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Abstract. Tumor volume has been a topic of interest in the staging, prognostic evaluation, and treatment
response assessment of malignant pleural mesothelioma (MPM). Deep convolutional neural networks
(CNNs) were trained separately for the left and right hemithoraces on the task of differentiating between pleural
thickening and normal thoracic tissue on computed tomography (CT) scans. A total of 4259 and 6192 axial
sections containing segmented tumor were used to train the left-hemithorax CNN and the right-hemithorax
CNN, respectively. Two distinct test sets of 131 sections from the CT scans of 43 patients were used to evaluate
segmentation performance by calculating the Dice similarity coefficient (DSC) between deep CNN-generated
tumor segmentations and reference tumor segmentations provided by a total of eight observers. Median DSC
values ranged from 0.662 to 0.800 over the two test sets when comparing deep CNN-generated segmentations
with observer reference segmentations. The deep CNN-based method achieved significantly higher DSC values
for all three observers on the test set that allowed direct comparisons with a previously published automated
segmentation method of MPM tumor on CT scans (p < 0.0005). A deep CNN was implemented for the auto-
mated segmentation of MPM tumor on CT scans, showing superior performance to a previously published
method. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.3.034503]
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1 Introduction
Malignant pleural mesothelioma (MPM) is a cancer of the
pleura primarily caused by exposure to asbestos, with an aver-
age of about 1 case per 100,000 people diagnosed annually in
the US.1 This malignancy has a poor prognosis; median patient
survival is ∼1 year.2,3 Computed tomography (CT) is the pri-
mary imaging modality used for the assessment and follow-
up of MPM during treatment.4

The standard clinical evaluation of MPM treatment response
involves image-based linear thickness measurements made at up
to six tumor locations; however, the nonspherical presentation
and nonuniform growth patterns of MPM complicate the acquis-
ition of reproducible linear measurements.5,6 Tumor volume has
been found to be associated with patient outcomes in MPM, and
it has been suggested that image-based tumor volume could be
a more representative measure of tumor bulk for the staging of
MPM, assessment of tumor response to treatment, and as a
predictor of patient survival.7–13 The time-consuming nature of
manual (or even semiautomated) volumetric segmentation of
measurable MPM tumor throughout the entire hemithorax
currently precludes the use of image-based volume in clinical
practice; an accurate, automated, computerized volumetric seg-
mentation of MPM tumor could streamline the acquisition of
such measurements.

Deep convolutional neural networks (CNNs) are a type of
machine learning classifier that can be readily applied to image
classification. Such networks have recently gained attention for

a variety of visual recognition tasks, including those with bio-
medical applications.14,15 Deep CNNs consist of multiple layers
of convolutional filters that can be trained to recognize image
features that correlate with a given classification of images or
image regions. The training of such classifiers requires optimiz-
ing a large number of parameters at different layers of the net-
work. Recent advances in the design and applications of such
networks have coincided with the increased availability of
large annotated image datasets and advancements in computing
and processing power.16

The application of deep CNNs to the automated segmenta-
tion of medical images involves producing a pixel-wise classi-
fication of the input image rather than a global classification
of the imaged anatomy. The U-Net architecture presented by
Ronneberger et al.17 is among the deep CNN models that
have been successfully applied to this class of problem.18

This network architecture allows for the input of full-resolution
images of arbitrary size, and the network learns to detect both
small- and large-scale features of images in the training set
through a downsampling and an upsampling path within the
network. Other approaches to deep CNN-based segmentation
include the three-dimensional (3-D) U-Net and V-Net architec-
tures, and the application of advanced postprocessing methods
to deep CNN-acquired segmentations.19–21

One previously published study presented a method on the
automated segmentation of MPM tumor on CT scans; this study
employed a step-wise method to identify the pleural space by
segmenting the lung parenchyma (a task that has been addressed
by others)22–24 and the hemithoracic cavities before attempting
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to identify MPM tumor within the pleural space.25 Traditional
step-wise segmentation methods carry the inherent vulnerability
that if one stage of the process fails, the tumor segmentation will
be unsuccessful. On the other hand, given a network architecture
that is applicable to the segmentation task, a deep CNN trained
on a sufficiently extensive and varied set of reference segmen-
tations has the potential to bypass this limitation of traditional
approaches.

