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Abstract

Diabetes significantly increases the risk of stroke and post-stroke mortality. Recurrent 

hypoglycemia (RH) is common among diabetes patients owing to glucose-lowering therapies. 

Earlier we showed that RH in a rat model of insulin-dependent diabetes exacerbates cerebral 

ischemic damage. Impaired mitochondrial function has been implicated as a central player in the 

development of cerebral ischemic damage. Hypoglycemia is also known to affect mitochondrial 

functioning. The present study tested the hypothesis that prior exposure of insulin-treated diabetic 

(ITD) rats to RH exacerbates brain damage via enhanced post-ischemic mitochondrial 

dysfunction. In a rat model of streptozotocin-induced diabetes, we evaluated post-ischemic 

mitochondrial function in RH-exposed ITD rats. Rats were exposed to five episodes of moderate 

hypoglycemia prior to the induction of cerebral ischemia. We also evaluated the impact of RH, 

both alone and in combination with cerebral ischemia, on cognitive function using the Barnes 

circular platform maze test. We observed that RH exposure to ITD rats leads to increased cerebral 

ischemic damage, and decreased mitochondrial complex I activity. Exposure of ITD rats to RH 

impaired spatial learning and memory. Our results demonstrate that RH exposure to ITD rats 

potentially increases post-ischemic damage via enhanced post-ischemic mitochondrial 

dysfunction.
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Introduction

The prevalence of diabetes is rapidly increasing worldwide. The International Diabetes 

Federation and the CDC estimates that 415 and 29 million people suffer with diabetes 

globally and in the USA, respectively (International Diabetes Federation, 2015; Center for 

Disease Control and Prevention, 2016). Diabetes is a chronic disease that requires 

continuous medical care to prevent acute complications and reduce the risk of long-term 

complications (American Diabetes Association, 2011). Diabetes significantly increases the 

risk of stroke/cerebral ischemia, and also increases mortality following stroke/cerebral 

ischemia (Beckman et al., 2008).

Earlier studies reported that management of the disease with intensive glycemic control can 

limit, delay or even prevent the chronic complications of diabetes (DCCT research group, 

1993; Nathan, 2014). However, intensive glycemic control could increase the risk of 

hypoglycemia in both type 1 (T1D) and type 2 (T2D) diabetics, consequently increasing the 

risk of hypoglycemic brain injury (Lincoln et al., 1996; Davis et al., 1998; EDIC group, 

1999; Cryer, 2001; Donnelly et al., 2005). Diabetics frequently experience episodes of 

symptomatic and asymptomatic hypoglycemia (Janssen et al., 2000; Pedersen-Bjergaard et 

al., 2004; Donnelly, et al., 2005; UK Hypoglycaemia Study Group, 2007; Shafiee et al., 

2012). Recurrent exposure to hypoglycemia may lead to an impaired awareness of 

hypoglycemia (Geddes et al., 2008; Yeoh et al., 2015). Diabetics with impaired 

hypoglycemia awareness experience much higher incidences of both asymptomatic and 

severe hypoglycemia than those with normal awareness (Schopman et al., 2011; Shafiee, et 

al., 2012; Gehlaut et al., 2015). Studies involving continuous glucose monitoring systems 

detect a high frequency of previously unrecognized hypoglycemic episodes in individuals 

with both T1D and T2D (Boland et al., 2001; McNally et al., 2007; Weber et al., 2007; 

Tamborlane et al., 2008).

The presence of oxidative stress during hypoglycemia is well documented (Patockova et al., 

2003; Singh et al., 2004; Suh et al., 2007; Amador-Alvarado et al., 2014). Using in vivo and 

in vitro models, earlier studies demonstrated that hypoglycemia leads to an increase in 

mitochondrial reactive oxygen species (ROS) production and a decrease in mitochondrial 

membrane potential (MMP)(Kauppinen et al., 1986; McGowan et al., 2006; Isaev et al., 

2008; Dave et al., 2011). The production of ROS and oxidative stress is involved in recurrent 

hypoglycemia (RH)-induced dendritic damage in the hippocampus (Won et al., 2012). 

Repetitive moderate hypoglycemia in the developing brain causes selective impairment of 

synaptic plasticity in the absence of hippocampal neuronal death, and without complete 

disruption of basal synaptic transmission (Yamada et al., 2004). We earlier demonstrated that 

ROS generation is increased in isolated mitochondria from the hippocampus of insulin-

treated diabetic (ITD) rats exposed to RH compared to the control groups (Dave, et al., 

2011). Also, we observed that the most sensitive populations of neurons, the cornusammonis 
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(CA) 1 hippocampal neurons survived least in the ITD + RH group compared to the control 

groups (Dave, et al., 2011). Increased ROS production is also observed during and following 

an acute ischemic stroke (Cuzzocrea et al., 2001). Thus, oxidative stress is an important 

mediator of tissue injury in both hypoglycemia and acute ischemic stroke.

