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Abstract

Background: Selection is a common problem in paediatric and perinatal epidemiology, and 

truncation can be thought of as missing person time that can result in selection bias. Left 

truncation, also known as late or staggered entry, may induce selection bias and/or adversely affect 

precision. There are two kinds of left truncation: fixed left truncation where the start of follow-up 

is initiated at a set time, and variable left truncation where follow-up begins at a stochastically 

varying time-point.

Methods: Using data from a time-to-pregnancy study, augmented by a simulation study, we 

demonstrate the effects of fixed and variable truncation on estimates of the hazard ratio.

Results: First, fixed or variable non-differential left truncation results in a loss of precision. 

Fixed or variable differential left truncation results in a bias either towards or away from the null 

as well as a loss of precision. The extent and direction of this bias is a function of the size and 

direction of the association between exposure and outcome, and occurs in common scenarios and 

under a wide range of conditions.

Conclusions: As demonstrated in simulation studies, selection bias due to left truncation could 

have a serious impact on inferences, especially in the case of fixed or variable differential left 

truncation. When present in epidemiologic studies, proper accounting for left truncation is just as 

important as proper accounting for right censoring.
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Confounding and measurement bias are fairly well described throughout the epidemiologic 

literature. However, selection bias is not characterised as well.1–5 Selection bias is a form of 

missing person-time, often including the entire person. It has been shown that selection bias 

is a result of conditioning on a collider,6 and can be manifest as a result of censoring or 

truncation. It is generally accepted that a loss in sample size or person-time typically results 

in a loss of precision for estimates of exposure effects. Right-censoring, which occurs when 

the survival time exceeds the censoring time,2 may induce selection bias, and can similarly 

be thought of as missing person-time.1,5

Left truncation, also known as late or staggered entry, may also induce selection bias or 

adversely affect precision, resulting in a loss of accuracy. Accuracy is defined as the 

convolution of validity and precision, and is typically quantified by mean squared error. 

Formally, when the survival time is less than the left truncation time, no information about 

the subject is known. Hence, the person-time in the cohort is a sample from a conditional (or 

truncated) distribution.7 It is important to contrast left truncation, in which the occurrence of 

the event and the existence of the individual is unknown, to right or left censoring, in which 

a subject is known to exist but the survival time is only partially known (i.e. the timing of the 

outcome is unknown). A possible example of left censoring could be when girls are 

recruited into a study of age at menarche and some have already experienced menarche.

There is a rich history of statistical work in truncation8–17; however, little attention has been 

given to left truncation in the epidemiologic literature. The few exceptions, to our 

knowledge, have dealt solely with the setting where the amount of left truncation differs for 

subjects (which we denote variable truncation), as opposed to the setting where the timing of 

the left truncation is fixed, i.e. the follow-up starts at a fixed time-point.11,18,19 Here we 

describe the potential for lost accuracy due to left truncation, including the effect of 

truncation on the proportionality of hazards.

In the following two sections, we define left truncation and demonstrate its effects on bias 

and precision.

Definitions

Fixed left truncation

The start of follow-up is initiated at a set time-point s > 0, for all study participants, where s 
is predetermined by design and the origin, and 0 is the initiation of the time at risk. An 

example in perinatal epidemiology of fixed truncation occurs when assembling a cohort of 

pregnant women to study the effects of preconception smoking on early pregnancy losses 

(Figure 1a-b). Current technology has the capability to detect pregnancies after implantation 

using human chorionic gonadotropin pregnancy tests (approximately s = 6 days after 

conception). Thus, pregnancy losses that occur between fertilisation (day zero) and 

implantation (day six) are not detectable by any method and therefore induce fixed left 

truncation at day six. Consequently, in analysing risk of early pregnancy losses, there is a 

potential for paradoxical dose-response patterns.20,21 If a small dose of a reproductive toxin 

causes pregnancy loss, then a larger dose may cause loss at an even earlier stage in gestation, 

such as before implantation. Thus, the higher dose may show no apparent effect on early 
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loss, or may even show an apparent ‘protective’ effect. Another example of fixed truncation 

is when a cohort is assembled at a fixed recruitment age. If studying mortality only among 

subjects older than s = 40 years, any deaths that occurred before the fixed truncation time (s 
= 40) may remain unknown. These situations can also be depicted by Figure 1, which 

displays scenarios of fixed truncation where deaths may occur before the start of follow-up, 

and where the truncation is non-differential (1a) and differential (1b) by exposure status.