In this study, we investigated the application of deep CNNs
based on the U-Net deep CNN architecture to the automated
segmentation of MPM tumor on CT scans. This task is challeng-
ing due to case-to-case variability in the presentation and the low
contrast of MPM tumor relative to surrounding soft tissue
structures.26,27 The ability of deep CNN architectures to effec-
tively learn and combine local and global image features in
their classification model could provide a key to the robust
volumetric segmentation of MPM tumor.

2 Materials and Methods
MPM patients often present with pleural effusion and atelectatic
lung adjacent to the pleural space, both of which have consid-
erable overlap in Hounsfield unit (HU) values with MPM
tumor.26,27 Early-stage MPM patients exhibit unilateral disease,
although in later stages of the disease the tumor may extend to
the contralateral pleura or invade nearby structures, such as the
mediastinum, peritoneum, and chest wall.28 As an initial effort at
implementing a deep CNN-based method for the segmentation
of MPM tumor, this study focused on identifying pleural
thickening (which predominantly includes tumor, along with
potential pleural effusion and pleural plaques) in patients with
unilateral disease in which the tumor had not invaded other
organs or structures.

Two deep CNNs were trained separately in the left and right
hemithoraces on the two-class problem of differentiating
between pleural thickening and “background” pixels on axial
CT sections. Results of the present deep CNN-based segmenta-
tion method were compared with (1) the output of a previously
published automated MPM tumor segmentation method and
(2) manual tumor outlines constructed on two sets of CT
sections not included in the training dataset: one set of scans
had tumor outlines constructed by a group of three observers
(two attending thoracic radiologists and one radiology resident)
and the other set of scans had tumor outlines constructed by
five attending thoracic radiologists.25

2.1 Data Preprocessing

All CT scans used for training, validation, and testing underwent
an in-house thoracic segmentation method developed in
MATLAB (MathWorks Inc., Natick, Massachusetts) to segment
out the patient couch and surrounding air. All CT sections used
for training, validation, and testing were converted to unsigned
8-bit integer images with a linear scaling such that pixels lying
outside the thorax and pixels of value equal to or below −1000
HU were given a value of 0 and pixels of value equal to or
greater than 400 HU were given a value of 255. This rescaling
of pixel values was used, as preliminary investigations on a sub-
set of the training set showed that capturing the structure of the
lungs could be advantageous with respect to distinguishing
between tumor pixels lying in the pleural space and soft tissue
pixels lying along the outside of the thorax.

2.2 Training Set

234 CT scans from 87 MPM patients were retrospectively col-
lected for training the networks of this study. These images were
a subset of those analyzed in a previously published method on
the use of disease volumes as a marker for patient response in
MPM.11 Pleural thickening was outlined on the scans of the
training set by an imaging scientist trained in thoracic anatomy
using a semiautomated segmentation method. Of the 87 patients,
39 patients (103 scans) had disease in the left hemithorax and
48 patients (131 scans) had disease in the right hemithorax.
Slice thickness varied across scans (see Table 1); to reduce
the probability that scans containing a relatively large number
of axial sections would overly influence the training process,
only every other section was included in the training set for
scans of slice thickness <2 mm, and only every third section
was included for scans of slice thickness <1 mm.

2.3 Test Sets

Two test sets of MPM patient scans with radiologist-provided
reference tumor segmentations were used for testing the deep
CNNs trained in this study.

Test set 1 consisted of 61 axial CT sections from 16 patients
with pathologically confirmed MPM, with reference segmenta-
tions provided independently by two attending radiologists and
one radiology resident (observers A, B, and C). These images
were used in the analysis of a previously published method on
the automated segmentation of MPM tumor on CT scans (the
“2011 Method”)25 and provided a direct comparison with that
method. Scans containing prominent calcifications or surgical
intervention were excluded from the original study, as were
CT sections for which no disease was present or the mean
Dice similarity coefficient (DSC) value across all observers

Table 1 Characteristics of patient scans available for training of the
deep CNNs.