Mitochondria have long been known to play a critical role in the pathogenesis of cerebral 

ischemia/reperfusion injury via ROS generation, mitochondrial failure or dysfunction, and 

mitochondrial-mediated apoptosis (Fiskum et al., 1999; Chan, 2001). Impaired function of 

respiratory chain complexes and ATP synthase after ischemia are potential major causes of 

enhanced mitochondrial ROS production (Moro et al., 2005; Niatsetskaya et al., 2012). The 

excess production of ROS during and after ischemia causes mitochondrial dysfunction as 

well as induces the release of cytochrome c from mitochondria through the opening of the 

mitochondrial permeability transition pore (MPTP), which in turn initiates the apoptotic 

cascade (Zoratti et al., 1995; Borutaite et al., 1999; Kowaltowski et al., 2000; Nicholls et al., 

2000; Iijima, 2006). Impaired mitochondrial energy metabolism is the most immediate result 

of mitochondrial dysfunction in cerebral ischemia (Canevari et al., 1997; Zaidan et al., 

1997).

The present study tested the hypothesis that exposure to RH in diabetic conditions 

exacerbates cerebral ischemia-induced CA1 hippocampal neuronal death via aggravated 

post-ischemic mitochondrial dysfunction.

Experimental Procedures

Animals

All animal experiments were carried out in accordance with the National Institute of Health 

Guide for the Care and Use of Laboratory Animals and were approved by an institutional 

animal care and use committee. Efforts were made to minimize the number of animals used 

and their suffering.

Induction of diabetes—Male Wistar rats were made diabetic by intraperitoneal injection 

(i.p) of the β cell toxin streptozotocin (STZ; (58 mg / kg body weight; Sigma Aldrich, St 

Louis, MO) (Dave, et al., 2011). After STZ injection, blood glucose levels were measured 

(using portable glucose meter: Freestyle Freedom, Abbott Diabetes Care Inc., Alameda, CA, 

USA; detection range 20–550 mg/dL) in non-fasting rats by tail pricking twice a week. 

Blood glucose values of >550 mg/dL were assigned a value of 550 mg/dL for statistical 

analysis.

Insulin treatment of diabetic rats—Two to three weeks after the induction of diabetes, 

insulin pellets (LinShin Canada, Inc, Ontario, Canada) were implanted subcutaneously (s.c.) 

(Dave, et al., 2011). Blood glucose levels were monitored in the following week and if the 

level was >220mg/dL an additional insulin pellet (or part of the pellet) was implanted to 

keep the glucose level in the target range (≤220 mg/dL). This group of animals was 

considered ITD rats.
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Rats belonging to the ITD group were randomized into three groups: 1) ITD (n = 19), 2) 

ITD + RH (n = 29), and 3) ITD + RH + glucose (n = 26). Rats belonging to ITD + RH or 

ITD + RH + glucose groups were exposed to a total of five episodes of RH 

(hyperinsulinemic hypoglycemia) or RH + glucose (hyperinsulinemic euglycemia) over 5 

consecutive days (1 episode / day), respectively.

Exposure of ITD rats to RH—RH was induced 2-3 weeks after insulin pellet 

implantation, with the aim of maintaining blood glucose levels in the moderate 

hypoglycemia range for 3 hours, by s.c. injection of Novolog (insulin aspart, Novo Nordisk, 

AIS, Denmark) (Dave, et al., 2011). Duration, frequency and total number of hypoglycemia 

episodes was decided based on earlier studies (McNay et al., 2006; Herzog et al., 2008; 

Won, et al., 2012; McNay, 2015). Glucose levels were measured at baseline and every hour 

during hypoglycemia. Additional insulin or 50% dextrose solution was administered by s.c. 

injection if the target glucose level was not achieved within the first hour of insulin injection. 

After 3 hours of hypoglycemia the rats were infused s.c. with 50% dextrose solution to raise 

the blood glucose to pre-hypoglycemia levels. Blood glucose levels were also measured 30 

minutes post-dextrose injection (recovery) confirming termination of the hypoglycemia 

episode.

Animals belonging to the ITD + RH + glucose group were treated with insulin similar to the 

ITD + RH group. However, their glucose levels were maintained close to baseline by s.c. 

injection of 50% dextrose. Similar to the ITD + RH group, their blood glucose levels were 

measured at baseline, at every hour for three hours following insulin + glucose injection, and 

at 30 minutes post-recovery.

Rats belonging to four experimental groups were included in the study: 1) Naïve (n = 17), 2) 

ITD (n = 19), 3) RH (n = 29), and 4) RH + glucose (n = 26). A schematic diagram detailing 

the experimental groups is presented in Figure 1.

Induction of ischemia

After the last exposure to hypoglycemia, on the next day the rats were subjected to sham or 

global cerebral ischemia surgery (Figure 1) (Dave et al., 2001). Rats were first anesthetized 

with 4% isoflurane in a mixture of 70% nitrous oxide and 30% oxygen. Both femoral 

arteries were cannulated for blood pressure measurements, controlled hemorrhage, and for 

arterial sampling of blood gases and glucose. The femoral vein was cannulated for 

rocuronium infusion. Temperature probes were inserted into the rectum and the left 

temporalis muscle, and separate thermostat-regulated heating lamps were used to maintain 

rectal and temporalis muscle temperature between 36.5 °C to 37.5 °C throughout the 

experiment. The rats were endotracheally intubated and mechanically ventilated during the 

surgery procedure. During ventilation, the rats were immobilized with rocuronium (10 mg/

kg). Blood glucose levels were measured before the induction of ischemia. Arterial blood 

gases (ABL80, Radiometer, Westlake, OH) were measured intermittently throughout the 

experiment. The goal was to maintain blood gases in the physiological range. Both common 

carotid arteries were exposed by a midline ventral incision and were gently dissected free of 

surrounding nerve fibers. Ligatures of polyethylene (PE-10) tubing, contained within 
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double-lumen silastic tubing, were passed around each carotid artery. To induce cerebral 

ischemia, blood was gradually withdrawn from the femoral artery into a heparinized syringe 

to reduce systemic blood pressure to 50 mmHg, then the carotid ligatures were tightened 

bilaterally. Loosening the carotid ligatures and slowly reinfusing the shed blood into the 

femoral artery terminated the ischemic insult. The carotid arteries were inspected to verify 

that recirculation was reestablished. The duration of ischemia was 8 minutes. Arterial and 

venous catheters were then removed with appropriate caution. After 45 – 60 minutes, the 

animals were transferred to an individual cage. Sham animals were treated the same except 

for induction of cerebral ischemia.

