding network through its peptide side chains by an enzyme with 

transpeptidase (TP) activity. The bacterial actin homolog MreB polymerizes into short 

filaments or patches that bind to the cytoplasmic face of the membrane and coordinate the 

circumferential movement of the Rod complex, a group of proteins that is known to help 

maintain width control and rod shape by promoting constrained lateral insertion, perhaps by 

ensuring that stiff glycan strands are inserted in their characteristic circumferential 

orientation [10,11,38] (Figure 5A).

An interesting detailed hypothesis for how cells could change width in response to PG 

precursor levels is suggested by a series of recent experiments showing that, while the Rod 

complex contains both PGT and TP enzymes, another class of enzymes is bifunctional and 

contains both of these activities in a single protein [39,40]. Furthermore, these bifunctional 

penicillin-binding proteins (PBPs) do not appear to be governed by MreB. Thus, while the 

Rod complex promotes constrained lateral insertion, it is possible that bifunctional PBPs act 

as free agents, polymerizing and cross-linking PG in a way that does not seem to be width-

constrained, leading to expansive lateral insertion. In principle then, cells could change their 
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width by tuning the balance between these two different modes of lateral wall incorporation 

(Figure 5A). Critically, recent work showed that lipid-anchored PG precursors appear to 

recruit MreB to the membrane in B. subtilis [41]. This could create a homeostatic 

mechanism where low levels of PG precursors recruit less MreB to the cell surface, causing 

the bifunctional PBPs to take over and leading to cell widening. Conversely, high levels of 

PG precursors would recruit additional MreB and tilt the balance of synthesis toward the 

Rod complex, thereby causing the cells to narrow. More experiments are needed to test 

whether a homeostatic mechanism like the one described here does indeed facilitate width 

modulation in response to SA/V requirements.

Regardless of whether width homeostasis is achieved using the mechanism proposed above 

or some other scheme, it will be critical to identify the molecular alterations in the PG itself 

that are responsible for these width changes. The PG network has many physical properties 

that could, in principle, be modulated enzymatically at the local level to produce global 

changes in cell width. These are summarized in Figure 5B, and include changes in glycan 

strand length, orientation, or anisotropy, which would alter the mechanical properties of the 

network, as well as more general chemical properties such as the density of PG strands, their 

degree of cross-linking, or chemical modification. The spatiotemporal regulation of insertion 

site placement and the stretching of PG strands as they are being laid down could also have 

profound impacts on the shape and mechanical properties of the network and consequently 

cell width [42]. Piecing apart how these properties respond to changes in PG precursor 

availability – and also turgor pressure – will be critical to understand how the phenomenon 

of SA/V homeostasis is achieved at the molecular level.

How Might Length Be Modulated in Response to SA/V Requirements?

In addition to modulating their width, a diverse array of bacterial species also alter their 

length in response to SA/V requirements [13,17,23,24,43]. Indeed, C. crescentus, E. coli, 
and L. monocytogenes all increase their length in a dose-dependent manner when grown in 

the presence of a PG biosynthesis inhibitor [13]. Because rod-shaped bacteria grow through 

alternating phases of elongation and septation, this dose-dependent increase in length 

implies that cells delay division when PG precursors are scarce, suggesting that the 

availability of PG precursors can play a role in division timing. Because such a role for PG 

precursors in division would, in principle, allow cells to fluidly modulate their length in 

response to SA/V requirements, we sought to define a mechanism that might facilitate such 

coupling.

While the ‘relative rates’ model predicts what will happen to SA/V when averaged over 

multiple cells and cell cycles, on an individual cell basis, SA/V is expected to oscillate over 

the cell cycle. During elongation, SA/V will necessarily go down because more of the cell is 

composed of low-SA/V cylindrical cell body (Figure 1C), and then septation and the 

synthesis of two new daughter cell poles will raise the ratio again (Figure 6). Experimental 

evidence suggests that while volume growth, α, seems to be constant throughout the cell 

cycle, the observed rate of surface incorporation into the wall, βincorporated, appears to 

fluctuate, speeding up particularly during constriction, when the high-SA/V end caps are 

being built [13,18,44–46]. However, we have no reason to assume that the underlying rate of 
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PG biosynthesis is cell-cycle regulated. We therefore hypothesize that there is some constant 

rate of surface material synthesis, βsynthesized, which is unchanged across the cell cycle (blue 

dashed line in Figure 6). If this is the case, we predict that cells would produce excess 

surface material during elongation, leading to a build-up of surface material in the cytoplasm 

during this phase of the cell cycle. During septation, this excess would be used up during the 

surface-intensive process of end-cap construction, returning the level of accumulated 

material back to baseline (Figure 6).