Characteristic Value

Disease laterality

Left hemithorax 39 (103 scans)

Right hemithorax 48 (131 scans)

Median no. of segmented sections per scan

Scans with left-sided disease 61 (range: 28 to 167) sections

Scans with right-sided disease 69 (range: 35 to 153) sections

Median slice thickness

Scans with left-sided disease 5 (range: 0.625 to 10) mm

Scans with right-sided disease 2.5 (range: 0.625 to 7) mm

Median pixel spacing

Scans with left-sided disease 0.703 (range:
0.582 to 0.871) mm

Scans with right-sided disease 0.703 (range:
0.543 to 0.836) mm
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was ≤0.5 (thus reflecting complex disease with low observer
agreement). Furthermore, sections for which all three observers
did not agree on the laterality of disease were excluded from the
analysis of this study due to the hemithorax-specific nature of
the present deep CNN-based segmentation method. Of the
61 axial sections, 42 had right-hemithorax disease and 19 had
left-hemithorax disease (see Table 2).

Test set 2 consisted of 70 axial CT sections from the baseline
scans of 27 patients with pathologically confirmed MPM, with
reference segmentations provided independently by five attend-
ing thoracic radiologists (observers 1, 2, 3, 4, and 5). These
images were used in a previously published study on observer
variability in MPM tumor area measurements.29 Sections for
which all observers did not agree on the presence or laterality
of disease, and for which the mean DSC value across all observ-
ers was ≤0.5, were excluded from the present analysis. Of the
70 axial sections, 49 had right-hemithorax disease and 21 had
left-hemithorax disease (see Table 2).

2.4 Deep CNN Architecture

The U-Net deep CNN architecture presented by Ronneberger
et al.17 was used for the classification of pixels as pleural thick-
ening or background on axial CT sections. Figure 1 shows the
architecture of the deep CNN used in this study. The network
accepted as input a 512 × 512 image matrix, consisted of
a contracting path and an expansive path, and produced a tumor
segmentation mask of the same size as the input. At each level of
the contracting path, two 3 × 3 convolutional layers were
applied to the input matrix or the matrix output by the previous
level. Convolutional layers in the down- and upsampling paths
of the network were followed by a rectified linear unit (ReLU)
activation function.30 Following the convolutional layers at each
level, the downsampling of the matrix was achieved through
a 2 × 2 max pooling operation with stride 2. As described in
the original U-Net paper, the number of feature channels was
doubled at each downsampling step, starting with 64 channels
at the input level of the network. At levels for which the

downsampled matrix had reached a size of 64 × 64 pixels or
smaller, the second ReLU was additionally followed by a
randomized “dropout” procedure where individual neurons were
ignored, or “dropped”, with a probability of 0.5 to prevent
overfitting.31

The upsampling path of the network was initiated once the
downsampled matrix reached a size of 32 × 32, with 1024 fea-
ture channels at that level. At each level of the upsampling path,
a two-dimensional upsampling operation using nearest-neighbor
interpolation was applied to the feature matrix followed by a 2 ×
2 convolutional layer, and the resulting feature map was concat-
enated with the feature map from the corresponding level of the
downsampling path. Two 3 × 3 convolutional layers were
applied to the resulting input feature matrix at each level of
the upsampling path. When the feature matrix had reached
a size of 512 × 512 pixels, the max pool operation was replaced
by a 3 × 3 convolution with two feature channels. Finally,
a pixel-wise probability matrix of size 512 × 512 was acquired

Table 2 Characteristics of CT sections used for testing the deep
CNN-based segmentation method.