Variable left truncation

Variable left truncation occurs when follow-up begins at stochastically varying time-points 

for each participant (Figure 1c-f). Enrollment of a cohort of pregnant women is likely to be 

subject to variable truncation, as it is common for women to begin study follow-up at the 

first doctor’s visit to confirm pregnancy. The timing of this visit is determined by multiple 

factors, some related to the exposure of interest (e.g. socioeconomic factors). Therefore, 

women enroll in the study at different gestational ages or times since conception. In this 

case, the pregnancies lost due to spontaneous abortions prior to the first confirmatory 

appointment are not observed or recruited into the study, thus leading to variable truncation. 

Formally, individuals, indexed by i, enter the cohort at different times si, where 0 < si. The 

factors affecting the probability distribution of times si can be conditionally independent of 

the exposure, i.e. fs(s | X, T) = fs(s | T), or not, where X and T denote exposure and outcome, 

respectively. Entry into the cohort is conditional on the outcome.

Example

In prospective cohort studies, such as time to pregnancy (TTP) studies, left truncation is 

commonly introduced because time at risk does not always coincide with the study time 

under observation. For example, Buck Louis et al.22 describe a prospective TTP study which 

included couples whose pregnancy attempts began at study enrollment as well as couples 

who had been attempting pregnancy for up to 3 months prior to enrollment. In many TTP 

studies, truncation is introduced through the design of the study and typically goes 

unrecognised. The source of the truncation can be understood by first describing the ideal 

source population. This population should be comprised of couples of reproductive age, at 

risk of pregnancy (i.e. having unprotected intercourse in the fertile window) and enrolled in 

the study from the first time they are at risk of pregnancy. If they are not enrolled from the 

first time they are at risk of pregnancy, left truncation will be induced through the design of 

the study. It is common that a fraction of the ideal study population experienced the outcome 

(pregnancy) before they are recruited to the study. The source population of Buck Louis’ 

study was all couples having unprotected intercourse in the fertile window within 3 months 

prior to the start of the study; those who became pregnant prior to the start of the study 

would not enter the study and their information would be truncated. The ideal TTP study is 

analogous to Ray’s23 ‘new user’ design, and might be called a ‘new trier’ design. Given that 

the reproductive process involves complex human behaviour, this design is often infeasible 

and truncation is essentially guaranteed.

Baird and Wilcox24 describe a study that measures the effect of smoking on reduced 

fecundity. Among 586 women attempting pregnancy, TTP was measured as the number of 
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consecutive menstrual cycles from the study enrollment to pregnancy. Women were 

administratively censored at 13 cycles, the time-point at which medical interventions often 

begin. Smoking was defined as a fixed exposure measured during the first cycle/month of 

study, and dichotomised as current (reporting an average of one or more cigarettes per day) 

vs. former and never. For illustrative purposes only, we will make the strong assumption that 

the members of this cohort were a random sample from the source population (i.e. all the 

couples were at risk of pregnancy for the first time and there was no induced truncation). 

The histograms and the Kaplan-Meier (KM) curves for smoking and non-smoking women 

are shown in Figure 2. The pregnancy rate for non-smokers is higher than that for smokers. 

When the proportional hazards assumption (PHA) holds, the plot of log[-log(KM)] curves 

should result in a graph with parallel curves. Figure 3 gives plots for the cohort under 

different levels of imposed left truncation. In Figure 3, the distance between the two log[-

log(KM)] curves does not change dramatically. It indicates that there is not serious violation 

of the PHA. The pregnancy number and the probabilities of pregnancy that would be 

expected to be observed under various levels of truncation for smokers and non-smokers in 

the original data are presented in Table A1 in the Appendix.

Simulation study

We performed a simulation study to demonstrate the possible consequences of left truncation 

on parameters of interest with respect to accuracy (bias and precision). The parameters for 

the simulation were chosen to mimic the Baird and Wilcox TTP data example (assumed not 

to have truncation).24 We explored a scenario where the PHA held, and assessed the bias due 

to fixed and variable truncation when fitting a beta-geometric model25 and (discrete-time) 

Cox model. We also considered two truncation strategies for non-smokers and smokers: non-

differential truncation where both non-smokers and smokers have the same truncation time, 

and differential truncation where only smoking observations are truncated (in practice, 

smokers are more likely to be truncated than non-smokers).

