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BACKGROUND AND PURPOSE
Mitochondria possess their own source of cAMP, that is, soluble adenylyl cyclase (sAC). Activation or expression of mitochondrial
sAC promotes mitochondrial function. Oestrogen receptor signalling plays an essential role in the regulation of mitochondrial
function. Here we aimed to determine whether 17β-estradiol may affect mitochondrial cAMP signalling.

EXPERIMENTAL APPROACH
Expression of the intra-mitochondrial proteins (Western blot), mitochondrial cAMP content (FRET-based live imaging and MS
assay), mitochondrial membrane potential and cytochrome oxidase activity were analysed in H9C2 and C2C12 cells.

KEY RESULTS
A 24 h treatment with 17β-estradiol significantly reduced the basal level of mitochondrial cAMP, without affecting the intra-
mitochondrial content of sAC, phosphodiesterase 2 (PDE2) or PKA and the activity of the intra-mitochondrial sAC. The effect of
17β-estradiol on mitochondrial cAMP was prevented by inhibition of a cGMP-activated PDE2 or soluble guanylyl cyclase (sGC),
suggesting a role of NO signalling. Indeed, 17β-estradiol raised cellular levels of cGMP and the intra-mitochondrial expression of
the catalytic subunit β of sGC was found. The 17β-estradiol-induced reduction of the mitochondrial cAMP level was accompanied
by decreased cytochrome oxidase activity and mitochondrial membrane potential in a PDE2-dependent manner.

CONCLUSIONS AND IMPLICATIONS
17β-estradiol reduced the basal level of mitochondrial cAMP content and cytochrome oxidase activity in a sAC-independent but
in a PDE2-dependent manner. The results suggest a role of 17β-estradiol-induced activation of NO signalling in the regulation of
mitochondrial cAMP content. Our study adds a new aspect to the complex action of oestrogens on mitochondrial biology, that is
relevant to hormone replacement therapy.

Abbreviations
CFP, cyan fluorescence protein; EPAC, exchange protein directly activated by cAMP; ER(s), oestrogen receptor(s); Estradiol,
17β-estradiol; GFP, green fluorescence protein; HSP60, heat shock protein 60; PPT, propylpyrazoletriol; sAC, soluble AC;
sGC, soluble GC; TIM23, translocase of inner mitochondrial membrane 23; tmAC, transmembrane adenylyl cyclase;
TOM40, translocase of outer mitochondrial membrane 40; YFP, yellow fluorescence protein
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Introduction
There is increasing evidence for an evolutionary conserved
role of mitochondrial cAMP/PKA signalling in controlling
mitochondrial function in mammals (Acin-Perez et al.,
2009b; Acin-Perez et al., 2011; Hebert-Chatelain et al.,
2016) and yeast (Hess et al., 2014). Although the
plasmalemmal adenylyl cyclases (ACs) were initially as-
sumed to be a source of mitochondrial cAMP (DiPilato
et al., 2004), recent studies (Acin-Perez et al., 2009b; Di
Benedetto et al., 2013) have shown that cytosolic cAMP
does not permeate the mitochondrial membrane and thus
a mitochondria-localized cAMP source is required. Type
10 soluble AC (sAC), in addition to several other subcellu-
lar compartments, is localized in the mitochondrial matrix
(Huttemann et al., 2007; Acin-Perez et al., 2009b; De Rasmo
et al., 2012; Valsecchi et al., 2013; Hebert-Chatelain et al.,
2016). The cAMP produced in mitochondria promotes cy-
tochrome oxidase activity via PKA-dependent phosphoryla-
tion of the cytochrome oxidase subunit IV (Acin-Perez
et al., 2009b; Valsecchi et al., 2013). Furthermore, intra-
mitochondrial cAMP prevents the digestion of nuclear-
encoded subunits of complex I by mitochondrial proteases
and supports its NADH-ubiquinone oxidoreductase activity
(De Rasmo et al., 2015). The activation of the mitochon-
drial sAC promotes ATP synthesis and attenuates oxygen
radical production (Acin-Perez et al., 2009a; Acin-Perez
et al., 2009b; Di Benedetto et al., 2013; Wang et al.,
2016). In contrast, the suppression of sAC expression or ac-
tivity jeopardizes mitochondrial function (Acin-Perez et al.,
2009b; Hebert-Chatelain et al., 2016). Of note, advanced
heart failure in rats is associated with significant down-
regulation of mitochondrial sAC that leads to the increased
sensitivity to Ca2+ stress of isolated mitochondria (Wang
et al., 2016), demonstrating a role of mitochondrial cAMP
signalling in diseases.

Overall, the intra-mitochondrial cAMP signalling sup-
ports mitochondrial function. Strategies directed towards
the stimulation of the intra-mitochondrial cAMP signal-
ling may contribute to the prevention of myocardial pa-
thologies accompanied by mitochondrial dysfunction, for
example, ischaemic heart diseases or heart failure. How-
ever, tools or treatments affecting mitochondrial cAMP
signalling are currently missing.

The female hormone oestrogen plays an essential role
in the regulation of mitochondrial function by promoting
the expression of several mitochondrial proteins, for ex-
ample, pyruvate dehydrogenase and subunits of com-
plexes I, IV and V of the mitochondrial respiratory
chain (Hsieh et al., 2006; Chen et al., 2009; Rettberg
et al., 2014). Whether oestrogen may affect mitochondrial,
that is, sAC-dependent, cAMP signalling remains
unknown and was the aim of the present study. Using
female rodent cardiac (H9C2) and skeletal muscle
(C2C12) cell lines, we found that a 24 h treatment with
17β-estradiol (estradiol) significantly reduced mitochon-
drial cAMP content, decreased cytochrome oxidase activity
and led to partial mitochondrial depolarization in a
PDE2-dependent manner. The results suggest that NO-
cGMP signalling was involved in the effects of estradiol
in these cells.

Methods

Cell culture and treatments
Cardiac rat embryonic myoblasts (H9C2, ATCC CRL-1446)
and mouse myoblasts (C2C12, ATCC CRL-1772) were pur-
chased from the American Type Culture Collection. Cells
were expanded and frozen in aliquots within 4 weeks of pur-
chase. Cells were cultured in Gibco DMEM (Thermo Fisher
Scientific, Berlin, Germany) supplemented with 10% FBS,
L-glutamine (2 mmol·L�1), sodium pyruvate (1 mmol·L�1)
and antibiotics (100 U·mL�1 penicillin and 100 μg·mL�1

streptomycin) in a 5% CO2 incubator at 37°C. For the experi-
ments, cells were cultured in phenol red-free, starvation
DMEM supplemented with 2.5% charcoal-stripped FBS (CS-
FBS) (Biochrom, Berlin, Germany) for 24 h before treatment.

Analyses of the basal cytosolic ATP and mitochondrial
morphology did not reveal any marked alteration induced
by 48 h starvation in DMEM supplemented with 2.5% CS-
FBS (Supporting Information Figure S4).