Characteristic Value

Test set 1

Sections with right-sided disease 42 sections (69%)

Sections with left-sided disease 19 sections (31%)

Median slice thickness 1 (range: 1 to 2) mm

Median pixel spacing 0.709 (range:
0.629 to 0.861) mm

Test set 2

Sections with right-sided disease 49 sections (70%)

Sections with left-sided disease 21 sections (30%)

Median slice thickness 3 (range: 3 to 5) mm

Median pixel spacing 0.734 (range:
0.535 to 0.883) mm

Fig. 1 Architecture of the U-Net deep CNN of this study. The deep
CNN takes as input a 512 × 512 image matrix. Solid arrows indicate
the flow of the input matrix through the network, and dashed lines indi-
cate merging of information through concatenation of feature maps.
Convolutional layers are labeled as “Conv” followed by a triplet of
numbers; the first number represents the number of feature channels
of the layer, and the second and third number represent the height
and width of the convolution window, respectively. Individual neurons
were “dropped” at a probability of 0.5 in the two dropout layers of the
network. All convolutional layers used the ReLU activation function,
except where noted. Upsampling was acquired through nearest-
neighbor interpolation.
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using a 1 × 1 convolutional layer followed by a sigmoid activa-
tion function.

Network loss during training was calculated as the cross-
entropy L averaged over all pixels of each deep CNN-predicted
segmentation and the corresponding reference segmentation:

EQ-TARGET;temp:intralink-;e001;63;697Lðti; piÞ ¼ −½ti logðpiÞ þ ð1 − tiÞ logð1 − piÞ�; (1)

where ti is an indicator variable taking the value 1 if the refer-
ence classification of pixel i is tumor and 0 otherwise, and pi is
the (continuous) deep CNN-predicted probability that pixel i is
tumor (pi ¼ 1) or background (pi ¼ 0). The Adam method was
used to optimize the network during training using a learning
rate of 10−4, chosen a priori.32 The deep CNN architecture
was implemented using the Keras and Tensorflow deep learning
frameworks.33 Experiments were run using online learning
(i.e., a batch size of 1) on a scientific computing cluster at
the University of Chicago using Nvidia GeForce GTX Titan
and Nvidia Tesla K20c Kepler-class graphics processing units
(GPUs; Nvidia, Santa Clara, California).

2.5 Experiments

Deep CNNs were trained separately on the sections and refer-
ence segmentations of MPM patients with visible disease in the
left and right hemithoraces. In cases for which more than two
scans were available for a single patient, only the earliest and
last available CT scans were used for training of the networks
to reduce the influence of individual patients. To evaluate the
level of overfitting of the deep CNNs to the training sets during
the training process, eight patients were randomly excluded
from the training set of each hemithorax classifier and used
as a validation set during training. A single scan was randomly
selected out of all available scans for each of these eight patients
for use in the validation set. During training, the CNNs were
applied to these validation sets after each training epoch (i.e.,
iteration over the training set). To evaluate the variance of
the segmentation method, this process of validation set extrac-
tion was repeated two more times for each hemithorax, without
replacement. Each of these pairs of training and validation sets
was used to train a deep CNN. Only the deep CNN trained using
the first such selected validation set for each hemithorax was
subsequently applied to the test sets; the corresponding training
sets consisted of 4259 and 6192 axial sections in the left and
right hemithoraces, respectively.

Data augmentation is a technique in which random deforma-
tions are applied to the images of the training set to improve
CNN generalizability to other datasets and to increase the
amount of data available for training.16 The use of data augmen-
tation was investigated in this study for the task of MPM
segmentation on axial CT sections. Only minimal augmenta-
tion was applied to the set of axial sections used for training
due to the inherent asymmetry of the imaged patient anatomy.
For this purpose, before each training iteration of the network,
a random rotation in the range [−5 deg,þ5 deg] and a random
scaling in the range [0.95, 1.05] were applied to each of
the sections used for training. The ranges of the rotation
and scaling were determined by visualizing different rotation
angles and scaling values on example CT sections from the
training set.

The average binary cross-entropy L and the average DSC
computed from the validation sets were used in each hemithorax

to select the optimal deep CNN to apply to the test sets, with
the objectives of (1) minimizing the average L on the initial
validation set, (2) maximizing the average DSC on the initial
validation set, and (3) minimizing the variance in L and DSC
across the three validation sets.