If this is true, and cells indeed accumulate excess surface material in their cytoplasm during 

elongation, we realized that accumulation of a threshold amount of excess material could 

serve as a checkpoint for constriction initiation, allowing cells to couple division timing to 

the availability of PG precursors and thus the SA/V requirements of the cell. For example, in 

the case of PG biosynthesis inhibition, if cells were treated with increasing concentrations of 

drug, they would have to grow for longer times before reaching the same threshold. This 

would lead to a dose-dependent increase in cell length, as we have observed. Additionally, 

there is some evidence that length control is imposed at the point of constriction initiation 

[13,47,48], supporting the idea that there is a checkpoint prior to constriction initiation. 

Finally, several recent reports have found that bacteria appear to grow according to an adder 

pattern, where cells add, on average, the same amount of volume during each cell cycle 

before dividing [7,8,49,50]. If cells trigger division after accumulating a threshold amount of 

excess surface material, this scheme mathematically produces an adder pattern between cell 

birth and constriction initiation [13]. Thus, division according to this type of mechanism 

could potentially explain both the adder behavior that has been seen for a variety of bacterial 

species growing at steady state, as well as the dynamic changes in length that we have 

observed for diverse species in shifting physiological conditions.

Although the mechanism described above is an attractive model that could explain a wide 

range of observations, it has yet to be experimentally tested. In the future, it will be critical 

to directly measure the levels of different PG precursors across the cell cycle to determine if 

any of these species accumulate during elongation. Additionally, it will be important to 

determine if there is a PG precursor ‘sensor’ that measures the accumulated precursors and 

is responsible for triggering division. Bacterial division is orchestrated by the FtsZ ring, 

which forms at midcell, recruits a number of accessory proteins to form the divisome, and 

eventually begins to constrict [51]. We therefore favor the hypothesis that some late-arriving 

component of the divisome might sense accumulated PG precursors and trigger the FtsZ ring 

to begin constriction. Furthermore, our proposed model is predicted to produce an adder 

pattern only when the threshold is a certain amount of excess surface material, not a certain 

concentration [13]. Because the FtsZ ring remains relatively constant in size as cells grow, a 

sensor that is part of the FtsZ ring could thus enable cells to sense a specific amount, not 

concentration, of material. Finally, high-throughput, high-resolution single-cell imaging will 

be required to determine if division timing does indeed appear to be imposed at the point of 

constriction initiation, and if so, how this gives rise to the observed adder pattern.
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What Role Does Chromosome Replication Play in Division Timing?

This proposal – that bacteria divide in response to surface material accumulation and SA/V 

requirements – is very different from traditional models of the bacterial cell cycle where 

division timing is intimately linked to chromosome replication. Particularly in E. coli, the 

Cooper–Helmstetter model of division timing has predominated, which states that after E. 
coli cells initiate another round of chromosome replication, it takes a set amount of time (the 

C period), to replicate their chromosomes, and that cells then divide a fixed amount of time 

later (the D period) [52]. From this perspective, the initiation of chromosome replication is 

the central event of the E. coli cell cycle, and with every initiation event a corresponding 

division event is ‘scheduled’ to happen C+D minutes later. After this model was proposed in 

1968, Donachie pointed out that a constant C+D period, combined with the apparent 

exponential dependence of volume on growth rate known as Schaechter’s growth law 

(Figure 3), implies that cells initiate another round of chromosome replication at a fixed 

volume per origin of replication [53]. Experimental studies have since confirmed that E. coli 
cells do indeed initiate chromosome replication once they reach a critical volume per origin 

of replication [17,54,55], and for wild-type E. coli growing at moderate to fast growth rates 

the C+D period is remarkably constant [55,56]. However, the general constancy of the C+D 

period has been called into question. Although the C period does appear to remain the same 

in most conditions, various physiological and morphological perturbations have been 

identified that alter the D period in complex and unpredictable ways [13,17,57–59]. These 

data suggest that, although the D period originally appeared to be a fundamental constant of 

bacterial division, it is quite variable in different contexts.