We generated fixed truncation at month 2, 4, and 6, and variable truncation using the 

following algorithm: When the TTP for individual i ti (ti > 1) is truncated, we select a 

truncation time si randomly from {1, 2 , … , ti − 1} with equal probability p = 1/(ti − 1). 

Here, the equal probability assumption (which may not hold in practice) is made for 

simplicity. We consider three scenarios for variable truncation, with p = 0.1, 0.2, and 0.4 

yielding 10%, 20%, and 40% variable truncation, respectively. In all cases, to ensure that 

differences observed in simulation were not due simply to reductions in sample size, we 

augmented the truncated samples to maintain a consistent sample size across simulation 

runs.

For each scenario, we generated studies of size 1000 with 500 exposed and 500 unexposed. 

We also explored a study size of 10 000, which showed the same patterns and an expected 

decrease in standard error (not presented). We generated 10 000 studies to obtain the mean, 

standard derivation, and 95% confidence limits. For each simulated study, we applied the 

beta-geometric model to estimate the relative risk (RR) using non-linear least squares (R 

function ‘nls’) and the discrete-time Cox model using maximum partial likelihood to 
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estimate the hazard ratio (HR). We tested the PHA using the Schoenfeld residuals as 

described by Grambsch and Therneau.26

The PHA is satisfied in the untruncated data for the simulations presented. We generated two 

beta-geometrically distributed populations with parameters cns = 2.438, dns = 0.313 for non-

smokers, and cs = 2.840, dns = 0.400 for smokers, where c is the mean TTP and d = 0 if the 

TTP is truly geometrically distributed. Further details are available in Appendix and Cole et 
al.27 If (cns − 1)/dns = (cs − 1)/ds, the PHA holds. Table 1 presents the means, standard 

errors, and 95% confidence intervals of the parameters, percentage of bias, and the 

percentage of simulated cases that satisfy the PHA among all simulations. The PHA 

percentage holding is 95% for a moderate sample size of 500 and 90% for large sample size 

of 10 000 when there is no truncation.

Fixed non-differential left truncation

Figure 3 illustrates the TTP and l = log[−log(1 − pregnancy)] for truncation at months 0 (i.e. 

no truncation) and 6, as well as the difference of l between non-smokers and smokers (δ = 

lnon-smoker − lsmoker) for truncation at months 0, 2, 4, and 6. The TTP values are obtained by 

the mean of 10 000 simulations with sample size 1000. If the PHA is satisfied, the graph of l 
vs. log(months) should result in parallel lines, and the graph of δ vs. log(months) results in a 

horizontal line.

When the truncation time increases from 0 to 6, the upper plots in Figure 3 show that both 

the pregnancy rates and l for smokers and non-smokers decrease (dash lines), and the 

difference δ slightly increases from 0.2 to 0.22 at month 1. When the month increases from 

1 to 12, difference δ hardly change (although δ slightly increase due to the finite sample 

size), which indicates that the PHA holds.

Table 1 shows that as the fixed truncation time increases, neither the RR from the beta-

geometric model nor the HR from the (discrete-time) Cox model exhibits notable bias. 

Moreover, there is a slight decrease of efficiency for beta-geometry model as the fixed 

truncation time increases, as illustrated by the increase of the CL width (recall that the 

sample size is augmented such that truncation does not deplete the sample size). Note that 

the (discrete-time) Cox model appears slightly more efficient than the beta-geometric for all 

scenarios. However, even for large sample sizes of 10 000, the pattern of results were similar 

(data not shown). Finally, as expected, more than 90% of the simulated data sets satisfy the 

PHA

Fixed differential left truncation

For differential truncation, only the smoking observations were truncated. When the fixed 

truncation time increases from 0 to 6, the lower plots in Figure 3 show that both the 

pregnancies and l for smokers decrease (dash lines), the difference δ largely increases from 

0.2 to 0.9 at month 1, while δ for fixed non-differential truncation slightly increases from 

0.20 to 0.22. As the month increases, δ decreases. The δ curves are no longer horizontal, 

which indicates that the PHA is violated.
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Table 1 shows that as the fixed differential truncation time increases, both the RR from the 

beta-geometric model and the HR from the (discrete-time) Cox model exhibit notable bias. 

Also, the efficiency for beta-geometry models increases as the fixed differential truncation 

time increases. However, similar to non-differential truncation, for large sample size of 10 

000, the pattern of results do not change. No simulated data sets satisfy the PHA for 

truncation at months 4 and 6 for large sample sizes as shown in the last column in Table 1. 