2.6 Statistical Analysis

Visual inspection revealed that the DSC values obtained when
comparing the segmentations of the two computerized methods
to the observer reference segmentations on test set 1 did not
follow normal distributions. Therefore, the two-sided Wilcoxon
signed-rank test was used to test the null hypothesis that the
distributions of DSC values were identical for the present deep
CNN-based method and the 2011 Method when compared with
reference segmentations by each of the three observers on test
set 1. The Bonferroni correction was applied to the significance
level of all statistical tests to account for the number of compar-
isons; since three statistical tests were made, the significance
level of individual comparisons was adjusted to α ¼ 0.05∕3 ¼
0.017. Statistical comparisons were made using MATLAB.

The Bland–Altman method was used to evaluate agreement
between (1) the tumor area segmented by the 2011 Method and
the average tumor area segmented by the three observers on test
set 1 and (2) between the tumor area segmented by the present
deep CNN-based method and the average tumor area segmented
by each set of observers on the two respective test sets. Absolute
differences in the segmented area of the computerized methods
and average observer-segmented area were found to have a pos-
itive correlation with the average segmented tumor area of the
segmentation approaches being compared, violating one of the
assumptions of the Bland–Altman method. Therefore, the 95%
limits of agreement were estimated using relative differences in
segmented area as d� 1.96s, where d is the mean and s is the
standard deviation of the relative differences between the two
segmentation approaches being compared (i.e., computerized
and manual).34 The standard error of d was estimated asffiffiffiffiffiffiffiffiffiffi

s2∕n
p

and the standard error of the 95% limits of agreement
was estimated as

ffiffiffiffiffiffiffiffiffiffiffiffi
3s2∕n

p
, where n is the number of segmented

axial sections. 95% confidence intervals (CIs) for d and the
95% limits of agreement were found by adding and subtracting
twice the standard error from each value in question.35

3 Results

3.1 Training

The binary cross-entropy loss and DSC values on the training
and validation sets, with and without data augmentation, are
shown in Fig. 2. The solid lines in Fig. 2 indicate the loss
and DSC on the training and validation sets used for testing
the deep CNNs, and the shaded areas indicate the range of
the loss and DSC over all three pairs of training and validation
sets. Table 3 lists the minimum loss L achieved on the initial
validation set for each hemithorax, the corresponding DSC
value on the initial validation set, and ranges of L and DSC
across the three validation sets at the corresponding epoch,
with and without data augmentation. For the left hemithorax,
training epoch 19 was selected as the optimal deep CNN for
application on the test sets; for the right hemithorax, epoch
12 was selected as the optimal deep CNN for application on
the test sets. In both hemithoraces, the selected optimal deep
CNNs were trained with data augmentation.
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Fig. 2 Binary cross-entropy loss and DSC on the training and validation sets during training of the
left-hemithorax deep CNN [(a) without data augmentation and (b) with data augmentation] and of the
right-hemithorax deep CNN [(c) without data augmentation and (d) with data augmentation]. Solid
lines indicate results on the initial pairs of training/validation sets. Shaded areas indicate the range
of the loss and DSC across all three pairs of training/validation sets used to assess variance in segmen-
tation performance during training. The vertical dashed lines [at epoch 19 in (b) and epoch 12 in (d)]
indicate the training epochs after which the deep CNNs trained on the initial training/validation
sets were applied to the test sets.

Table 3 Minimum binary cross-entropy loss L and the corresponding DSC value achieved on the initial validation set during training of the deep
CNNs of each hemithorax, and the range of L and DSC at the corresponding epochs across all three validation sets used to assess variance in
segmentation performance during training. Values shown for networks trained with and without data augmentation. For the right-hemithorax deep
CNN trained with augmentation, the network that achieved the second-lowest value of L on the initial validation set was selected for application to
the test sets due to the narrower range of DSC values across the three validation sets at the corresponding epoch.