We propose that these changes in the apparent D period can be understood if we let go of the 

chromosome-centric view of cell division, and instead adopt a chromosome-agnostic 

perspective. This type of model has been put forward by other groups [60–63], and generally 

states that, for E. coli cells growing at steady state, the division and chromosome replication 

cycles operate in parallel, with minimal feedback between the two. We build on these 

models, and propose that cells grow and divide according to their SA/V requirements, with 

chromosome replication separately keeping pace with volume growth. Because additional 

rounds of chromosome replication are triggered when cells reach a critical volume per origin 

of replication, this system allows chromosome number to automatically scale with volume, 

regardless of cell division. In support of this view, recent studies have found that 

perturbations which alter E. coli cell size have remarkably little effect on the DNA-to-

cytoplasm ratio, indicating that chromosome replication is unaffected by such morphological 

perturbations [13,17,57,59]. While some groups have suggested that these changes in cell 

size arise because the perturbations are altering the D period, we argue the opposite – that 

the perturbations directly alter cell size, and therefore lead to changes in the apparent D 

period. From our perspective, the D period is not a key biological parameter that cells 

actively modulate, and is instead simply the time that happens to elapse from the completion 

of chromosome replication until division. Although this distinction can sound subtle, 

understanding whether division timing sets the D period or the D period sets division timing 

will be critical to identify the molecular players underlying length control in bacteria.
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We can also apply this chromosome-agnostic view of division timing to Schaechter’s growth 

law. Historically, it has been thought that increases in cell size with growth rate are due to 

chromosome replication initiating at a constant volume per origin of replication followed by 

a constant C+D period. In Figure 3, we put forward an alternate hypothesis for Schaechter’s 

observations – one that does not invoke chromosome replication and instead relies on trends 

in SA/V. From this perspective, cell size is set independently of chromosome replication, 

and this dependence of cell size on growth rate, combined with replication initiating at a 

constant volume per origin of replication, result in the apparent C+D period appearing 

relatively constant over these nutritional conditions. Along these lines, in 1991 Cooper 

himself wrote: ‘Since 1968, when the temporal constancy of the period between termination 

of DNA replication and cell division was noted, it has been thought that termination of 

replication may trigger invagination. This observation is consistent with the alternate 

proposal that there is only a coincidental relationship between termination and division. It 

may be that the constant D period is a result of the cell evolving to have DNA replication 

terminate prior to division and that there is no causal relationship between division and 

termination.’ [64] We agree with this alternate proposal, and argue that there is no genuine 

‘timer’ mechanism underlying the D period. Rather, E. coli seems to have evolved to scale 

its size (via trends in SA/V? via trends in β with α?) such that enough time is always left 

between termination of replication and the subsequent cell division.

Another argument against a chromosome-centric model of division timing is that there is 

little molecular evidence for a mechanism that causes E. coli to divide a set amount of time 

after chromosome replication. Generally, chromosome-centric models invoke the idea that 

once replication is terminated, it takes a set amount of time for the chromosomes to 

segregate, for the divisome to form, and for the cell to constrict. Consistent with this, 

nucleoid occlusion systems have been identified which prevent the cell from cutting across 

unsegregated chromosomes during cell division [65,66]. In these systems, the presence of 

DNA near the FtsZ ring directly inhibits ring constriction. However, nucleoid occlusion 

appears to be more of a fail-safe mechanism that kicks in when something has gone awry 

during the cell cycle, rather than a core feature that always dictates division timing. The 

evidence for this is that when nucleoid occlusion is genetically removed from cells, cells are 

not only viable, but the average cell size does not change [65,66], implying that this system 

is not at play during normal cell cycles. Furthermore, when nucleoid occlusion is removed 

and chromosomes are prevented from replicating altogether, cells go ahead and divide across 

unreplicated chromosomes, ‘guillotining’ them [65,66]. This means that neither 

chromosome replication nor segregation is required for cell division to occur, strongly 

arguing against a genuine molecular timer underlying the D period dictating when the cell 

will divide.

Finally, it is important to keep in mind that the Cooper–Helmstetter model of the cell cycle 

only applies to E. coli. Other species have very different chromosome replication control 

programs, such as C. crescentus, where compartmentalization of daughter cells is necessary 

to license another round of chromosome replication [67]. However, diverse species all 

delayed division in response to PG biosynthesis inhibition [13], implying that the availability 

of PG precursors is intimately tied to division timing in all of these species. Additionally, the 

‘adder’ growth pattern has been observed not just for E. coli, but also for many other kinds 
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of bacteria [7,8,50]. Thus, it seems unlikely that the origin of the ‘adder’ pattern would be 

rooted in a chromosome replication program unique to E. coli, as some have suggested 

[55,59]. In contrast, accumulation of excess surface material across the cell cycle could be a 

universal feature of rod-shaped bacteria (Figure 6), making this an attractive model that 

could explain why extremely divergent species all exhibit similar ‘adder’ behaviors and 

responses to PG biosynthesis inhibition. Excitingly, other bacterial shapes, such as growing 

spheres, also decrease their SA/V during an individual cell cycle (because SA/V = 3/R for a 

sphere, as the cell radius increases SA/V goes down). This raises the possibility that other 

shapes could also accumulate excess material during the cell cycle, making our proposed 

model of division timing perhaps even more broadly applicable.