Behavior assessments

All rats used for behavior assessment were handled for three days (15 min per session, last 

session on the day before surgical procedure) prior to sham ischemia surgery. Rats were 

subjected to behavioral assessment starting on day 4 post-surgery. The details of the 

behavioral test schedule appear in Figure 2. Behavioral assessments included the Barnes 

circular platform maze and the open field test to evaluate spatial learning and memory and 

locomotor activity, respectively (Cohan et al., 2015).

Barnes circular platform maze test—Rats from each experimental group were 

subjected to the Barnes maze test on day 4 post-ischemia for a total of 8 trials, one trial per 

day up to day 11 post-ischemia. The Barnes maze test was performed as described earlier 

(Cohan, et al., 2015). In brief, the apparatus consisted of a circular platform with 18 escape 

holes located along the circumference. Only one of the escape holes was connected to the 

escape box. To start the test, rats were placed in the center of the platform and covered with 

a black box for 15 seconds. Rats were given 4 minutes to find the escape box following 

removal of the black box. Bright lights (noxious stimuli) were used to increase the incentive 

in finding the escape box. For each trial, the Barnes maze platform and escape box were 

thoroughly cleaned with 70% ethanol solution and dried with paper towels. Each day the 

maze was rotated 90 degrees in order to disperse residual odorant cues on the maze. All 

trials were recorded using an EQ 610 Polestar II Everfocus camera. The distance traveled 

until the rat first located the escape tunnel (known as a primary measurement, a potentially 

more accurate measure of learning (Harrison et al., 2006)and the latency to the rat located 

the escape box (primary measure) were quantified using Ethovision 8.5 video tracking 

software (Noldus, Leesburg, VA, USA). The primary search strategy (random or systematic) 

used by each rat was also evaluated (details are in (Cohan, et al., 2015)).

Open field test—The rats from each experimental group were subjected to an open field 

test on day 13 post-ischemia using an open field chamber (17” L × 17” W × 12” H; Med 

Associates Inc., St. Albans, VT) (Prut et al., 2003). To start the trial, rats were placed into 

the center of the open field and allowed to explore the apparatus for 30 minutes. For each 

trial, the open field box was thoroughly cleaned with 70% ethanol solution and afterward by 

dry paper towels. The analysis included the distance traveled by the rat over the arena in 30 

minutes.
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Histological studies

The number of normal neurons was counted as described earlier (Dave et al., 2005). In brief, 

on day 14 post-ischemia/sham surgery, rats were perfused using FAM (a mixture of 40% 

formaldehyde, glacial acetic acid, and methanol, 1:1:8 by volume) under isoflurane 

anesthesia for histological analysis. Coronal sections were made from paraffin-embedded 

brains and stained with hematoxylin and eosin. In sections containing hippocampus at the 

level of -3.6, -3.8, and -4.0 mm from bregma, the number of surviving normal neurons 

within the entire CA1 region of hippocampus was counted using MCID Elite 6.0 software 

(InterFocus Imaging Ltd, Cambridge, UK) attached to a Nikon microscope (Nikon 

Microphot-SA; Nikon Corporation, Tokyo, Japan), a Sony 3CCD color video camera (Sony 

Corporation, Tokyo, Japan), and an LEP motorized stage (Ludl Electronic Products Ltd, 

Hawthorne, NY). The counts at the three bregma levels were averaged.

Isolation of Mitochondria and determination of mitochondrial function

Mitochondria were isolated twenty-four hours after sham/ischemia surgery. In brief, rats 

were decapitated under isoflurane anesthesia. The hippocampus was removed immediately 

and mitochondria were isolated as described earlier (Lee et al., 1993; Dave, et al., 2011). 

The entire procedure was completed within 1 to 1.5 hours. All procedures were carried out 

at 4°C or on ice. Polarographic measurement of substrate oxidation rates, and 

spectrophotometric measurements of the specific activities of complexes I - IV were 

performed as described earlier (Dave, et al., 2001; Dave, et al., 2011).

Statistical analysis

All statistical analyses were done using either Graph Pad prism software version 5 or SAS 

version 9.4 (SAS Institute Inc., Cary, NC). Multiple comparison analysis among the groups 

for open field test, mitochondrial respiration rate and mitochondrial respiratory chain 

complex activity were done by one way analysis of variance (ANOVA) followed by Tukey's 

post-hoc test. Rats that did not respond on the Barnes maze, animals with abnormal ischemic 

injury (absence, unilateral or severe), and significant outlier data points as identified by the 

Grubbs' test were excluded from analysis. Linear mixed-effect models for repeated 

measurements were used to assess the effects of treatment on spatial learning and memory 

with repeated Barnes maze tests over time. The Chi-square test was used to compare the 

search strategy results among the groups. All data are expressed as mean ± SEM. A p value 

of less than 0.05 was considered statistically significant.