Hemithorax Metric Epoch Value (range)

Left (without augmentation) Minimum L 15 0.021 (0.019 to 0.028)

DSC 15 0.752 (0.717 to 0.752)

Left (with augmentation) Minimum L 19a 0.023 (0.019 to 0.024)

DSC 19a 0.746 (0.704 to 0.746)

Right (without augmentation) Minimum L 11 0.030 (0.021 to 0.030)

DSC 11 0.741 (0.682 to 0.742)

Right (with augmentation) Minimum L 9 0.024 (0.019 to 0.024)

DSC 9 0.732 (0.650 to 0.732)

Second-lowest L 12a 0.026 (0.020 to 0.026)

DSC 12a 0.733 (0.677 to 0.733)

aDeep CNNs selected for application to the test sets.
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3.2 Test Set 1

Figure 3 shows boxplots of DSC values obtained when compar-
ing the predicted tumor segmentations of the present deep CNN
method and the 2011 Method with the reference segmentations
of the three observers on test set 1 and when comparing refer-
ence segmentations across observers on test set 1. The median
DSC value for the deep CNNmethod was 0.776 (range: 0.314 to
0.938), 0.689 (range: 0.251 to 0.931), and 0.800 (range: 0.308 to
0.952) for observers A, B, and C, respectively. The median DSC
value for the 2011 Method on the same CT sections was 0.720
(range: 0 to 0.938), 0.604 (range: 0 to 0.902), and 0.718 (range:
0 to 0.926) for observers A, B, and C, respectively. Differences
in the distributions of DSC values between the two automated

segmentation methods on test set 1 were found to be statistically
significant for all observers using the two-sided Wilcoxon
signed-rank test (p < 0.0005, p < 0.00001, and p < 0.00001
for observers A, B, and C, respectively). The median DSC
value for interobserver comparisons was 0.652 (range: 0.363
to 0.885), 0.648 (range: 0.293 to 0.902), and 0.814 (range:
0.461 to 0.937) when comparing observers A and B, observers
B and C, and observers A and C, respectively.

Figure 4(a) shows a Bland–Altman plot of the relative
differences in segmented tumor area by the deep CNN method
and the average tumor area segmented by observers A, B, and C
on test set 1. The mean relative difference in segmented tumor
area between the deep CNN method and the average observer-
segmented area was −0.2% (95% CI: −8.8% to 8.5%) with 95%
limits of agreement [−66.4%, 66.1%] (95% CIs: −81.4% to
−51.4%, 51.1% to 81.1%). Figure 4(b) shows a Bland–
Altman plot of the relative differences in segmented tumor
area by the 2011 Method and the average tumor area segmented
by the three observers on test set 1. The mean relative difference
in segmented tumor area between the 2011 Method and the
average observer-segmented area was 10.3% (95% CI: −3.5%
to 24.1%) with 95% limits of agreement [−95.4%, 115.9%]
(95% CIs: −119.3% to −71.5%, 92.0% to 139.8%).

3.3 Test Set 2

Figure 5 shows boxplots of DSC values obtained when compar-
ing the predicted tumor segmentations of the present deep CNN
method with the reference segmentations of the five observers
on test set 2 and when comparing reference segmentations
across observers on test set 2. The median DSC value for the
deep CNN method on test set 2 was 0.735 (range: 0.111 to
0.906), 0.662 (range: 0.086 to 0.879), 0.797 (range: 0.142 to
0.944), 0.747 (range: 0.108 to 0.919), and 0.755 (range:
0.148 to 0.921) for observers 1, 2, 3, 4, and 5, respectively.
The median DSC value of the interobserver comparisons of
the five observers on test set 2 ranged from 0.720 (range:
0.413 to 0.905) to 0.813 (range: 0.457 to 0.948).

Figure 6 shows a Bland–Altman plot of the relative
differences in segmented tumor area by the deep CNN method

Fig. 3 Boxplots showing DSC values obtained when comparing pre-
dicted tumor segmentations by the present deep CNN-based method
and the 2011 Method with reference segmentations of all three
observers on test set 1 and when comparing reference segmentations
across observers on test set 1. Horizontal lines inside boxes indicate
the median value of each distribution.