Concluding Remarks

We recently reported that a strikingly simple ‘relative rates’ model is able to quantitatively 

explain SA/V homeostasis in a wide range of bacterial species. This model is 

phenomenological and makes intuitive sense: if the current SA/V is not equal to the ratio of 

the surface and volume growth rates, cells alter their dimensions until the proper ratio is 

achieved. Many observations in the literature, where changes in PG biosynthesis or volume 

growth rate led to changes in cell size, can be understood in the context of this model. 

However, the model still lacks molecular detail. In the future, it will be essential to identify 

the molecular players that enable bacterial cells to change their dimensions and exquisitely 

conform to the predictions of the ‘relative rates’ model. We believe that the availability of 

PG precursors is the most likely way that cells could be able to sense whether they need to 

increase or decrease their SA/V. Future studies must identify whether precursor levels 

change in different physiological contexts and across the cell cycle, whether the mode of 

lateral insertion varies based on precursor availability, and whether accumulation of 

precursors plays a role in division timing (see Outstanding Questions). Although much is 

known about the players that help to set the width and length of cells, a unified theory of 

bacterial size and shape determination has been lacking; by treating SA/V as the key natural 

variable, we have uncovered a powerful new framework that might finally enable a 

comprehensive understanding of bacterial morphogenesis.
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Highlights

Many bacterial species exhibit SA/V homeostasis, changing their size and shape to 

achieve an SA/V that is set by the ratio of surface synthesis to volume synthesis in a 

given growth condition.

SA/V homeostasis arises because the rate of surface growth scales with cell volume, and 

evidence suggests that this scaling is likely due to the biosynthesis of new peptidoglycan 

(PG) in the cytoplasm setting the rate of surface growth.

Reports in the literature of changes in growth rate and/or PG biosynthesis rate leading to 

changes in size and shape can be explained in the context of this framework.

The classic exponential ‘growth law’ relationship between cell size and growth rate can 

be equally well explained as a linear relationship between SA/V and growth rate.

The concentration of PG precursors could be a molecular indicator of whether cells must 

increase or decrease cellular SA/V.
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Outstanding Questions

What are the molecular cues that tell cells to change SA/V when the current ratio does 

not match the relative rates of surface and volume growth? Does the availability of PG 

precursors play a role? Does turgor pressure play a role? To examine the role of PG 

precursors it will be important to directly measure precursor availability in different 

steady-state conditions and after physiological shifts.

Can the effects of genetic and pharmacological perturbations that modulate cell size or 

shape be predicted within the context of the ‘relative rates’ model?

In addition to changing SA/V, what feedback mechanisms exist to modulate the rates of 

volume and surface growth when these rates are not well matched? For instance, if more 

volume is being synthesized than surface, do cells have mechanisms to slow down 

volume growth, or speed up surface synthesis?

Does a linear trend in SA/V with growth rate explain the classic exponential growth law 

observation? If so, why does surface synthesis, or β, have a parabolic dependence on 

growth rate? Does the concentration of PG biosynthesis enzymes decrease linearly with 

growth rate? If so, does this trend, combined with substrate availability, give rise to the 

parabolic dependence?

Does PG precursor availability modulate cell width? If so, does the balance between 

MreB-directed growth and non-MreB-directed growth tune width, and how can PG 

precursors shift the balance between these two systems? What molecular changes in the 

PG network correspond to changes in cell width?

Does PG precursor availability modulate cell length? Do PG precursors accumulate over 

the course of the cell cycle? If so, which intermediates? Does one of these serve as a 

trigger of cell division? If so, what is the sensor? Is this division timing mechanism at 

play in typical steady-state conditions, and is it the source of the recently observed 

‘adder’ phenomenon?