However, for a moderate sample size of 500, 91% of the simulated data sets truncated at 

month 2 satisfy the PHA. Finally, 70% of the simulated data sets truncated at month 6 

satisfy the PHA. Ideally, for infinite sample size, in the true underlying data the PHA holds, 

but in the truncated data it does not hold as shown in the last column in Table 1. However, 

when the sample size is moderate, e.g. 500, the PHA test does not reject the hypothesis that 

PHA violates. This can be explained intuitively by the plot of the difference δ between non-

smokers and smokers in Figure 3. If PHA holds, the plot of δ shows a horizontal line. The 

points for small samples scatter more than those for large samples. It is more likely to fit 

them with a horizontal line for small samples than large samples. So the PHA was more 

likely to appear to hold for smaller samples. Even when PHA does not hold, the HR for 

large samples is the same as that for small samples, although the CL width for large sample 

is smaller than that for small sample.

When the PHA is violated, the Cox model is not appropriate, and we should use other 

alternative models, e.g. the beta-geometric model. However, in our simulation, even when 

the PHA does not hold based on the PHA test for large sample, the results from beta-

geometry model are similar to those from discrete Cox model. Although fixed differential 

truncation can induce non-proportional hazards for a large sample size, in some cases with 

only modest non-proportional hazards (that does not have practical implications), the Cox 

model still can be applied.

Variable non-differential left truncation

Figure 4 illustrates pregnancy and l for variable non-differential (top) with 0% (no 

truncation) and 40% truncation, the difference of l between non-smokers and smokers for 

0%, 10%, 20%, and 40% truncation. When the truncation proportion increases, both the 

pregnancies and l (dash lines) for smokers and non-smokers increase, and the difference 8 

slightly decreases from 0.20 to 0.17 at month 1. As month increases, 8 slightly increases, 

indicating that the PHA is slightly violated.

Table 1 shows that as the variable non-differential truncation proportion increases, neither 

the RR from the beta-geometric model nor the HR from the (discrete-time) Cox model 

exhibits notable bias. The slight decrease of CL width for beta-geometry model indicates 

that the efficiency slightly increases. However, for large sample sizes of 10 000, the pattern 

of results does not change for either model as the variable truncation time increases. The 

proportion of observations in which the PH assumption holds decreases to 76% for 

truncation proportion 0.4 with a large sample size of 10 000; however, the PHA holding 

remains as large as 95% for a moderate sample size of 500 due to the robustness of Cox 

model.
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Variable differential left truncation

When the variable truncation time increases, the lower plots in Figure 4 show that both the 

pregnancies and l for smokers increase, δ largely decreases from 0.20 to −0.20 at month 1, 

while δ for variable non-differential truncation slightly decreases from 0.20 to 0.17. When 

the time increases, δ increases, which indicates that the PHA is violated.

Table 1 shows that as the variable differential truncation proportion increases, both the RR 

from the beta-geometric model and the HR from the (discrete-time) Cox model exhibit 

notable biases. Moreover, there is a slight increase in the efficiency for beta-geometry 

models. However, for a sample size of 10 000, the pattern of results does not change for 

either model as the variable truncation time increases. The percentage of the PHA 

satisfaction for a sample size of 10 000 decreases, illustrating that variable differential 

truncation can also induce non-proportional hazards.

Comment

Left truncation can be classified as fixed or variable, with different implications for effect 

estimation. Fixed left truncation may result in bias of the total effect (i.e. total effects is 

defined as the HR for the entire risk period under truncation s > 0) towards or away from the 

null, depending on whether the truncation is differential (expected bias may be towards or 

away null) or non-differential (unbiased) with respect to the exposure. The fixed differential 

left truncation causes underestimation of the HR. With proper methods of estimation, total 

effects are identifiable under the non-differential variable left truncated study design as long 

as the minimum truncated time is zero. While non-differential variable left truncation is 

unbiased, differential variable left truncation will induce bias for the total effect. The 

variable differential left truncation overestimates the HR. However, as is always the case 

with experimental (simulation) work, the patterns observed in the limited simulations may or 

may not hold generally

With fixed left truncation, the survival function prior to the fixed left truncation time cannot 

be identified, and total effects are inestimable. However, under non-differential fixed left 

truncation, effects conditional on survival to the fixed time can be identified and may have 

important public health implications as long as they are carefully interpreted as conditional 

effects. However, conditional effects may not be informative in some scenarios (e.g. What is 

the effect of smoking on TTP for a couple that has been trying to become pregnant for 3 

months or longer? If smoking affects TTP, those with TTP <3 months will be 

disproportionately non-smokers). Researchers have to be acutely aware of the hypotheses 

that can be tested in each setting.