Results

Blood glucose levels

To confirm the induction of diabetes, and control of blood glucose levels in ITD groups, the 

blood glucose levels were measured for rats belonging to each group before (after STZ 

injection)and after insulin pellet implantation (at the time of ischemia/sham surgery). No 

significant differences in blood glucose level (Figure S1) were observed in all six diabetic 

groups (i.e., ITD + sham: n=8, ITD + ischemia: n=11, ITD + RH + sham: n=14, ITD + RH + 
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ischemia: n=15, ITD + RH + glucose + sham: n=12, and ITD + RH + glucose + ischemia: 

n=14).

To confirm hypoglycemia in rats, the glucose levels were measured at baseline (before 

insulin injection), at 1, 2, and 3 hr post-insulin injection, and after half an hour of dextrose 

infusion (recovery) in rats belonging to the ITD + RH + sham (n=14), ITD + RH + ischemia 

(n=15), ITD + RH + glucose + sham (n=12), and ITD + RH + glucose + ischemia (n=14) 

groups (Figure S2). Our results confirm that we were able to maintain glucose levels in the 

moderate hypoglycemia range in both ITD + RH groups (sham and ischemia). Our results 

also indicated that we were able to maintain glucose levels close to euglycemia in the ITD + 

RH + glucose groups (sham and ischemia).

Exposure to RH in ITD rats exacerbates post-ischemic neuronal damage in the CA1 
hippocampus

The goal of this experiment was to confirm our earlier results which demonstrated that prior 

exposure to RH exacerbates cerebral ischemic damage in ITD rats. The groups included 

were (1) naïve + sham (n=9), (2) naïve + ischemia (n=8), (3) ITD + sham (n=8), (4) ITD + 

ischemia (n=5), (5) ITD + RH + sham (n=14), (6) ITD + RH + ischemia (n=8), (7) ITD + 

RH + glucose + sham (n=12), and (8) ITD + RH + glucose + ischemia (n=7). The number of 

normal neurons in the CA1 region of hippocampus was evaluated for each experimental 

group on day 14 post-ischemia. Neither RH nor RH + glucose treatment resulted in any cell 

death as the number of normal neurons in sham-operated rats belonging to all experimental 

groups was not different. Due to this reason, all sham groups were pooled into one group, 

and further comparisons are made against this common sham group. We found a significant 

decrease in normal surviving neurons in the naïve (31%, p<0.001), ITD (39%, p<0.001), 

ITD + RH (61%, p<0.001), and ITD + RH + glucose (35%, p<0.001) groups after ischemia 

when compared with the sham group (Figure 3). When further analysis was done between 

ischemic groups, we found a significant reduction in the number of normal neurons in the 

ITD + RH + ischemia group compared to three ischemia groups; i.e., naïve (44 %, p<0.001), 

ITD (37 %, p<0.05) and ITD + RH + glucose (40 %, p<0.01) (Figure 3). These results 

confirms our earlier findings that the reduction in normal surviving neurons was more severe 

in the ITD + RH + ischemia group compared to the naïve, ITD, and ITD + RH + glucose 

ischemic groups. Thus, our results demonstrate that RH in a rat model of ITD exacerbates 

cerebral ischemic damage.

Prior RH exposure induces no significant changes in locomotor activity in ITD animals 
subjected to cerebral ischemia

We observed a significant reduction in number of normal neurons in RH-exposed diabetic 

rats subjected to cerebral ischemia. Before determining the effect of RH on cognitive 

outcomes, first we confirmed absence of any motor deficits in our experimental groups 

specifically in RH treated group as motor deficits may affect results of cognitive test used in 

our study. We measured distance traveled by animals during the test period of 30 minutes in 

an open field chamber. Groups used for this experiment were same as the one used for 

histology study (sham: n = 41, naïve + ischemia: n = 8, ITD + ischemia: n = 5, ITD + RH + 

ischemia: n = 7, ITD + RH + glucose + ischemia: n = 8). The mean distance traveled by 
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animals belonging to the groups subjected to cerebral ischemia was not significantly 

different from that of their respective sham groups (Figure 4). Also, no significant difference 

in mean distance traveled was noticed among all experimental groups (Figure 4). Overall, 

our results suggest that prior exposure of ITD rats to RH does not have any effect on 

locomotor activity in either control (sham) or ischemia groups.

RH exposure alone impairs spatial learning and memory in ITD rats

To determine the effect of RH exposure to ITD rats on spatial learning and memory, we 

evaluated rats belonging to naïve + sham (n = 9), ITD + sham (n = 7), ITD + RH + sham (n 

= 14), and ITD + RH + glucose + sham (n = 12) using the Barnes maze. The average 

distance traveled (cm), latency (sec), and strategy (random or systematic) used to locate the 

escape box over the eight day period of trial was measured in animals belonging to each 

experimental group (same as histology study). We observed significant group (difference 

among groups, p<0.005), day (groups improved over time, p<0.001) and day × group 

(treatment by time interaction, p<0.05) effects among the four experimental groups for total 

distance traveled (Figure 5A). The rate of learning (calculated from distance traveled) in the 

ITD + RH + sham group was significantly lower when compared to other two diabetic 

groups (ITDp<0.005 and ITD + RH + glucose + sham p<0.005) (Figure 5A). However, no 

significant difference was observed in the rate of learning (distance traveled) between ITD + 

RH + sham and naïve + sham groups (Figure 5A). Also, no significant differences were 

observed for latency between ITD + RH + sham and three control groups (Figure 5B). ITD + 

RH + sham animals used random verses systematic strategy more frequently (45% of the 

time) compared to the ITD + sham (25% of the time, p<0.05) and ITD + RH + glucose + 

sham (28% of the time, p<0.05) groups (two diabetic groups) (Figure 6). However, no 

significant difference was observed in the frequency of random strategy use between ITD + 

RH + sham (45% of the time) and naïve + sham (40% of the time) groups(Figure 6). Our 

results indicate that RH exposure to ITD leads to impaired spatial learning and memory.