Cells were treated with water-soluble 17β-estradiol (Sigma,
Germany), propylpyrazoletriol (PPT; Tocris, Germany), KB5
(Karo Pharma, Sweden), G-1 (Tocris) or corresponding vehicle
(dextrin, ethanol, DMSO) for additional 24 h in DMEM supple-
mented with 2.5% CS-FBS. Treatments with 40 μmol·L�1

forskolin (Sigma), 200 μmol·L�1 IBMX (Sigma), 100 nmol·L�1

Bay 60-7550 (Cayman, USA), 100 μmol·L�1 LRE1 (kindly pro-
vided by Dr J. Buck, Cornell University, NY, USA), 200 μmol·L�1

8-pCPT20-O-Me-cAMP (BioLog, Germany), 10 μmol·L�1 NS-
2028 (Tocris), 100 μmol·L�1 NOC-12 (Calbiochem, Germany)
or 300 μmol·L�1 L-NAME (Santa Cruz Biotechnology, TX,
USA) were performed as indicated.

Luciferase assay
H9C2 cells were seeded in 12-well sterile plastic culture
plates at a density of 25 × 103 cells per well in DMEM sup-
plemented with 10% FBS, followed by 48 h in phenol red-
free starvation DMEM supplemented with 2.5% CS-FBS.
During the initial 24 h of starvation, H9C2 cells were
transfected with a firefly luciferase reporter construct con-
taining three copies of oestrogen response element (3xERE
TATA, Addgene, Germany) (500 ng per well) and Renilla
luciferase reporter plasmid phRL-TK (10 ng per well)
(Promega, Germany). Cells were additionally co-transfected
with oestrogen receptor (ER)α or ERβ vectors (500 ng
per well) (a kind gift from Dr P. Chambon, INSERM,
France) or corresponding empty vector (pSG5, pcDNA3.1
Promega), using FuGENE®-HD Transfection Reagent
(Promega) with a 3:1 FuGENE to DNA ratio according to
the manufacturer’s instructions. After overnight incuba-
tion, cells were treated with estradiol (30 nmol·L�1) or ve-
hicles for 24 h. Firefly and Renilla luciferase activities were
measured using the Dual-Glow™-Luciferase Assay System
(Promega) according to the manufacturer’s instructions.
To determine the ER activity, firefly luciferase activity was
normalized to Renilla luciferase activity.

Subcellular fractionation
Cells were lysed by mechanical homogenization (eight
strokes) with Teflon Potter Elvehjem homogenizer (Roth,
Germany) in mitochondria isolation buffer (1 mmol·L�1
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Tris-MOPS, 10 mol·L�1 EGTA-Tris, 200 mmol·L�1 sucrose,
pH = 7.4) as previously described (Frezza et al., 2007). The ef-
ficiency of cell lysis (>60%) was confirmed by Trypan blue
staining. Lysed cells were centrifuged at 800× g for 15 min
(4°C), and the supernatant was further centrifuged at
12 000× g for 15min (4°C). The pellet was defined as the crude
mitochondrial fraction and the supernatant as the enriched
cytosolic, mitochondria-free fraction. The purity of the
enriched cytosolic fraction was confirmed by the Western
blot analysis of cytochrome oxidase.

To obtain intra-mitochondrial proteins, the crude mito-
chondrial fraction was washed twice with mitochondria iso-
lation buffer and incubated in the buffer for 15 min with
10 μg·mL�1 trypsin (Biochrom) on ice followed by centrifuga-
tion at 12 000× g for 15 min at 4°C. The purity of the mito-
chondrial fraction was verified by Western blot analysis for
TATA binding protein (TBP, nucleus marker) and protein
disulfide isomerase (PDI, endoplasmic reticulum marker).
The efficiency of trypsin treatment was confirmed by the
absence of TOM40 (outer mitochondrial membrane protein),
whereas the integrity of mitochondria was evaluated based

on the presence of HSP60 (matrix protein) applying Western
blot analysis (Figure 1A).

Western blotting
Cells were lysed in a Laemmli buffer containing 2% SDS, 10%
glycerol, 50 mmol·L�1 1,4-dithiothreitol, 0.1% bromphenol
blue and 62.5 mmol·L�1 Tris–HCl (pH = 6.8). Equal amounts
of total proteins were separated on SDS-polyacrylamide
gels and transferred to a nitrocellulose membrane. The mem-
branes were immunoblotted overnight with the following
primary antibodies: sAC (clones R21, CEP Biotech, NY,
USA), PDE2 (Proteintech, USA), PKA catalytic subunit α
(Abcam, Germany), soluble GC (sGC) (Cayman), cytochrome
oxidase (subunit IV), HSP60 and PDI (Enzo Life Science,
Germany), TIM23 (BD Bioscience, Germany), actin
(Millipore, Germany), cytochrome oxidase (Cell Signalling,
Germany), ERβ (Acris, Germany), ERα (G20), GPR30 (N-15),
TOM40 and TBP (Santa Cruz, Germany). After incubation
with the secondary antibodies, specific bands were visualized
by chemiluminescence using an ECL kit (Promega). Equal
sample loading was confirmed by stripping the membranes

Figure 1
Effect of estradiol on the expression of sAC, PDE2 and PKA in mitochondria. (A) Western blot analysis of HSP60, TOM40, PDI, TBP, sAC, PKA cat-
alytic subunit α (PKA) and PDE2 performed in full cell lysate (FCL), enriched cytosolic (CYTO), crude (CMF) and purified (MITO) mitochondrial
fractions of H9C2 cells. The proteins investigated were used as the following markers: HSP60 – mitochondrial matrix, TOM40 – outer
mitochondrial membrane, PDI – endoplasmic reticulum, TBP – nucleus. Data are representative of three independent experiments with similar
results. (B) Statistical analysis of HSP60 expression in FCL and in purified mitochondrial fraction (MITO) of either control H9C2 cells or cells treated
with 30 nmol·L�1 estradiol (E2) for 24 h. Values are means ± SEM, n = 8. (C) Statistical analysis of sAC, PDE2 and PKA expression examined by
Western blots, in purified mitochondrial fraction of either control H9C2 cells or cells treated with 30 nmol·L�1 estradiol (E2) for 24 h. Values
are means ± SEM, n = 5–6. All data were normalized to the corresponding control and expressed in relative units (r.u.).
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with Restore Western Blot Stripping Buffer followed by treat-
ment antibodies against actin and HSP60.

FRET-based analyses
For FRET-based live imaging analyses, cells were transfected
with plasmids encoding the corresponding sensors. Transfec-
tions were performed at 50–60% confluence by electropora-
tion with the Amaxa™ Nucleofector™ II device (Lonza,
Switzerland) applying the T-20 programme. To transfect 106

cells, 9 μg of total cDNA, diluted in 100 μL of electroporation
buffer (5 mmol·L�1 KCl, 15 mmol·L�1 MgCl2, 50 mmol·L�1

mannitol, 120·mmol L�1 Na2HPO4/NaH2PO4, pH = 7.2),
was used.

