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ABSTRACT

Development of a curative local treatment for large hepatocellular carcinoma (HCC) is an important issue.
Here, we investigated the dose homogeneity, safety and antitumor effectiveness of proton beam therapy (PBT)
using a patch-field technique for large HCC. Data from nine patients (aged 52–79 years) with large HCC trea-
ted with patch-field PBT were investigated. The cranial–caudal diameters of the clinical target volumes (CTVs)
were 15.0–18.6 cm (median 15.9). The CTV was divided cranially and caudally while both isocenters were
aligned along the cranial–caudal axis and overlap of the cranial and caudal irradiation fields was set at 0–0.5 mm.
Multileaf collimators were used to eliminate hot or cold spots. Total irradiation doses were 60–76.4 Gy equiva-
lents. Irradiation doses as a percentage of the prescription dose (from the treatment planning system) around
the junction were a minimum of 93–105%, a mean of 99–112%, and a maximum of 105–120%. Quality assur-
ance (QA) was assessed in the cranial and caudal irradiation fields using imaging plates. Acute adverse effects of
Grade 3 were observed in one patient (hypoalbuminemia), and a late adverse effect of Grade 3 was observed in
one patient (liver abscess). Child–Pugh class elevations were observed in four patients (A to B: 3; B to C: 1).
Overall survival rates at 1 and 2 years were 55 and 14%, respectively, with a median overall survival of 13.6
months. No patients showed local recurrence. Patch-field PBT supported by substantial QA therefore is one of
the treatment options for large HCC.
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INTRODUCTION
Proton beams, with their ability to emit high energy after penetra-
tion to a certain depth, are used for the treatment of various kinds
of cancer, and hepatocellular carcinomas (HCCs) are especially
amenable to proton beam therapy (PBT). The main benefits of
PBT are superior localization control and lower toxicity [1–8].
Moreover, PBT maintains its efficacy in the treatment of larger
tumors when compared with other less invasive local treatments
such as radiofrequency ablation (RFA) and/or stereotactic body

radiotherapy (SBRT). For example, the treatable tumor size is <5
cm for RFA or SBRT, but PBT achieves sufficient results, even for
tumors >5 cm in diameter [2, 9]. Moreover, we previously investi-
gated PBT applications for large HCC (defined as those >10 cm in
diameter) without the use of the patch-field technique, but using a
single irradiation field, and reported a 2-year local control (LC) rate
of 87% without severe late treatment-related toxicity [10].

In recent years, there has been a trend toward widening the
PBT irradiation field, since technical advances in the development
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of wobbler methods or electromagnetic scanning techniques have
enabled a wider-range beam delivery than with the traditional
double-scattering method [11–13]. Moreover, it is expected that the
use of wide-field irradiation (e.g. for whole-brain and spinal cord
irradiation) will increase due to insurance adoption of PBT for pedi-
atric cancer patients. However, as of 2017, only 5 of 12 Japanese
facilities have an irradiation field of >20 cm, and even our hospital
has a field size of only 15 × 15 cm (width and length). Thus, it is
necessary to establish clear methods for treating those patients who
require large irradiation fields to encourage the adoption of the
more effective wider-beam techniques.

We previously investigated geometric and dose distribution
accuracies of the PBT patch-field technique and showed that irradi-
ation doses at a junction calculated by a treatment-planning system
(TPS) had an error range within 4.3% of the actual measured dose
in esophageal cancer patients [14]. Before this study, we have used
the PBT patch-field technique to treat esophageal cancer patients,
as well as to conduct whole-brain and spinal cord irradiation of
pediatric cancer patients in clinical practice.

We have recently treated patients with large HCC using our
novel patch-field protocol, and here we present our method
and investigate the dose homogeneity, safety and antitumor
effectiveness.

METHODS AND MATERIALS
Patient and tumor data

We retrospectively reviewed the patients with HCC who had received
PBT at our institute and whose irradiation field was beyond the limit
of our institute (15 × 15 cm) from April 2011 to May 2016. All study
procedures involving human participants were conducted in accord-
ance with the ethical standards of the institutional research committee
and with the 1964 Declaration of Helsinki and its later amendments,
or comparable ethical standards. All treatments were discussed at
in-hospital conferences, and study-specific informed consent was
obtained from the individual participants. The study received insti-
tutional review board approval. The study population was com-
prised of nine patients (six men and three women) of ages 52–79
years (median: 66). Six patients had solitary tumors and three
patients had multiple tumors. The maximum tumor diameter was
11–20 cm (median: 15). All multiple tumors were combined into
a single clinical target volume (CTV) and treated at the same time.
The cranial–caudal diameters of the CTV ranged from 15–19 cm
(median: 16). There were two patients whose maximum tumor diam-
eter was <15 cm but CTV was CTV>15 cm due to inclusion of mul-
tiple tumors in the CTV. No patients had distant metastasis. The
Eastern Cooperative Oncology Group performance status (PS) was as
follows: four patients were in Category 0 (fully active), three were in
Category 1 (ambulatory but restricted) and two were in Category 2
(up and about >50% of waking hours). Two patients had hepatitis C
virus and four patients had alcoholic liver damage. Six patients were
categorized as Child–Pugh Class A and three patients as Class B. A
total of four patients had tumor thrombosis (portal vein: two; hepatic
vein and inferior vena cava: one; both: one). A total of four patients
received transcatheter arterial chemoembolization/infusion before
PBT. Patient and tumor characteristics are shown in Table 1.