RH exposure does not affect spatial learning and memory in ITD rats subjected to cerebral 
ischemia

To examine whether increased CA1 hippocampal neuronal injury observed in RH-exposed 

ITD rats following cerebral ischemia correlated with spatial learning and memory deficit, we 

evaluated rats belonging to four experimental groups (naïve, ITD, ITD + RH, ITD + RH + 

glucose) with sham or ischemia surgeries using Barnes maze testing (naïve + sham: n = 9, 

naïve + ischemia: n = 8, ITD + sham: n = 7, ITD + ischemia: n = 5, ITD + RH + sham: n = 

14, ITD + RH + ischemia: n = 8, ITD + RH + glucose + sham: n = 12, ITD + RH + glucose 

+ ischemia: n = 7). We observed day (groups improved over time) effect (p<0.01 for distance 

and p<0.005 for latency),but did not observe group, and day × group effects among the four 

ischemia groups (naïve, ITD, ITD + RH, and ITD + RH + glucose) for these two 

parameters(Figure S3). The rate of learning (distance traveled and latency) in ITD + RH + 

ischemia group was not significantly different from naïve, ITD, and ITD + RH + glucose 

animals subjected to ischemia. The rates of learning (distance traveled) in ITD + ischemia 

(p<0.05) and ITD + RH + glucose + ischemia (p<0.05) groups were significantly impaired 

when compared to the respective sham groups (Figure S3B and S3D). We also analyzed the 

strategy used to find the escape box during the Barnes maze test (Figure S4). We did not 
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observe any significant difference in frequency of random strategy use among the four 

ischemia groups. When we compared ischemia groups with their respective sham groups, we 

observed that ITD + ischemia animals used random strategy (48% of the time) more 

frequently compared to ITD + sham animals (25% of the time, p<0.05) (Figure S4). 

However, we did not observe any differences in use of random strategy among the other 

three sham groups when compared with their respective ischemia groups. These results 

indicate that prior RH exposure has no significant additive effect on spatial learning and 

memory in ITD rats subjected to cerebral ischemia.

Measurement of mitochondrial respiration rate in RH-exposed ITD rats subjected to 
cerebral ischemia

Hypoglycemia leads to an increase in mitochondrial ROS production and decrease in MMP 

(Kauppinen, et al., 1986; McGowan, et al., 2006; Dave, et al., 2011). This pre-existing 

mitochondrial dysfunction may further exacerbate cerebral ischemia-induced mitochondrial 

dysfunction. Thus, we next determined hippocampal mitochondrial function in our 

experimental conditions at twenty-four hours post sham/ischemia surgery. The oxygen 

consumption rate was measured in the presence of different pairs of substrates: pyruvate and 

malate, succinate and glycerol-3-phosphate, and ascorbate and N, N, N′, N′-tetramethyl-p-

phenylenediamine (TMPD). We observed that the rate of oxygen consumption in the 

presence of pyruvate and malate was lower in the ITD + RH (n=7) ischemic group by 25% 

(p<0.05), 46% (p<0.001), and 33% (p<0.001) compared to the naïve (n=6), ITD (n=6), and 

ITD + RH + glucose (n=7) ischemic groups, respectively (Figure 7A). No statistically 

significant differences were observed between ITD + RH and the other three control groups 

when oxygen consumption was measured in the presence of succinate + glycerol-3-

phosphate (Figure 7B) and ascorbate + TMPD (Figure 7C) as substrates. Our results 

demonstrate that prior exposure to RH in ITD rats following cerebral ischemia leads to 

decreased rate of oxidation in presence of pyruvate and malate as substrates.

Measurement of mitochondrial respiratory chain complex activity in RH-exposed ITD rats 
subjected to cerebral ischemia

Because we observed a decreased rate of respiration in presence of pyruvate and malate as 

substrates, next we measured activities of complexes I, II, III, and IV of the mitochondrial 

electron transport chain (ETC). Similar to the decreased rate of substrate oxidation in ITD + 

RH + ischemia group, complex I activity was also lower in the ITD + RH + ischemia group 

(n=7) by 36% (p<0.001), 38% (p<0.001), and 33% (p<0.01) compared to the naïve (n=6), 