Before electroporation, cells were cultured in DMEM sup-
plemented with 10% FBS. After electroporation, cells were
seeded on 24 mm diameter glass coverslips and cultured in
10% FBS for 24 h, followed by 24 h of starvation in DMEM
supplemented with 2.5% CS-FBS and 24 h treatments in sim-
ilar medium. Live imaging experiments were performed on
the third day after the transfection.

For cAMP analysis, cells were transfected with EPAC-
based cAMP-sensor without (H30) or with a mitochondrial
targeted sequence (4mtH30) (Di Benedetto et al., 2013). The
4mtH30 sensor derives from the cytosolic H30 sensor, which
was tested for cGMP sensitivity upon cell stimulation with
the NO donor, nitroprusside. The FRET-signal of H30 was
not affected by nitroprusside leading to the conclusion that
cGMP does not detectably affect the conformation of the sen-
sor (Ponsioen et al., 2004).

During the experiments, cells were maintained at room
temperature in HEPES-buffered Ringer-modified saline
(110mmol·L�1 NaCl, 5 mmol·L�1 KCl, 1 mmol·L�1 Na3PO4,
1 mmol·L�1 MgSO4, 20 mmol·L�1 HEPES, 2 mmol·L�1 CaCl2
and 5 mmol·L�1 glucose). For treatment with bicarbonate, a
buffer containing 100 mmol·L�1 NaHCO3, 20 mmol·L�1

HEPES, 10 mmol·L�1 NaCl, 5 mmol·L�1 KCL, 1 mmol·L�1

Na3PO4, 1 mmol·L�1 MgSO4, 2 mmol·L�1 CaCl2 and
5mmol·L�1 glucose was added to the chamber at a propor-
tion of 1:1. cAMP probes were excited at 430 nm, and emis-
sion light was acquired at 470 nm for cyan fluorescence
protein (CFP) and 530 nm for yellow fluorescence protein
(YFP) channel. Images were acquired with an inverted micro-
scope (oil immersion objective 40×, Zeiss, Germany) and an
imaging system (Visitron, Germany) every 6 s. The analysis
of the FRET signal was performed with VisiView software
(Visitron). Emission signals obtained in the cell-free region
(background) were subtracted from the corresponding emis-
sion signals obtained within the region of interest and pre-
sented as a CFP/YFP ratio.

For analysis of mitochondrial pH, cells were transfected
with mitochondrial SypHer (9 μg of total cDNA per 106 cells)
by electroporation, as described above. Experiments were
performed in HEPES-buffered Ringer-modified saline
(2.5mmol·L�1 KCL, 500 μmol·L�1 NaH2PO4, 500 μmol·L�1

MgSO4, 10 mmol·L�1 HEPES, 125 mmol·L�1 NaCl,
2 mmol·L�1 CaCl2 and 5 mmol·L�1 glucose, pH set to 7.4).
For pH calibration, the buffer containing 20 mmol·L�1 NaCl,
125mmol·L�1 KCl, 0.5mmol·L�1MgCl2, 0.2 mmol·L�1 EGTA
and 20mmol·L�1 Tris (for pH range 8–8.5) or 20 mmol·L�1

HEPES (for pH range 7–7.5) supplemented with 10 μmol·L�1

nigericin (Sigma) and 1 μmol L�1 valinomycin (Sigma) was

used. SypHer was excited at 430 and 480 nm, and emission
was acquired at 535 nm. Fluorescence ratios (480/430) were
calculated by VisiView and analysed in Excel and GraphPad
Prism 5.

For analysis of cytosolic ATP, cells were transfected with
FRET probe AT1.03 (9 μg of total cDNA per 106 cells) by elec-
troporation followed by FRET-based live imaging, as de-
scribed above.

Mitochondrial co-localization of the EPAC-
based cAMP-sensor and mitochondrial
morphology imaging
H9C2 cells were transfected with 4mtH30 sensor and seeded
on glass coverslips; 48 h after the transfection, cells were
loaded with 50 nmol·L�1 MitoTracker Deep Red (Thermo
Fisher Scientific, Germany) in DMEM medium with 0.5% of
FBS for 20 min at 37°C. Subsequently, cells were washed with
growth medium for additional 20 min. Coverslips were
mounted into a chamber, and cells were bathed in DMEM
medium with 0.5% FBS at 30°C and in a gas controlled incu-
bator at 5% CO2. Images were acquired with 63× oil-
immersion objective using a Nikon spinning disc confocal
microscope CSU-X and EMCCD camera iXon3 DU-888 Ultra.

To perform a qualitative analysis of mitochondrial mor-
phology, H9C2 cells were stained with 200 nmol·L�1

MitoTracker Green (Thermo Fisher Scientific) in DMEM me-
dium with 2.5 or 10% FBS for 20 min at 37°C followed by
20 min washing period. Similar technique and handling were
applied as described above for MitoTracker Deep Red.

Analysis of mitochondrial membrane potential
(ΔΨm)
ΔΨm was monitored with the fluorescence dye JC-1 (Thermo
Fisher Scientific). For this purpose, H9C2 cells were loaded
with JC-1 (5 μmol·L�1) at 37°C for 20 min followed by
washing for an additional 20 min. The loaded cells were
excited at 490 nm, and the emitted fluorescence was collected
at 535 and 590 nm. ΔΨm was presented as the fluorescence
ratio (590 nm/535 nm) after subtraction of the ratio
obtained from completely depolarized mitochondria
achieved by treatment with 500 nmol·L�1 carbonyl cyanide-
p-trifluoromethoxyphenylhydrazone.

cGMP analysis
The analysis of total cellular cGMP content was performed
using a cGMP ELISA kit (Enzo). The measured absorbance at
405 nm was used to calculate the concentration of cGMP by
applying a calibration curve. According to the manufacturer,
the sensitivity of the assay is 0.025 pmol·L�1 cGMP. The cross
reactivity for a number of related compounds tested by the
manufacturer was less than 0.001% for GMP, GTP, cAMP,
AMP, ATP cyclic UMP and CTP.

Enzymic assays
Mitochondria isolated from H9C2 cells (as previously de-
scribed) were used for analysis of cytochrome oxidase activity
as previously described (Medja et al., 2009). Briefly, oxidation
rate of 100 μmol·L�1 reduced cytochrome oxidase was
analysed in 50 mmol·L�1 potassium phosphate buffer with
pH 7.0 at 37°C and defined as changes in absorbance at
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550 nm. cytochrome oxidase activity was normalized to
subunit IV of cytochrome oxidase expression defined by
Western blot.

MS analysis of mitochondrial cAMP
The MS measurement of cAMP content in crude mitochon-
drial fraction was performed as previously described (Hartwig
et al., 2014). Briefly, the crude mitochondrial fraction was iso-
lated as described above, washed twice with mitochondria
isolation buffer and incubated in the buffer with correspond-
ing compounds at 37°C for 15 min. After treatment,
mitochondria were pelleted and stored at �80°C.