Harris and Theriot Page 18

Trends Microbiol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Size, Shape, and Surface Area to Volume Ratio (SA/V) Are Interconnected Properties. (A) 

When volume is held constant, changing the shape of an object can significantly alter the 

overall SA/V. (B) When shape is held constant, changes in volume directly correspond to 

changes in SA/V, with larger objects having lower SA/V. (C) In the case of a rod-shaped cell 

with hemispherical end caps, increases in width and length both correspond to reductions in 

SA/V.
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Figure 2. 
The Relative Rates of Surface and Volume Growth Dictate the Surface Area to Volume Ratio 

(SA/V) of Bacterial Cells. (A) A ‘relative rates’ model for SA/V homeostasis assumes that 

both volume and surface area grow at rates proportional to the current cell volume, with 

scaling factors α and β respectively. This model makes the quantitative prediction that cells 

will move toward a final steady-state SA/V in a trajectory described by a decaying 

exponential with decay constant α, and that the final SA/V will be equal to the ratio of the 

scaling factors β/α. These quantitative predictions were borne out by dynamic, single-cell 

imaging [13]. (B) This diagram depicts the predictions of the model, that cells will change 
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SA/V depending on the relative rates of surface and volume synthesis. For instance, during a 

nutritional upshift, the rate of volume synthesis increases relatively more than the rate of 

surface synthesis, leading to an overall drop in SA/V and larger cells on average.
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Figure 3. 
A Linear Dependence of the Surface Area to Volume Ratio (SA/V) on Growth Rate Could 

Underlie Classically Observed Trends between Cell Size and Growth Rate. (A) Average cell 

volume versus growth rate and SA/V versus growth rate for E. coli cells growing at steady 

state in different media conditions [17]. Each point represents the average value for many 

cells from an experiment conducted in the indicated growth medium. The solid blue line 

represents an exponential fit to the data, and the extracted relationship is indicated in the 

gray box. The blue dashed line indicates the predicted dependence of SA/V on growth rate 

given the exponential fit between volume and growth rate, and assuming a rod shaped cell 
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with 4:1 aspect ratio. (B) The same data as in (A), but here SA/V versus growth rate was fit 

with a linear function (solid orange line). The extracted relationship is indicated in the gray 

box. The orange dashed line indicates the predicted dependence of volume on growth rate 

given the linear relationship between SA/V and growth rate, and assuming a rod shaped cell 

with 4:1 aspect ratio. (C) Predicted dependence of surface synthesis (β) on growth rate (α) 

when growth rate is varied by changing media conditions. Assuming a linear relationship 

between SA/V and α where m and b are constants, and combining this with the conclusion 

from the ‘relative rates’ model that at steady state SA/V is equal to the ratio β/α, we predict 

that β has a parabolic dependence on α. We can then use the values of m and b extracted 

from (B) and plot the predicted dependence of β on α for the data from Si et al. [17]. Known 

competing trends between substrate availability and biosynthesis enzyme concentrations 

could contribute to the shape of this dependence.
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Figure 4. 
Changes in Peptidoglycan (PG) Precursor Levels and/or Turgor Pressure Could Serve as a 

Signal to Cells to Alter Their Surface Area to Volume Ratio (SA/V). If SA/V is too high, 

that is, SA/V >β/α, surface synthesis is too slow and volume synthesis is too fast to be 

compatible with the current SA/V. Thus, in this case, there will potentially be a lack of 

available peptidoglycan (PG) precursors and/or excess turgor pressure. Conversely, if SA/V 

is too low, that is, SA/V <β/α, surface synthesis is too fast and volume synthesis is too slow. 

In this scenario, there could be an accumulation of excess PG precursors and/or a drop in 

turgor pressure. In this way, cells could use changes in either of these properties to decide 

whether they should alter their length and width to achieve the correct SA/V.
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Figure 5. 
The Balance between Activity of Two Different Peptidoglycan (PG) Insertion Machineries 

and Alterations in the Molecular Properties of PG Could Contribute to Changes in Cell 

Width. (A) The Rod system inserts lateral wall material and is known to promote rod-like 

growth at a fixed width. Recently, it was shown that bifunctional penicillin-binding proteins 

(PBPs) insert material independent of the Rod system. It is thus possible that, while the Rod 

system promotes constrained lateral insertion, the bifunctional PBPs promote unconstrained, 

or expansive insertion. In this way, simply by tuning the relative activities of these different 

systems based on the surface area to volume ratio (SA/V) requirements, cells could flexibly 
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alter their width. (B) A variety of different molecular alterations to the PG network could 

lead to changes in the overall cell width over time.
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Figure 6. 
A Surface Material Accumulation Threshold Underlying Division Timing Could Couple 

Cell Length to the Surface Area to Volume Ratio (SA/V) Requirements of the Cell. During 

the cell cycle, natural variations in SA/V could lead to the accumulation of excess surface 

material if the underlying rate of surface material biosynthesis is constant. Cells could then 

use this accumulated material to trigger division once a threshold is reached, thus tying 

division timing to surface material availability. The traces shown here correspond to an ideal 

rod with hemispherical end caps growing exponentially.
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