ITD (n=6), and ITD + RH + glucose (n=7) ischemia groups, respectively (Figure 8A). No 

significant difference in complex II, III and IV activity was observed in the ITD + RH + 

ischemia group when compared to thenaïve, ITD and ITD + RH + glucose ischemia groups, 

respectively (Figure 8B-D). Our results demonstrate that prior exposure to RH in ITD rats 

results in pronounced impairment in mitochondrial complex I activity following cerebral 

ischemia.
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Discussion

Stroke is one of the leading causes of death and physical disability worldwide and diabetes 

is a recognized risk factor for ischemic stroke (Kissela et al., 2006). Diabetes increases the 

risk of stroke and also enhances brain damage caused by cerebral ischemia (Unachukwu et 

al., 2012; Jing et al., 2013; Jing et al., 2014; Liu et al., 2016). Insulin-induced hypoglycemia 

is the most frequent side effect of insulin-therapy in diabetes (McCrimmon et al., 1994; 

Cryer, 2004). Although studies demonstrate that diabetics frequently experience mild/

moderate hypoglycemia, the effect of mild/moderate hypoglycemia on brain is not well 

explored. In the present, as well as in an earlier study, we demonstrated that prior exposure 

of ITD rats to RH increases cerebral ischemic damage. We also observed that the rate of 

learning in RH-exposed ITD rats was significantly lower when compared to other two 

diabetic groups and pronounced ischemia-induced impairment in mitochondrial complex I 

activity was observed in ITD rats exposed to RH.

It is evident that oxidative stress and mitochondrial dysfunction play an important role in 

tissue damage associated with cerebral ischemia. Mitochondria undergo morphological and 

functional changes which contribute to oxidative stress and cell death following cerebral 

ischemia (Canevari, et al., 1997; Zaidan, et al., 1997; Murakami et al., 1998; Anderson et al., 

1999; Sims et al., 2002). Increased ROS production disrupts antioxidant defense and directly 

impairs mitochondrial homeostasis and energy production. Deficits of mitochondrial energy 

metabolism is the most immediate cause of mitochondrial damage and dysfunction in 

cerebral ischemia (Canevari, et al., 1997; Zaidan, et al., 1997). Mitochondrial dysfunction is 

mainly manifested as decreased mitochondrial ATP synthesis, increased ROS production, 

dysregulation of intracellular lipid homeostasis, loss of the MMP, and induction of the 

MPTP (Piantadosi et al., 1996; Feng et al., 1998; Iijima et al., 2003). Further, mitochondrial 

oxidative stress prevents metabolic recovery and promotes apoptosis (Myers et al., 1995; Liu 

et al., 1998). Hence, the sequence of post-ischemic events that damage mitochondria and 

lead to mitochondrial dysfunction, in turn, participate in cerebral ischemic damage. Thus we 

tested the hypothesis that increased extent of mitochondrial dysfunction plays a role in 

exacerbating cerebral ischemic damage in RH-exposed ITD rats.

In the present study, we observed that prior exposure of ITD rats to RH leads to more robust 

decrease in the rate of oxidation in the presence of pyruvate and malate as substrate. We also 

observed lower complex I activity in the ITD + RH group compared to the naïve, ITD and 

ITD + RH + glucose groups. Mitochondrial Complex I is the first and largest protein 

complex in the mitochondrial ETC, which has an essential role in maintaining mitochondrial 

function and integrity (Giachin et al., 2016). Prior studies observed that tumor necrosis 

factor-α (TNF-α) adversely affects mitochondria. Using an in vitro model, Higuchi et al 

demonstrated that mitochondrial ETC complex I is inhibited following TNF-α treatment 

during the early phase leading to apoptosis via the mitochondrial apoptotic pathway 

(Higuchi et al., 1998). Recently, Doll et al., observed rapid and profound mitochondrial 

dysfunction when HT22 hippocampal cells and mouse primary cortical neurons were 

exposed to TNF-α for a short duration (90 min) (Doll et al., 2015). TNF-α induces 

significant mitochondrial dysfunction and activation of mitochondrial apoptotic responses 

(Baregamian et al., 2009; Doll, et al., 2015). The increased level of TNF-α is associated with 
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worsened clinical outcomes after stroke and exacerbation of infarct size in pre-clinical 

models (Nawashiro et al., 1997; Ormstad et al., 2011). Moreover, intracerebroventricular 

administration of exogenous TNF-α significantly expands infarct volume (Barone et al., 

1997). In an earlier study we observed a robust increase in TNF-α level in RH- exposed ITD 

rats compared to naïve and ITD rats at 24 h post-cerebral ischemia (Shukla et al., 2015). It is 

possible that increased post-ischemic TNF-α levels in hippocampus of RH- exposed ITD 

rats may be responsible for observed lower complex I activity.

Studies have reported that mitochondria are the major source of cellular ROS involved in 

TNF-α-induced cell death/apoptosis (Schulze-Osthoff et al., 1993; Goossens et al., 1995; 

Shoji et al., 1995; Goossens et al., 1999; Corda et al., 2001). Treatment of cells with TNF-α 
alters mitochondrial membrane permeability, inhibits respiratory chain complex I, induces 

mitochondrial swelling and clustering, and leads to cytochrome c release. Release of 

cytochrome c activates caspases leading to cell death (Schulze-Osthoff, et al., 1993; 

Goossens, et al., 1995; Pastorino et al., 1996; Higuchi, et al., 1998; Rath et al., 1999). 

Mitochondrial respiratory chain complex I inhibitor (i. e., rotenone)-induced apoptosis has 

been widely studied (Barrientos et al., 1999; Isenberg et al., 2000; Chauvin et al., 2001). 