Data and statistical analysis
Data and statistical analysis comply with the recommenda-
tions on experimental design and analysis in pharmacology
(Curtis et al., 2018). The data are given as mean ± SEM. Group
sizes (n) for all experiment are provided and refer to indepen-
dent single measurements. Data subjected to statistical analy-
sis have n of at least five per group except for some
experiments requiring a large amount of material, for
example, analyses performed in isolated mitochondria.
When applicable, the values from treatment groups were nor-
malized to the corresponding control values. GraphPad Prism
5 (San Diego, USA) was employed for data analysis. For com-
parison of two groups, the unpaired t-test was used. Statistical
significance was accepted when P < 0.05.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al.,
2018), and are permanently archived in the Concise Guide
to PHARMACOLOGY 2017/18 (Alexander et al., 2017a,b,c)

Results

Effect of estradiol on expression of sAC, PDE2
and PKA in mitochondria
Because estradiol promotes expression of many mitochon-
drial proteins (Klinge, 2008), we first examined the effects of
estradiol on the expression of two major proteins involved
in cAMP synthesis and degradation in mitochondria, that is,
sAC and PDE2 (Acin-Perez et al., 2011). H9C2 cells were
treated with 30 nmol·L�1 estradiol for 24 h. These cells
displayed a marked expression of three oestrogen receptors
(ERα, ERβ and GPR30) (Supporting Information Figure S1A,
B). Furthermore, a luciferase-based reporter assay confirmed
the efficacy of oestrogen treatment to activate the ERα and
ERβ (Supporting Information Figure S1D). Additionally, estra-
diol treatment promoted ERK1/2 phosphorylation and cell
proliferation (Supporting Information Figure S1C, E), typical
markers of estradiol action in various cell types (Alvaro
et al., 2002; Keshamouni et al., 2002).

To obtain a purified mitochondrial fraction enriched with
matrix proteins, the crudemitochondrial fraction was shortly
treated with trypsin. This treatment led to both the cleavage
of proteins localized at the outer mitochondrial membrane

and the exclusion of contamination with endoplasmic reticu-
lum (Figure 1A). The protease resistance of matrix proteins
was confirmed by the presence of HSP60. As expression of
HSP60 was not affected by estradiol treatment in either full
cell lysate or mitochondria (Figure 1B), we used this intra-
mitochondrial protein as a loading control for further
analyses.

Estradiol treatment for 24 h had no effect on the ex-
pression of mitochondrial sAC and PDE2 (Figure 1C), a
major cAMP degrading enzyme in the mitochondrial ma-
trix (Acin-Perez et al., 2011). As PKA can be a key down-
stream target of intra-mitochondrial cAMP signalling and
directly affects the activity of oxidative phosphorylation,
due to phosphorylation of cytochrome oxidase subunits I
and IV (Acin-Perez et al., 2009b) we assessed PKA expres-
sion inside the mitochondria. Western blot analysis for
the PKA catalytic subunit α revealed no effect of estradiol
treatment on the amount of this protein in mitochondria
(Figure 1C).

Effect of estradiol on the activity of
mitochondrial sAC and basal cAMP
Activity of sAC is regulated by divalent cations (Ca2+, Mg2+)
and bicarbonate (Geng et al., 2005; Zippin et al., 2013). The
mitochondrial concentration of these ions depends on the
expression and activity of several intra-mitochondrial pro-
teins, for example, carbonic anhydrases, mitochondrial Ca2+

uniporter and Na+/Ca2+ exchanger, whose expression or ac-
tivity may be affected by estradiol (Rettberg et al., 2014; Kim
et al., 2017), and as a result, the sAC activity may be altered.
To test whether treatment with estradiol influences sAC ac-
tivity, transfection of cells with a mitochondria-targeted
EPAC-based cAMP-sensor (4mtH30) was performed. The
cAMP level was assessed by measuring the 470/535 nm emis-
sion ratio (emission for CFP and YFP respectively, see
Methods section) upon excitation at 430 nm. When cells
transiently expressing 4mtH30 were examined, the probe
was mainly localized within mitochondria, that is, the CFP
fluorescence signal obtained in mitochondria-free regions
was less than 2% of the signal obtained from mitochondria-
rich regions (Supporting Information Figure S2A). Further-
more, the merge image of EPAC-based cAMP sensor and
MitoTracker Deep Red demonstrated that 4mtH30 was
mainly co-localized with mitochondria (Supporting Informa-
tion Figure S2B).

To confirm the mitochondrial cAMP-sensor’s sensitivity
to cAMP, cells were treated with the selective EPAC agonist
8-pCPT-2-O-Me-cAMP, which led to a marked increase of
the CFP/YFP ratio in mitochondria (Supporting Information
Figure S2C). Similarly, the activation of sAC with bicarbonate
led to a significant rise of the CFP/YFP ratio, which was
prevented by treatment with LRE1 (Supporting Information
Figure S2D), a novel selective sAC inhibitor (Ramos-Espiritu
et al., 2016).

To demonstrate that elevation of mitochondrial cAMP
under bicarbonate treatment is not due to the import of
cytosolic cAMP, which can be synthesized by sAC localized
in cytosol, a cAMP elevation test was performed. Here,
treatment with forskolin, an activator of plasmalemmal
AC, did not affect the FRET ratio in mitochondria, that is,
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in cells expressing a mitochondria-targeted 4mtH30 probe.
By contrast, in cells expressing a non-targeted H30 probe,
the forskolin treatment led to a marked rise of the FRET-
ratio in the cytosol (Supporting Information Figure S2E).
These results further confirm the previous finding that
the inner mitochondrial membrane is impermeable to cy-
tosolic cAMP and that mitochondria contain sAC as their
own source of cAMP (Di Benedetto et al., 2013;
Lefkimmiatis et al., 2013).

Applying a treatment with 50 mmol·L�1 bicarbonate to
examine the stimulated sAC activity, we found no effect of es-
tradiol pretreatment in H9C2 cells (Figure 2A, B). Similarly,
pretreatment with estradiol did not affect the stimulated

sAC activity in C2C12 skeletal muscle cells (Figure 2D, E).
Taken together, these data are in accordance with the finding
that estradiol does not influence the expression of mitochon-
drial sAC.