Fig. 4 Bland–Altman plots showing (a) the relative differences between the segmented tumor area of
the present deep CNN-based method and the average observer-segmented tumor area on test set 1 and
(b) the relative differences between the segmented tumor area of the 2011 Method and the average
observer-segmented tumor area on test set 1. Means of relative differences and 95% limits of agreement
are shown as dashed lines.
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and the average tumor area segmented by all five observers on
test set 2. The mean relative difference in segmented tumor area
by the deep CNN method and the average observer-segmented
area was 19.5% (95% CI: 9.5% to 29.4%) with 95% limits of
agreement [−62.1%, 101.0%] (95% CIs: −79.3% to −44.9%,
83.8% to 118.3%). Seven out of the 15 sections that showed
a >29.4% relative difference (the upper limit of the 95% CI
of the mean relative difference) in segmented tumor area exhib-
ited large pleural effusions that were classified as tumor by the
deep CNN-based method and excluded from tumor segmenta-
tions by all five observers. Leaving these sections out of the
calculation, the mean relative difference in deep CNN-predicted
tumor area and the average tumor area segmented by the five
observers on the remaining 63 sections of test set 2 was

8.7% (95% CI: 2.4% to 15.1%) with 95% limits of agreement
[−40.8%, 58.3%] (95% CIs: −51.8% to −29.8%, 47.2%
to 69.3%).

Figure 7 shows the preprocessed CT sections, observer
reference segmentations, and deep CNN-predicted tumor seg-
mentations for three example CT sections selected at random
from the bottom 10th percentile, the interquartile range, and the
top 10th percentile of the average DSC value when comparing
deep CNN-predicted segmentations with observer reference
segmentations across both test sets.

4 Discussion
Scarcity of data is a common issue when applying machine
learning techniques to the medical imaging domain. Studies
on deep CNN-based segmentation methods have often applied
extensive augmentation to overcome this problem in biomedical
applications.19,36 Furthermore, data augmentation can improve
both the performance and generalizability of CNNs to unseen
datasets.37,38 In this study, only minimal augmentation was
applied to the training set due to the inherent asymmetries of
patient anatomy on chest CT scans. As shown in Fig. 2, the
application of data augmentation to the training sets decreased
the overall variance in validation set performance for both sides
of the chest; however, Table 3 shows that similar optimal deep
CNN performance was achieved with and without data augmen-
tation. Deep CNNs trained with data augmentation were
ultimately selected for application to the test sets in this study
due to the improved performance and generalizability shown in
previous studies on deep CNN-based segmentation.

The present deep CNN-based segmentation method of MPM
tumor showed significantly greater overlap with the reference
tumor segmentations of all three observers on test set 1 when
compared with a previously published segmentation method
(“2011 Method”). Furthermore, Bland–Altman plots comparing
the segmented tumor area by the deep CNN-based method and
the 2011 Method with the average observer-segmented area on
test set 1 showed narrower limits of agreement for the deep
CNN-based method. These results show an overall superior per-
formance of the present deep CNN-based segmentation method
when compared with the 2011 Method and indicate that, in gen-
eral, deep CNN-based segmentation methods are applicable to
the complex task of segmenting MPM tumor on CT scans.

The deep CNN method showed comparable overlap with
the five radiologists on test set 2 as with the three observers
on test set 1; however, Bland–Altman analysis of the relative
differences between the deep CNN-predicted tumor area and
the average observer-segmented tumor area on test set 2 showed
increased bias and wider 95% limits of agreement than on test
set 1, despite test set 2 including a greater number of axial sec-
tions than test set 1 (the width of the estimated 95% limits of
agreement is inversely related to the number of samples).
This increased bias of the deep CNN method on test set 2
could be partly due to a number of sections in test set 2 exhibit-
ing large pleural effusions combined with the fact that tumor
segmentations in the training set of this study did not uniformly
exclude pleural effusion of the same laterality as visible tumor.
Of the 15 axial CT sections for which the deep CNN-predicted
tumor area on test set 2 exceeded 29.4% of the average observer-
segmented area (the upper limit of the 95% CI of the mean
relative difference), seven sections exhibited large effusions in
the pleural space that were both classified as tumor by the deep
CNN-based method and excluded from tumor segmentations by

Fig. 5 Boxplots showing the DSC values obtained when comparing
the predicted tumor segmentations by the present deep CNN method
with observer reference segmentations on test set 2 and when
comparing reference segmentations across observers on test set 2.
Horizontal lines inside the boxes indicate the median value of each
distribution.