Complex I inhibition results in enhanced ROS production and depletion of ATP in cells, 

membrane depolarization and mitochondrial permeability transition pore opening, all of 

which contribute to apoptosis (Barrientos, et al., 1999). Free radical overload results in 

damage of protein, DNA and membrane phospholipids (Guo et al., 2013). Our results 

indicate that severe inhibition of complex I activity may be, in part, responsible for 

exacerbating cerebral ischemic damage in ITD rats exposed to RH. However, our results 

warrant confirmatory studies to establish the role of complex I inhibition on increased 

cerebral ischemic damage in our experimental conditions.

Mitochondrial respiratory chain complex I catalyzes NADH oxidation and regenerates NAD
+. The role of oxidative stress and altered NAD+ metabolism has been established in 

ischemic brain injury. We observed that the complex I activity was significantly reduced in 

ITD + RH rats following cerebral ischemia. It has been found that ischemia/reperfusion can 

induce significant decreases in NAD+ levels in the brain (Endres et al., 1997), and NAD+ 

administration can significantly decrease ischemic brain injury in an animal model of 

cerebral ischemia (Ying et al., 2007). It is plausible that the reduced ability of complex I to 

oxidize NADH to NAD+ in the ITD + RH group contributed to the exacerbation of cerebral 

ischemic damage.

We further investigated whether RH exposure, by itself or with cerebral ischemia, has any 

effect on memory and cognitive impairment. We observed that RH exposure in ITD rats 

(sham surgery group) leads to significant spatial learning and memory impairment compared 

to other two sham-operated diabetic groups (ITD and ITD + RH + glucose). Our findings are 

corroborated by an earlier study where diabetic rats exposed to recurrent moderate 

hypoglycemia showed significant cognitive impairment compared to non-diabetic rats (Won, 

et al., 2012). Similarly, recently McNeilly and colleagues also reported that exposure of 

streptozotocin-diabetic mice to moderate RH results in impaired cognitive function when 

assessed using novel object recognition and spontaneous alteration tests (McNeilly et al., 

2016). Considering very few studies investigated the effect of brain with respect to its effect 
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on cognition, the mechanism behind is not well understood. Recurrent moderate 

hypoglycemia is observed to impair hippocampal synaptic plasticity, suggesting its potential 

link to observed memory and cognitive deficits as hippocampal long-term potentiation is 

involved in memory and learning (Yamada, et al., 2004). Uncontrolled blood glucose levels 

(hyper- or hypoglycemia)also affect brain structure and function, potentiating cognitive 

impairment (Cardoso et al., 2013). Severe hypoglycemia induces hippocampal neuronal 

death and impairs learning and memory in rodents (Cardoso, et al., 2013) and in patients 

with diabetes (Rovet et al., 1997; Hershey et al., 2005). Recurrent moderate hypoglycemia 

causes oxidative injury in hippocampal dendrites (Won, et al., 2012). Repetitive episodes of 

moderate hypoglycemia induce synaptic injury in the hippocampus, and consequently may 

contribute to the development of cognitive impairment (Won, et al., 2012; Choi et al., 2013). 

An earlier study observed that exposure of diabetic rats to RH potentiated an increase in 

lipid peroxidation and a decrease in aconitase activity (both markers of oxidative damage) in 

hippocampal mitochondria (Cardoso, et al., 2013). Conversely, RH improved cognitive 

ability and preserved basic brain functions in diabetic and non-diabetic rats tested in a 

euglycemic state (McNay et al., 2004; McNay, et al., 2006). However, under hypoglycemia 

the animals performed worse compared to control animals. Severe hypoglycemia is observed 

to induce brain damage and related deficits in spatial learning and memory (Puente et al., 

2010). Our results thus confirm previous reports that prior exposure to hypoglycemia results 

in impaired cognitive function.

Post-stroke cognitive decline is considered a major contributor to post-stroke disability 

(Brainin et al., 2015; Levine et al., 2015). An earlier prospective clinical study observed that 

stroke survivors not only suffer from acute cognitive deficits but also experience accelerated 

and persistent cognitive decline (Levine, et al., 2015). Similarly, cognitive impairments are 

also observed in survivors of cardiac arrest (Moulaert et al., 2009; Perez et al., 2016). Post-

stroke cognitive impairments are also evident in animal models of cerebral ischemia (Okada 

et al., 1995; Hodges et al., 1997; Kiprianova et al., 1999; Hattori et al., 2000). However, we 

did not observe an effect of cerebral ischemia on cognitive function evaluated by means of a 

Barnes circular platform maze. It should be noted that since we anticipated increased 

ischemic damage in the RH-exposed group, we chose a relatively short duration of global 

cerebral ischemia (8 min). It is possible that we did not observe a sufficient impact of 

cerebral ischemia on cognitive function from such a mild ischemic insult. An earlier study 

that used 30 min (relatively short ischemia duration) of transient middle cerebral artery 

occlusion in mice also did not observe any impact on cognitive function when that was 

evaluated using a Morris water maze (Doll et al., 2015). We also did not observe an adverse 

effect of ischemia on cognitive function in RH-exposed rats compared to sham controls. It is 

plausible that the effect of ischemia on cognitive function in RH-exposed rats is masked by 

the effect of RH itself on cognitive function. Further studies using relatively sensitive test to 

evaluate cognitive deficits may help evaluate post-ischemia cognitive deficits in our 

experimental conditions.