It is noteworthy that estradiol treatment significantly re-
duced the basal level of mitochondrial cAMP in both cell
types (Figure 2C, F). cAMP analysis with green fluorescence
protein (GFP)-derived probes is technically difficult, as pH af-
fects the fluorescence intensity and most GFP mutants are
sensitive to pH changes in the physiological range (Llopis
et al., 1998; Abad et al., 2004). Therefore, we tested for an ef-
fect of estradiol treatment on mitochondrial pH under basal
conditions, using transfection with mitochondria-targeted

Figure 2
FRET-based analysis of intra-mitochondrial cAMP measured in cells transfected with 4mtH30 sensor. Representative kinetics of mitochondrial
cAMP level (A, D) followed by statistical analysis of themaximal cAMP elevation (stimulated activity, ΔcAMP) induced by 50mmol·L�1 bicarbonate
(B, E) and basal cAMP level (C, F) performed in H9C2 and C2C12 cells, either pretreated with 30 nmol·L�1 estradiol (E2) or vehicle (control) for
24 h. Values are means ± SEM, n = 5–6. *P < 0.05,significantly different from control. (G) Statistical analysis of mitochondrial pH under basal con-
ditions measured in H9C2 cells pretreated with 30 nmol·L�1 estradiol (E2) or vehicle (control) for 24 h. Values are means ± SEM, n = 5. (H) Statis-
tical analysis of the basal cAMP level measured in H9C2 cells, either pretreated with 30 nmol·L�1 estradiol (E2) or vehicle (control) for 6 or 24 h.
Values are means ± SEM, n = 6. *P < 0.05, significantly different from control. (I) Statistical analysis of the basal cytosolic cAMP level measured in
H9C2 cells transfected with H30 cytosolic cAMP sensor and either pretreated with 30 nmol·L�1 estradiol (E2) or vehicle (control) for 24 h. Values
are means ± SEM, n = 8.
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pH sensor SypHer in H9C2 cells (Poburko et al., 2011). Treat-
ment with estradiol for 24 h did not affect the basal pH value
in the mitochondrial matrix (Figure 2G).

To assess the effects of estradiol treatment on mitochon-
drial cAMP at earlier time points, which would be an indica-
tion for non-genomic actions, treatments with estradiol for
6 and 24 h were compared in H9C2 cells. There was no effect
of estradiol on the mitochondrial cAMP after 6 h treatment
(Figure 2H). Interestingly, while affecting the basal mitochon-
drial cAMP level, 24 h treatment with estradiol did not affect
the basal cytosolic cAMP concentration (Figure 2I). These
data argue for an estradiol-induced reduction of the basal
cAMP level in mitochondria only.

To strengthen the finding, treatment with ER-specific ag-
onists was performed. Interestingly, only the ERα agonist
PPT simulated the effects of estradiol (Supporting Informa-
tion Figure S3B). We further examined whether an estradiol-
induced reduction in mitochondrial cAMP concentration
may be due to reduced basal sAC activity. To test this hypoth-
esis, the basal sAC activity was indirectly analysed, using
IBMX, a non-selective inhibitor of PDEs. Such treatment
gradually increased the FRET ratio, indicating an accumula-
tion of cAMP in the mitochondrial matrix due to mitochon-
drial sAC activity (Figure 3A). Pretreatment of H9C2 or

C2C12 cells with estradiol for 24 h did not significantly
change this response to IBMX (Figure 3B, C).

Role of mitochondrial PDE2 in estradiol-
induced reduction of mitochondrial cAMP
To further explore the mechanisms responsible for the re-
duction of mitochondrial cAMP level through estradiol,
the contribution of PDE2, a major cAMP degrading enzyme
found in the mitochondrial matrix (Acin-Perez et al., 2011),
was assessed. For this purpose, cells were treated for 15 min
before and during the experiment, either with the non-
selective PDE inhibitor IBMX (200 μmol·L�1) or with the
PDE2 specific inhibitor Bay 60-7550 (100 nmol·L�1). Treat-
ment of H9C2 cells with both PDE inhibitors abolished the
estradiol-induced reduction of cAMP (Figure 4A, C). Similar
effects were found in C2C12 cells (Figure 4B, D). To sub-
stantiate the findings and exclude the potential effects of
PDE2 inhibition in the cytosol, isolated mitochondria were
incubated with Bay 60-7550, followed by mitochondrial
cAMP analysis by MS. In agreement with the FRET-based
data, estradiol reduced the basal mitochondrial cAMP level
(control 1.04 ± 0.03 and estradiol, 0.67 ± 0.10 nmol·μg�1 of
protein; n = 4; incomplete data, not subject to statistical
analysis). This effect was attenuated by treatment with

Figure 3
FRET-based indirect assay of the basal mitochondrial sAC activity performed in cells transfected with 4mtH30 sensor. (A) Representative kinetics of
mitochondrial cAMP level observed in H9C2 cells treated with 200 μmol·L�1 IBMX or vehicle (DMSO). Data are representative of four independent
experiments with similar results. (B, C) Statistical analysis of cAMP changes (ΔcAMP) within 15min after treatment with IBMX or DMSO performed
in H9C2 or C2C12 cells pretreated with either 30 nmol·L�1 estradiol (E2) or vehicle (control). Values are means ± SEM, n = 5. *P < 0.05, signifi-
cantly different from corresponding group under treatment with DMSO only.
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Bay 60-7550: control 1.07 ± 0.04 and estradiol, 0.88 ± 0.11
nmol·μg�1 of proteins; n = 3 (incomplete data, not subject
to statistical analysis). Altogether, the findings obtained
with different techniques suggest that PDE2 was signifi-
cantly involved in the estradiol-induced reduction of mito-
chondrial cAMP.

Role of NO-cGMP signalling in estradiol-
induced reduction of mitochondrial cAMP
PDE2 is a cGMP-activated PDE (Martinez et al., 2002). Increas-
ing evidence suggests that ER stimulation promotes NO-
cGMP signalling (Marathe et al., 2012) and, therefore, may
lead to the activation of mitochondrial PDE2. To test this hy-
pothesis, cellular cGMP analysis was performed. Treatment of
H9C2 cells with the NO donor (NOC-12, 100 μmol·L�1) for
30 min significantly increased total cellular cGMP level
(Figure 5A). Similar to NO donor, 24 h treatment with estra-
diol led to a significant rise in cellular cGMP (Figure 5B).
Thus, in agreement with previous reports, in ourmodel, estra-
diol leads to the activation of the NO system, which, in turn,
may promote sGC activity in mitochondria as the mitochon-
drial membrane is permeable to NO.

To our knowledge, there are no data demonstrating the
expression of sGC in the mitochondrial matrix, though indi-
rect evidence has been provided (Kimura and Murad, 1974;

Nakazawa et al., 1976; Acin-Perez et al., 2011). To investigate
whether H9C2 cells express sGC in mitochondria, we used
the fractionation technique described above (Figure 1A).
Western blot analysis revealed the presence of the sGC cata-
lytic subunit β in mitochondria (Figure 5C). To confirm the
involvement of NO-sGC signalling in the estradiol-induced
reduction of intra-mitochondrial cAMP, first, a FRET-based
analysis of mitochondrial cAMP was performed in H9C2 cells
pretreated with the NO donor. Similar to the estradiol treat-
ment, pre-incubation of cells with NO donor NOC-12 signif-
icantly reduced the basal mitochondrial cAMP level
(Figure 5D). Second, the estradiol-induced reduction of mito-
chondrial cAMP content was prevented by sGC inhibition
with NS-2880 (10 μmol·L�1, 30 min) (Figure 5E) indicating
the causal role of this cyclase. Third, the effect of estradiol
was abolished by treatment with the NOS inhibitor L-NAME
(Figure 5F). Altogether, these data suggest that NO-cGMP sig-
nalling plays a role in the estradiol-induced decrease of intra-
mitochondrial cAMP.

