Skip to main content
. Author manuscript; available in PMC: 2020 Jan 15.
Published in final edited form as: Neuroimage. 2018 Mar 21;185:906–925. doi: 10.1016/j.neuroimage.2018.03.042

Table 11.

Representative diffusion-weighted atlases for the infant brain.

Study Age Modality/
Diffusion Model
Components Atlas name Link
(Akazawa et al., 2016; Oishi et al., 2013; Oishi et al., 2011) 0 – 4 D T1w, T2w, DW / Diffusion tensor model Templates, WM Parcellation Map, Fiber Probability Map JHU Neonatal Atlas http://cmrm.med.jhmi.edu/
(Oishi et al., 2013) 18 , 24 M T1w, T2w, DW / Diffusion tensor model Templates, WM Parcellation Map JHU Pediatric Atlas http://cmrm.med.jhmi.edu/
(Bai et al., 2012; Broekman et al., 2014) 5 – 17 D T2w, DW / No specific model Templates NUS Neonatal Atlas http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html
- 6 M T2w, DW / No specific model Templates NUS Pediatric Atlas http://www.bioeng.nus.edu.sg/cfa/infant_atlas.html
(Blesa et al., 2016) 39 – 47 W PA T1w, T2w, DW / Diffusion tensor model Templates, AAL parcellation map, Tissue probability map UE Neonatal Atlas http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert/
(Saghafi et al., 2017) 14 – 48 D DW / No specific model Templates UNC-CH Neonatal Atlas
(Kim et al., 2017) 0, 3, 6, 9, 12 M DW / No specific model Templates, Fiber probability map UNC-CH Longitudinal Infant Atlas*

(D: days; W: weeks; M: months; WM: white matter; PA: postmenstrual age)

*

Brain atlas based on longitudinal dataset

Abbreviations: JHU. Johns Hopkins University; NUS. National University of Singapore; UE. University of Edinburgh; UNC-CH. University of North Carolina at Chapel Hill; AAL. Automated Anatomical Labeling.