Inclusion of only male rats is a limitation of our studies. Earlier studies established that 

response to hypoglycemia is different in normal and diabetic women compared to the 

respective male population. Hormonal changes in response to hypoglycemia (epinephrine, 

norepinephrine, and growth hormone) and endogenous glucose production response are 
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lower in T1D women than in T1D men, and in healthy women compared with healthy men 

(Davis et al., 2000). Another study demonstrated that women are less susceptible to the 

blunting of neuroendocrine counterregulatory responses following repeated exposure to 

hypoglycemia, compared to men (Davis et al., 2000). Differential hormonal responses to 

hypoglycemia in men and women diabetic subjects warrants studies to determine the effect 

of prior hypoglycemia exposure on ischemic outcomes in female diabetic animals.

Overall, our findings suggest that prior RH exposure in ITD rats increases ischemic damage 

potentially via inhibition of mitochondrial complex I. The mechanism by which RH 

exposure inhibits post-ischemic mitochondrial complex I inhibition remains to be defined. 

Understanding the mechanism by which RH exposure increases cerebral ischemic injury 

may ultimately help lower cerebral ischemic damage in diabetics.
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CA cornus ammonis

ETC electron transport chain

ITD insulin-treated diabetic

MMP mitochondrial membrane potential

MPTP mitochondrial permeability transition pores

RH recurrent hypoglycemia

ROS reactive oxygen species

STZ streptozotocin

s.c. subcutaneous

T1D type 1 diabetes

T2D type 2 diabetes

TNF-α tumor necrosis factorα
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Figure 1. Schematic diagram of experimental groups
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Figure 2. Behavioral test schedule
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Figure 3. The effect of RH exposure on neuronal survival in CA1 hippocampus of ITD rats 
subjected to cerebral ischemia
Normal neurons were counted post-ischemia/sham surgery in rats belonging to (1) sham (n = 

41), (2) naïve + ischemia (n = 8), (3) ITD + ischemia (n = 5), (4) ITD + RH + ischemia (n = 

7), and (5) ITD + RH + glucose + ischemia (n = 8). The results are presented as mean ± 

SEM. *, p<0.05 vs sham; ▲, p<0.05 vs naïve + ischemia; ♣, p<0.05 vs ITD + ischemia; ◆, 

p<0.05 vs ITD + RH + glucose.
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Figure 4. The effect of RH exposure on distance traveled during an open field test in ITD rats 
subjected to cerebral ischemia
Distance traveled by rats belonging to (1) sham (n=41), (2) naïve + ischemia (n=8), (3) ITD 

+ ischemia (n=5), (4) ITD + RH + ischemia (n=7), and (5) ITD + RH + glucose + ischemia 

(n=8). The results are presented as mean ± SEM.
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Figure 5. The effect of RH exposure on (A) distance traveled and (B) latency during the Barnes 
maze test in ITD rats subjected to sham surgery
The groups include (1) naïve + sham (n=9), (2) ITD + sham (n=7), (3) ITD + RH + sham 

(n=14), (4) ITD + RH + glucose + sham (n=12). The results are presented as mean ± SEM. 

A significant group (difference among groups, p<0.005), day (groups improved over time, 

p<0.001) and day × group (treatment by time interaction, p<0.05) effects among the four 

experimental groups for total distance traveled was observed. The rate of learning 

(calculated from distance traveled) in the ITD + RH + sham group was significantly lower 

when compared to other two diabetic groups (ITD p<0.005 and ITD + RH + glucose + sham 

p<0.005).
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Figure 6. The search strategy used during the Barnes maze test
The groups include (1) naïve + sham (n=9), (2) ITD + sham (n=7), (3) ITD + RH + sham 

(n=14), (4) ITD + RH + glucose + sham (n=12). The results are presented as mean ± SEM. 

Post hoc analysis revealed that the percentage use of random search strategy was 

significantly more by ITD + RH + sham rats compared to ITD + sham (Chi-Square, p <0.05) 

and ITD + RH + glucose + sham rats (Chi-Square, p <0.05).
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Figure 7. Mitochondrial respiration rates in RH-exposed ITD rats subjected to cerebral ischemia
Substrate oxidation rates in isolated mitochondria from hippocampus of (1) naïve + ischemia 

(n = 6), (2) ITD + ischemia (n = 6), (3) ITD + RH + ischemia (n = 7), and (4) ITD + RH + 

glucose + ischemia (n = 7) was measured in presence of different substrates (A) pyruvate + 

malate, (B) succinate + glycerol-3-phosphate and (C) ascorbate + tetramethyl-p-

phenylenediamine (TMPD). The results are presented as mean ± SEM. *, p<0.05 ITD + RH 

+ ischemia vs naïve; ***, p<0.001 ITD + RH + ischemia vs ITD and ITD + RH + ischemia 

vsITD + RH + glucose + ischemia.
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Figure 8. Mitochondrial complex (I, II, III and IV) activities in RH-exposed ITD rats subjected 
to cerebral ischemia
(A) Complex I, (B) Complex II, (C) Complex III, and (D) Complex IV activities were 

measured in mitochondria isolated from hippocampus of (1) naïve + ischemia (n = 6), (2) 

ITD + ischemia (n = 6), (3) ITD + RH + ischemia (n = 7), and (4) ITD + RH + glucose + 

ischemia (n = 7). The results are presented as mean ± SEM. **, p<0.01 ITD + RH + 

ischemia vsITD + RH + glucose + ischemia; ***, p<0.001 ITD + RH + ischemia vs naïve + 

ischemia and ITD + ischemia.
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