Estradiol suppresses cytochrome oxidase
activity and reduces mitochondrial membrane
potential
Mounting evidence emphasizes the importance of mitochon-
drial cAMP for mitochondrial function (Acin-Perez et al.,

Figure 4
Inhibition of PDEs abolished estradiol effect on the basal mitochondrial cAMP level measured in cells transfectedwith 4mtH30 sensor. FRET-based anal-
yses of basal mitochondrial cAMP concentration performed in H9C2 and C2C12 cells pretreated with either 30 nmol·L�1 estradiol (E2) or vehicle (con-
trol) for 24 h, and additionally treated with IBMX (200 μmol·L�1) (A, B) or Bay 60-7550 (100 nmol·L�1) (C, D) 15 min before and during cAMP
measurement. Values are means ± SEM, n = 5 for H9C2 cells and n = 5–6 for C2C12 cells. *P< 0.05, significantly different from corresponding control.
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2009b; Hess et al., 2014; De Rasmo et al., 2015;
Hebert-Chatelain et al., 2016). Particularly, the alteration of
mitochondrial cAMP is directly translated to the cytochrome
oxidase activity (Acin-Perez et al., 2009b). Thus, we investi-
gated whether estradiol-induced reduction of mitochondrial
cAMP concentration may affect cytochrome oxidase activity.
For this purpose, we analysed cytochrome oxidase enzymic

activity in mitochondria isolated from H9C2 cells. As ex-
pected, estradiol treatment led to a significant reduction of
cytochrome oxidase activity (Figure 6A). Interestingly, al-
though estradiol reduced cytochrome oxidase activity, it also
increased its expression (Figure 6B), which may, at least in
part, compensate the negative effect of estradiol on mito-
chondrial respiratory chain activity.

Figure 5
Role of NO-cGMP signalling in estradiol-induced reduction of mitochondrial cAMP level. (A, B) Statistical analysis of total cellular cGMP concen-
tration in H9C2 cells pretreated with the NO donor (NOC-12, 100 μmol·L�1, 30 min) or estradiol (E2, 30 nmol·L�1, 24 h). Additional treatment
with the sGC inhibitor NS-2880 (10 μmol·L�1, 30 min) or vehicle (DMSO) was performed to show the efficacy of sGC inhibitor (A). Values are
means ± SEM, n = 5–7 for (A) and n = 8 for (B). *P < 0.05 significantly different from corresponding control. (C) Western blot analysis of the β cat-
alytic subunit of sGC performed in full cell lysate (FCL), crude (CMF) and purified (MITO) mitochondrial fractions of H9C2 cells. Data are repre-
sentative of three independent experiments with similar results. (D) Statistical analyses of the basal mitochondrial cAMP level in H9C2 cells
transfected with 4mtH30 sensor and pretreated with NO donor (NOC-12, 100 μmol·L�1) or vehicle (control) for 30 min. Values are means ± SEM,
n = 7. *P< 0.05, significantly different from control. (E) FRET-based analysis of basal cAMP level performed in H9C2 cells transfected with 4mtH30
sensor and either pretreated with 30 nmol·L�1 estradiol (E2) or vehicle (control) for 24 h and additionally treated for 30 min before and during
cAMP measurement with the sGC inhibitor NS-2880 (10 μmol·L�1) or vehicle (DMSO). Values are means ± SEM, n = 5–6. *P < 0.05, significantly
different from control. All data were normalized to the corresponding control and expressed in relative units (r.u.). (F) FRET-based analysis of basal
cAMP level performed in H9C2 cells transfected with 4mtH30 sensor and either pretreated with estradiol (E2, 30 nmol·L�1) or vehicle (control) for
24 h and additionally treated for 30 min before and during cAMP measurement with the NOS inhibitor L-NAME (300 μmol·L�1) or vehicle (H2O).
Values are means ± SEM, n = 6–7. *P < 0.05, significantly different from control. All data were normalized to the corresponding control and
expressed in relative units (r.u.).
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Mitochondrial membrane potential is the main driving
force for mitochondrial ATPase activity and, thereby, for mi-
tochondrial ATP synthesis. As the activity of the mitochon-
drial electron transport chain is crucial for the development
of the mitochondrial membrane potential, we aimed to in-
vestigate whether estradiol may also affect mitochondrial
membrane potential by applying the ratiometric sensor
JC-1. The analysis revealed a significant reduction of mito-
chondrial membrane potential in cells treated with estradiol
in a PDE2-dependent manner (Figure 6C).

Discussion
The aim of this study was to determine whether estradiol
could affect mitochondrial cAMP signalling in muscle cells.
The main findings are as follows: (i) treatment with estradiol
did not affect the intra-mitochondrial content of sAC, PDE2

or PKA catalytic subunit α; (ii) analysis of the mitochondrial
sAC activity, basal and stimulated did not reveal any signifi-
cant effect of estradiol treatment; (iii) by contrast, estradiol
significantly reduced the basal mitochondrial cAMP level
and cytochrome oxidase activity in a PDE2-dependent man-
ner. Together, these results suggest that NO-cGMP signalling
serves as a mechanistic link between estradiol and mitochon-
drial PDE2 (Figure 7).

The functional significance of sAC in many cellular func-
tion has been demonstrated (Acin-Perez et al., 2009b;
Appukuttan et al., 2012; Di Benedetto et al., 2013;
Appukuttan et al., 2014; Chagtoo et al., 2018; see also
Pozdniakova and Ladilov, 2018). A convincing body of evi-
dence supports the functional significance of the mitochon-
drial cAMP signalling in eukaryotes (Acin-Perez et al., 2009b;
Acin-Perez et al., 2011; De Rasmo et al., 2012; Hess et al.,
2014; Hebert-Chatelain et al., 2016). Moreover, recent data
suggest that mitochondria possess their own source of cAMP,

Figure 6
Estradiol effect on cytochrome oxidase (COX) activity and mitochondrial membrane potential. (A) Statistical analysis of cytochrome oxidase
activity in mitochondria isolated from H9C2 cells pretreated with either 30 nmol·L�1 estradiol (E2) or vehicle (Control) for 24 h. Values are
means ± SEM, n = 7. *P< 0.05, significantly different from control. (B) Western blot and statistical analyses of cytochrome oxidase expression per-
formed in H9C2 cells after treatment with either 30 nmol·L�1 estradiol (E2) or vehicle (Control) for 24 h. Values are means ± SEM, n = 6. *P< 0.05,
significantly different from control. (C) Statistical analysis of the basal mitochondrial membrane potential in H9C2 cells treated with either
30 nmol·L�1 estradiol (E2) or vehicle (Control) for 24 h. Cells were treated for 15 min before and during analysis with either Bay 60-7550
(100 nmol·L�1) or vehicle (DMSO). Values are means ± SEM, n = 7 for DMSO and n = 6–7 for BAY treated groups. *P < 0.05, significantly different
from control . All data were normalized to the corresponding control and expressed in relative units (r.u.).
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that is, matrix-localized sAC, thus being independent of the
cytosolic variations in cAMP concentration (Di Benedetto
et al., 2013; Lefkimmiatis et al., 2013). In accordance with
this, the present study demonstrated that the activation of
plasmalemmal AC with forskolin caused the rapid elevation
of cytosolic cAMP concentration but did not affect the cAMP
concentration in mitochondria. Of note, both we and other
groups (Di Benedetto et al., 2013; Lefkimmiatis et al., 2013;
Mukherjee et al., 2016; Wang et al., 2016) have observed a
rapid increase in intra-mitochondrial cAMP following sAC
stimulation with bicarbonate.