Fig. 6 Bland–Altman plot showing the relative differences between
the segmented tumor area of the present deep CNN-based method
and the average observer-segmented tumor area on test set 2. Mean
of relative differences and 95% limits of agreement are shown as
dashed lines.
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all five observers. The median relative difference between deep
CNN-predicted tumor area and average observer-segmented
area for these seven sections was 124.0% (range: 54.6% to
166.3%), and leaving these sections out of the analysis reduced
the bias between the computerized tumor area and the average
observer-segmented tumor area. This observation suggests
that further curation of the training set, possibly combined
with additional methods of pixel-wise distinction between
tumor and pleural effusion, will be required in future studies
to increase the agreement of deep CNN-predicted tumor area
and observer-segmented tumor area.

In this study, deep CNNs were trained separately for the seg-
mentation of MPM tumor in the left and right hemithoraces.
Bilateral disease is not common among MPM patients, and
preliminary investigations using deep CNNs trained on a set
of scans exhibiting bilateral disease and unilateral disease in
both sides of the chest indicated an increased likelihood of
the erroneous classification of pleural thickening in the contra-
lateral hemithorax.39 Given the relatively large pool of scans
available for training the deep CNNs of this study, it was
deemed appropriate to pursue the training of hemithorax-
specific CNNs, rather than the development of a post-hoc

method for filtering out pixels falsely classified as tumor in
the contralateral hemithorax. While CNNs are designed to be
translationally invariant, it was presumed that, given a training
set of unilateral tumor segmentations, the CNNs would learn
enough global context to avoid erroneously identifying pleural
thickening in the contralateral hemithorax as tumor. The speci-
ficity of the deep CNNs trained in this study with respect to dis-
ease laterality was good; out of the 131 CT sections from the
two test sets, only four sections (3%) from the scans of three
patients (all with left-hemithorax disease) contained pixels in
the contralateral hemithorax erroneously classified as tumor.
In two of these sections, the erroneous inclusion was due to
a large effusion in the right hemithorax (area of segmented
region: 174 mm2 and 77 mm2); in one case, it was due to
the deep CNN classifying 27 pixels of the outer superior surface
of the liver as medial MPM tumor, and in another case, the deep
CNN included a single pixel of the contralateral pleural space in
the tumor segmentation.

The present deep CNN-based segmentation method was
completely automated apart from user input on the laterality of
disease. The trained deep CNNs can be applied to a new CT scan
after minimal preprocessing has taken place: segmentation of

Fig. 7 Preprocessed CT sections (top), observer reference tumor segmentations (middle; white, gray,
and black outlines), and deep CNN-predicted tumor segmentations (bottom; black outlines), for three
sections of the two test sets. Sections were selected at random from (a) the bottom 10th percentile
(test set 1, average DSC = 0.366), (b) the interquartile range (test set 2, average DSC = 0.647), and
(c) the top 10th percentile (test set 1, average DSC = 0.857) of the average DSC value when comparing
deep CNN-predicted and observer reference segmentations across both test sets. In (b), only three of the
five observer segmentations are shown in white, gray, and black outlines according to the lowest, high-
est, and median DSC value for this axial section, respectively.
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the patient’s thorax using a simple threshold-based technique
and applying the appropriate numerical conversion and linear
scaling to the pixel values of the scan. Segmentation of tumor
on 100 axial CT sections using the present method took ∼30 s
on an Nvidia GeForce GTX Titan GPU (originally released in
2013) with 6 GB of memory.

5 Conclusions
In this study, a deep CNN-based method was implemented for
the automated segmentation of MPM tumor on CT scans. Deep
CNNs were trained separately for the segmentation of disease in
the left and right hemithoraces. The present deep CNN-based
method showed significantly higher overlap with observer-
provided reference segmentations when compared with a
previously published method on automated MPM segmentation
that utilized a traditional step-wise approach. Future work
will include the training of deep CNNs on larger datasets,
the exploration of the application of 3-D CNNs to the segmen-
tation task, and the investigation of approaches to distinguish
more clearly between tumor pixels and nontumorous pleural
thickening.
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