It is important to note that there may be certain situations in which we can assume that the 

conditional or truncated effects are equivalent to the total or non-truncated effects. In 

particular, if one can be certain that no events occur between the initiation of risk and 

truncation time s, then the total and conditional effects would be equivalent (P(Y = 1 | X = x, 
S > s) = P(Y = 1 | X = x). For example, in the case of atherosclerotic cardiovascular events, 

few to no events occur before the age of 30, although individuals are at risk. However, 

exercise exertion could be an important trigger before age 30, possibly a more important 
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cause of these events than it is protective. At older ages, protective effects of exercise may 

dominate triggering effects. Thus, the exposure contrast paired with an outcome determines 

the relevancy of left truncation, and only when disease paired with a cause is taken into 

consideration can one evaluate whether truncation is of importance. Therefore, starting a 

CVD cohort at age 30 is a form of fixed truncation where one can safely assume that the 

total and conditional effects are approximately equivalent because few to no events will 

occur before age 30. Another scenario where estimation of a fixed left truncated conditional 

effect may provide insight into a total relative effect of exposure is when events occur 

proportionally before left truncation in both exposed and unexposed groups, which may 

result in a loss of efficiency.

In some studies, both fixed and variable left truncation may be operating simultaneously. For 

example, pregnancy has a fixed left truncation time of 6 days (gestational age > 6 days) and 

studies of pregnancy outcomes are often subject to variable left truncation at the date when 

women enter prenatal care or the study of interest. In fact, whenever variable left truncation 

is present, and the minimum entry time is greater than zero, say s, then that minimum entry 

time acts as a fixed left truncation time point because there is no information regarding the 

survival function between zero and s.

To account for fixed or variable left truncation introduced through the design of the study, 

Flanders and Klein1 suggest beginning follow-up before exposure occurs, an approach 

analogous to Ray’s new user design.23 In such approaches, one strives to design and conduct 

studies to preclude left truncation by enrolling subjects at a common origin of risk and 

exposure. This design solution of beginning follow-up at a common origin, while ideal, is 

unrealistic in many instances, such as in the case of unavoidable occupational exposures or 

when studying long-term exposure levels. This design solution is akin to forcing 100% study 

follow-up to preclude selection bias due to dropout. In the pregnancy example discussed 

previously, in designing a prospective study to ascertain the effect of smoking on pregnancy 

loss, we would have to start the study early enough after conception to ensure that no 

pregnancy losses occurred from the time of pregnancy/exposure. Given current pregnancy 

detection methods, this is not a feasible design.

Failing to discover a design solution, one must account for fixed or variable left truncation in 

the analysis. In the absence of left truncation, epidemiologists estimate the survival curve 

using KM methods. In the presence of fixed left truncation, under certain assumptions one 

can estimate a truncated survival curve beyond the truncation time using standard KM 

methods.10 Here, however, the survival curve prior to s is not identifiable given the observed 

data. In principle, missing data methods, which capitalise on information external to the 

observed data, may be used to provide a complete survival curve. In the presence of variable 

left truncation, one can estimate the survival curve using the extended KM method.28–30 

Analogous to the assumption of no informative censoring, the extended KM method 

provides an unbiased estimate of the survival curve if the variable left truncation is non-

informative.10 Again, missing data methods that capitalise on external data can be used to 

estimate the survival curve in the presence of informative left truncation.27 Regardless of 

what method is used, one cannot identify the survival curve for pregnancy loss before the 

minimum observed left truncation time.
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Careful application of the proportional hazards model to cohort study analysis is needed to 

limit the detrimental effects of non-differential variable left truncation. The model assumes 

that the hazard in an exposed population is a constant multiple of the hazard in an unexposed 

population. Howards et al.18 applied these models in a setting of variable left truncation and 

reached similar conclusions as presented in Table 1. However, truncation can lead to 

nonproportionality of the proportional hazard models. Careful consideration should be given 

to the source of non-proportionality and appropriate estimation models should be applied.