The promotion of mitochondrial cAMP signalling, for ex-
ample, through overexpression of sAC, improves cytochrome
oxidase activity and ATP synthesis by mitochondria (Acin-
Perez et al., 2009b). Currently, there are no pharmacological
or molecular tools that can be applied in vivo to promote mi-
tochondrial cAMP signalling. In this study, we investigated
the hypothesis that estradiol may have an effect on this path-
way. Estradiol positively regulated cAMP signalling in a vari-
ety of cell types, for example, in rat cardiomyocytes
(Buitrago et al., 2000) or coronary artery smooth muscle cells
(Yu et al., 2014), through non-genomic action of
plasmalemmal ER on the tmAC activity. Similarly, the limited
data demonstrating a genomic action of estradiol on cAMP
signalling support its positive regulatory effect (Asano et al.,
2005; Ismail et al., 2015).

On the other hand, positive effects of estradiol on the ex-
pression and activity of numerous mitochondrial proteins
have also been reported (Chen et al., 2009; Lagranha et al.,
2010; Galmes-Pascual et al., 2017). Whether and how estra-
diol may affect mitochondrial cAMP signalling remain un-
known. In the present study, expression analysis of three

main members of the mitochondrial cAMP signalling, that
is, sAC, PDE2 and PKA, revealed no effect of estradiol on the
content of these proteins in the mitochondrial matrix.

Aside from expression, estrogens may also modulate the
activity of mitochondrial enzymes via various post-
translational modifications (Lagranha et al., 2010; Luo
et al., 2016) and, thereby, affect mitochondrial cAMP signal-
ling. Applying mitochondria-targeted expression of EPAC-
based cAMP sensor, we found that estradiol significantly
reduced cAMP level in the mitochondrial matrix. This effect
of estradiol on intra-mitochondrial cAMP is not due to sen-
sor mistargeting or other artefacts. First, our analyses con-
firmed the proper localization of the 4mtH30 sensor inside
the mitochondria (Supporting Information Figure S2).
Thus, the signal obtained from mitochondria-targeted
cAMP sensor has an intra-mitochondrial origin. Second,
the known effect of pH on GFP-derived sensors is unlikely
to have contributed to the effect of estradiol on the basal
intra-mitochondrial cAMP level, as intra-mitochondrial pH
analyses revealed no effect of estradiol (Figure 2G). Third,
the estradiol effect on the mitochondrial cAMP concentra-
tion was confirmed by the MS analysis of cAMP in isolated
mitochondria.

To understand the underlying cellular mechanisms re-
sponsible for the estradiol-induced reduction of the intra-
mitochondrial cAMP level, the role of mitochondrial cAMP
generating (sAC) and degrading (PDE2) enzymes was investi-
gated. Our results revealed that the estradiol effect on the
basal intra-mitochondrial cAMP level was not due to the al-
teration in basal cAMP synthesis by sAC but rather due to
an enhanced cAMP degradation by mitochondrial PDE2. In-
deed, in our model, inhibition of PDE2 abolished estradiol-
induced reduction in mitochondrial cAMP. Although from
the live imaging experiments we cannot completely exclude
a possible contribution of cytosolic PDE2 inhibition, the
treatment of isolated mitochondria with PDE2 inhibitor led
to a similar result, as estimated by MS analysis. Thus, mito-
chondrial PDE2 is responsible for the estradiol effect on the
mitochondrial cAMP concentration.

PDE2 is a cGMP-activated PDE isoform and may be acti-
vated by estradiol via up-regulation of NO signalling. Indeed,
(i) estradiol pretreatment, similar to treatment with a NO do-
nor, elevates total cellular cGMP content, and (ii) inhibition
of sGC or NOS prevented effect of estradiol on mitochondrial
cAMP. In line with our findings, numerous reports demon-
strated estradiol-induced up-regulation of eNOS and iNOS
in various cell types (MacRitchie et al., 1997; Jayachandran
et al., 2001), including cardiomyocytes (Nuedling et al.,
1999), accompanied by increased NO synthesis (for a review,
see also Ling et al., 2006). Therefore, it seems likely that NOS
is a target of estradiol leading to up-regulation of NO
signalling.

The NO-induced generation of cGMP in cardiac mito-
chondria has already been suggested (Seya et al., 2007). It is
important to note that this study was performed in isolated
mitochondria, thus excluding a possible import of cytosolic
cGMP. Whether cellular NO elevation may affect mitochon-
drial cAMP signalling had not been investigated before. To
address this issue, we, first, confirmed the presence of sGC
in the mitochondrial matrix. Second, the treatment of cells
with a NO donor led to a significant reduction in the

Figure 7
Schematic model of the proposed cellular mechanisms involved in
the regulation of mitochondrial cAMP by estradiol. Activation of
the cellular NO signalling either by estradiol or by NO donor stimu-
lates mitochondrial sGC followed by activation of PDE2 and degra-
dation of mitochondrial cAMP. Reduction of mitochondrial cAMP
concentration results in the reduced cytochrome oxidase (COX IV)
activity. Inhibition of NOS with L-NAME, sGC with NS-2880 (NS) or
PDE2 with Bay 60-7550 (Bay) prevents these effects of estradiol.
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mitochondrial cAMP level. Third, the inhibition of sGC
prevented the effects of estradiol on mitochondrial cAMP,
confirming the causal role of sGC. In agreement with our
data, an earlier study of Acin-Perez and colleagues demon-
strated a cGMP-induced stimulation of cAMP-degrading ac-
tivity of PDE2 in mitochondria isolated from brain and liver
(Acin-Perez et al., 2011). Thus, the present study, together
with previous reports, suggests that the sGC-PDE2 axis is
present in the mitochondrial matrix and responds to cellular
NO elevation leading to a reduction of mitochondrial cAMP.

In addition to the cGMP synthesis in themitochondrial ma-
trix, cytosolic cGMP may be imported. Though there are no
studies investigating this issue, previous reports demonstrated
that the mitochondrial inner membrane is not permeable for
cAMP (Di Benedetto et al., 2013; Lefkimmiatis et al., 2013),
which has similar size and charge. Thus, it seems unlikely that
cGMP penetrates the inner mitochondrial membrane.