A problem arises, however, when determining the initial time-point for the hazards model. A 

naive proportional hazards analysis that defines risk sets in the standard way (all individuals 

with event times greater than or equal to ti and not previously censored) can yield biased 

estimates of the relative hazard. To account for variable truncation, a modified definition of 

the risk set based on event times greater than or equal to ti and not left truncated needs to be 

utilised in order to properly account for variable left truncation.

Conclusion

We have demonstrated situations where selection bias is generated by left truncation. This 

bias occurs in common scenarios and across a wide range of conditions. When no events 

occur before the truncation time s, no bias is induced. However, as seen in the TTP example, 

null-bias can be induced when events do occur prior to s. When deaths occur before the 

truncation time s, it is important to identify whether these prior events are likely associated 

with exposure; if so, then selection bias is induced. As demonstrated in the simulation study, 

selection bias due to left truncation could have a serious impact on inferences, especially in 

the case of fixed or variable differential left truncation. It is important to take steps to 

account for left truncation in both the design and analysis of epidemiologic studies.

Appendix

Pregnancy numbers in Baird and Wilcox’s study24
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II. Beta-geometric model

Assume that the fecundability follows a beta distribution:

f (p) = p(μ‐θ)/θ(1 − p)(1 − μ‐θ)/θB μ
θ , 1‐μ

θ
−1

,

w here p is the per-cycle conception probability, μ is the mean of the conception probability 

p, and θ is a ‘shape’ parameter, B[.] is Beta function. Then the probability that conception 

occurs at cycle x for a randomly selected couple follows a beta-geometric distribution:

Pr X = x =
μ∏i = 1

x − 1 1‐μ+(i‐1)θ

∏i = 1
x 1+(i‐1)θ

.

Following Weinberg et al.25, define new parameters c and d by

c = 1/μ, d = θ/μ,

where c is the mean TTP and d = 0 if the TTP is truly geometrically distributed. The mean 

rate after j-1 unsuccessful cycles is

μ j = 1/ c + d( j − 1) . (A1)

Note that the beta-geometric model does not assume proportional hazard. If (c-1)/day is the 

same for two beta-geometric distributions, the PHA is satisfied, and a (discrete-time) Cox 

model will provide an unbiased estimate of the hazard ratio. When two populations are to be 

compared, the above model can be extended as follows:

μ = 1/ c + eI , d = θ/μ (A2)

where I is an indicator variable for the second population, e is the mean difference of TTP 

between populations.

We applied the beta-geometric model to the Baird and Wilcox’s TTP data example24 in 

Table A1 for non-smokers and smokers, respectively, and obtained cns = 2.44, dns = 0.31 for 

nonsmokers, and cs = 3.50, dns = 0.36 for smokers. Because (cns − 1)/dns = 4.65 and (cs 

− 1)/ds = 6.94, (cns − 1)/dns ≠ (cs − 1)/ds, the PHA is not satisfied in this example.
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Figure 1. 
Graphs of fixed and variable truncation where deaths may occur before the start of follow-

up, both differential and non-differential by exposure status. Horizontal lines represent 

subjects (solid = exposed, dashed = unexposed). Dots represent events. (a) Fixed truncation 

− non-differential; (b) fixed truncation − differential; (c) variable truncation − non-

differential; (d) variable truncation − differential; (e) fixed and variable truncation − non-

differential; (f) fixed and variable truncation − differential.
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Figure 2. 
(a and b) Number of pregnancies and Kaplan-Meier curves for time to pregnancy by 

smoking status for 586 women followed 12 monthsa. aAdministratively censored in month 

13.

Schisterman et al. Page 15

Paediatr Perinat Epidemiol. Author manuscript; available in PMC 2018 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Pregnancy and l = log[−log(1 − pregnancy)] for fixed non-differential (top) and differential 

(bottom) truncation at months 0 (no truncation) and 6, the difference of l between non-

smokers and smokers (δ = lnon-smoker − lsmoker) for truncation at months 0, 2, 4, and 6.

Schisterman et al. Page 16

Paediatr Perinat Epidemiol. Author manuscript; available in PMC 2018 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Pregnancy and l = log[−log(1 − pregnancy)] for variable non-differential (top) and 

differential (bottom) truncation with 0% (no truncation) and 40% truncation, the difference 

of l between non-smokers and smokers (δ = lnon-smoker − lsmoker) for 0%, 10%, 20%, and 

40% truncation.
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