In order to understand the functional significance of the
estradiol-induced reduction in mitochondrial cAMP concen-
tration, the cytochrome oxidase activity was examined.
Previous reports suggest that intra-mitochondrial cAMP plays
a role in the regulation of cytochrome oxidase activity
(Acin-Perez et al., 2009b; Acin-Perez et al., 2011). In agreement
with these reports, a reduction in mitochondrial cAMP was ac-
companied by the reduced cytochrome oxidase activity in our
experiment. Of note, estradiol increased cytochrome oxidase
expression in our study, which is in agreement with a known
genomic effect of estradiol on mitochondrial biogenesis (Chen
et al., 2009). Thus, oestrogen has two apparently opposing
effects on mitochondrial function: increasing respiratory
capacity by increasing cytochrome oxidase expression and at
the same time, limiting maximal cytochrome oxidase activity.

The negative effect of estradiol on cytochrome oxidase ac-
tivity was associated with a partial mitochondrial depolariza-
tion in the present study. Though this effect may be due to
reduced cytochrome oxidase activity, other factors may also
affect mitochondrial membrane potential, for example, up-
regulated expression of mitochondrial uncoupling proteins.
However, several studies have suggested a down-regulation
of these proteins by estradiol in muscle cells (Alexanderson
et al., 2009; Nagai et al., 2016).

Although our results present a discrepancy with the ma-
jority of findings that suggest a stimulatory effect of estradiol
on mitochondrial function (Chen et al., 2009; Liu et al.,
2017), the known multiple effects of estradiol on mitochon-
dria may compensate the observed suppression of cyto-
chrome oxidase activity. Indeed, in line with previous
reports, we found a significant up-regulation of cytochrome
oxidase expression under estradiol treatment. Whether the
estradiol-induced down-regulation of mitochondrial cAMP
and cytochrome oxidase activity may have positive or nega-
tive effects in different physiological and pathological situa-
tions needs further investigation. One may suppose that
similar to the allosteric ATP-inhibition of cytochrome oxi-
dase (Ramzan et al., 2010), estradiol-induced inhibition of cy-
tochrome oxidase may limit free radical generation by
reducing membrane potential.

The intriguing finding of the study is that oestrogen indi-
rectly affects mitochondrial cAMP and cytochrome oxidase ac-
tivity via activation of NO signalling unveiling a complex
action of oestrogen on mitochondria. This finding may,

therefore, contribute to explain negative or even harmful effects
(Lobo, 2017; Azam et al., 2018) of hormone replacement therapy.

In summary, the present study reports that estradiol did
not affect the expression or activity of mitochondrial sAC,
whereas it markedly reduced the mitochondrial cAMP con-
centration and cytochrome oxidase activity and induced par-
tial mitochondrial depolarization. These results suggest that
the effects of estradiol are mechanistically linked to the acti-
vation of mitochondrial sGC-PDE2 axis due to the stimula-
tory action on the cellular NO signalling.
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Figure S1 (A, B) Western blot expression analysis of estrogen
receptor (ER) alpha, beta and GRP30 in H9C2 cells. The uterus
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was used as a positive control for estrogen receptors alpha and
beta, while MCF7 cells were used as a positive control for
GRP30. Data are representative of three independent experi-
ments with similar results. (C) Western bot analysis of phos-
phorylated ERK1/2 (pERK) performed with H9C2 cells after
treatment with 30 nmol·L�1 estradiol (E2) or vehicle
(Control) for 24 h. Data are representative of three indepen-
dent experiments with similar results. (D) Analysis of estradiol-
induced activation of estrogen receptors performed in H9C2
cells overexpressing estrogen receptor alpha or beta. Cells were
treated with 30 nmol·L�1 estradiol (E2) or vehicle (Control) for
24 h. Values are means ± SEM. n = 8. *P < 0.05 vs. correspond-
ing Control. (E) Analysis of cell number (normalized to Con-
trol) after treatment with nmol·L�1 estradiol (E2) or vehicle
(Control) for 24 h. Values are means ± SEM. n = 6. *P < 0.05
vs Control.
Figure S2 Characterization of mitochondria-targeted cAMP
probe expressed in H9C2 cells. (A) Statistical analysis of CFP
fluorescence obtained in H9C2 cells transfected with mito-
chondria-targeted cAMP probe 4mtH30 from mitochondria-
free, i.e., cytosolic, or mitochondria-rich regions. Values are
means ± SEM. n = 4. (B) Representative fluorescent images of
H9C2 cells transfected with EPAC-based mitochondria-
targeted cAMP probe 4mtH30 (upper panel, green) and
stained with MitoTracker deep Red (middle panel, red). The
merge image (lower panel) demonstrates a high level of
4mtH30 and MitoTracker deep Red co-localization (yellow).
(C) Representative kinetics of mitochondrial cAMP
level observed in H9C2 cells after treatment with either
200 nmol·L�1 EPAC activator (8-pCPT2’-O-Me-cAMP) or
vehicle (Control). Values are means ± SEM. n = 4. *P < 0.05.
Arrow indicates the start of treatment. (D) Representative
kinetics of mitochondrial cAMP level observed in H9C2 cells

under treatment with 50 nmol·L�1 bicarbonate. Cells were
pretreated for 30 min with either 100 nmol·L�1 LRE1 (a sAC
inhibitor) or vehicle (DMSO). Values are means ± SEM.
n = 4. *P < 0.05 (E) Representative kinetics of cytosolic (trans-
fection with non-targeted H30 probe) or mitochondrial
(transfection with mitochondria-targeted 4mtH30 probe)
cAMP observed in a H9C2 cell under treatment with forskolin
(40 nmol·L�1) and IBMX (200 nmol·L�1). Units are presented
in % and were calculated as (R-Rmin)/(Rmax-Rmin)*100%,
where R = CFP/YFP, Rmin = R before treatment, Rmax = max-
imal R after treatment with forskolin and IBMX. Values are
means from three experiments.
Figure S3 Effect of ER agonists on mitochondrial cAMP. Sta-
tistical analysis of mitochondrial cAMP elevation (Stimulated
activity) induced by 50 nmol·L�1 bicarbonate (A) and basal
cAMP level (B) were measured in H9C2 cells transfected with
4mtH30 sensor and either pretreated with 1 nmol·L�1 estro-
gen receptor alpha agonist (PPT) or vehicle (Control) for
24 h. Values are means ± SEM. n = 7. *P< 0.05. Statistical anal-
ysis of mitochondrial cAMP elevation (Stimulated activity)
induced by 50 nmol·L�1 bicarbonate (C) and basal cAMP level
(D) measured in H9C2 cells, either pretreated with
10 nmol·L�1 estrogen receptor beta agonist (KB5) or vehicle
(Control) for 24 h. Values are means ± SEM. n = 10. Statistical
analysis of mitochondrial cAMP elevation (Stimulated activ-
ity) induced by 50 nmol·L�1 bicarbonate (E) and basal cAMP
level (F) measured in H9C2 cells, either pretreated with
10 nmol·L�1 GRP30 agonist (G-1) or vehicle (Control) for
24 h. Values are means ± SEM. n = 10.
Figure S4 Effect of FBS reduction on cellular ATP and mito-
chondrial morphology. (A) FRET-based assay of the basal
cytosolic ATP measured in H9C2 cells transfected with ATP
sensor. Cell were kept for 48 h.
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