Treatment
Each patient’s body was immobilized using a custom-made body
cast. Computed tomography (CT) images were taken at 2.5 or 5 mm
intervals during the end of expiratory phase under a respiratory gat-
ing system [15]. During treatment planning, an aperture margin of
5–12.5 mm and a margin of 0–5 mm on the caudal axes were added
to cover the entire CTV. Patch-field irradiation was then performed
as previously reported [14]. Briefly, the CTV was divided into two
sections covered by a single PBT field (cranial CTV and caudal
CTV), and both isocenters of the CTVs were aligned along the cra-
nial–caudal axis, while the leaves of multileaf collimators (MLCs)
were moved to eliminate hot or cold spots. The overlap of the cra-
nial and caudal irradiation fields (calculated geometrically from
treatment device parameters such as distance between the two iso-
centers, snout position, and aperture size of the MLC) was set to
0–0.5 mm. In our previous examination, we found the regression
model [dose (%) = 6.7 × overlap (mm) + 94.0] in our PBT and
TPS system, and we routinely use this model in the clinical setting
to determine the overlap (Fig. 1).

We used the PROBEAT series in the PBT, and the treatment
plans were generated in a TPS, VQA, version 2 (both Hitachi, Ltd,
Japan). Proton beams of 155 to 250 MeV were generated using a
synchrotron accelerator. The beams were delivered using a rotational
gantry. The dose distribution was calculated using a pencil-beam algo-
rithm. The beam delivery devices, including a ridge filter and a fine
degrader, were selected automatically by the TPS and then adjusted
manually. A collimator to shape the lateral edge of the field was pro-
duced using a brass array. A range-compensating bolus was fabricated
with a material mainly made of acrylonitrile-butadiene-styrene resin.
The beam delivery system created a 100% dose level homogeneously,
using the spread-out Bragg peak of the proton beams. Since the pre-
scription dose of each field is equal, it is not difficult to set the refer-
ence point on either side. At our hospital, we routinely set the
reference point of the prescribed dose as the whole reference point
on the cranial side.

Table 1. Characteristics of patients

Age 52–79 (66)

Men/Women 6/3

Performance status: 0/1/2 4/3/2

Child–Pugh classification: A/B 6/3

Causes of liver damage: HBV/HCV/Alcohol 0/2/4

Solitary/Multiple 6/3

Tumor size (cm) 11–20 (15)

Clinical target volume (cm3) 918–2988 (1348)

Prior treatment: TACE/TAI 3/1

Total irradiation dose (GyE) 60–76.4 (72.6)

Numbers in parentheses are median values. HBV = hepatitis B virus, HCV =
hepatitis C virus, TACE = transcatheter arterial chemoembolization, TAI = trans-
catheter arterial infusion, GyE = Gray equivalent.
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The dosing and fractionation were decided according to the
tumor location and the treatment strategy. The total irradiation
dose was 60–76.4 Gray equivalents (GyE) (median 72.6). The most
frequent dosage was 72.6 GyE with 22 fractions in four patients.
The maximum cumulative dose was set below 50 GyE for the spinal
cord, stomach and duodenum, and below 60 GyE for the colon.
The dose for the skin was set to make the area where a higher dose
(such as 95% dose) was delivered as narrow as possible, while bal-
ancing other possible toxicities. The relative biological effectiveness
of the PBT was assumed to be 1.1 [16].

No patients received adjuvant therapy after PBT, but five
patients received additional drug therapy for recurrence.

Quality assurance at the junction
Quality assurance was assessed by irradiating imaging plates placed
on a water-equivalent phantom under actual treatment conditions.
The measurement depth in the phantom was decided from the
range of the beams penetrating the bolus when the center of the
spread-out Bragg peak and CTV were matched at the junction level.
The installed phantom was tilted according to the beam angles, and
dose profiling was performed along the cranial–caudal axis crossing
the center of the junction. (Fig. 1).

Follow-up procedures and evaluation criteria
Acute treatment-related toxicities were assessed during the treat-
ment course. Physical examinations, blood tests, and CT or

magnetic resonance imaging (MRI) scans were performed and qual-
ity of life was checked at 3-month intervals after PBT. For the
patients who could not routinely come to our hospital, we obtained
the medical information as far as possible from the main doctor and
from letters from the patients and their families. Adverse events
were assessed after every procedure, according to the Common
Terminology Criteria for Adverse Effects (version 4.03) [17].
Assessment of the responses was evaluated according to the
Response Evaluation Criteria in Solid Tumors (version 1.1) [18].

Data analysis
We examined dose homogeneity, safety, and antitumor effective-
ness. For analysis of dose homogeneity, a circular region of interest
(ROI) of 5-cm diameter was located within a range of 2.5 cm up
and down from the center of junction level, and the irradiation dose
was calculated. For the analysis of safety, treatment completion rates
and adverse effects were examined. For the analysis of antitumor
effectiveness, overall survival (OS) and progression-free survival
(PFS) were calculated using the Kaplan–Meier method.

RESULTS
Dose homogeneity

Irradiation dosing around the junction with respect to the TPS-
prescribed dosage was a minimum of 93–105% (99.3 ± 4.5), a
mean of 99–112% (106.2 ± 4.9) and a maximum of 105–120%
(111.9 ± 5.3) (Fig. 2).
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Fig. 1. Schema of the treatment planning and the quality assurance of the junction. Treatment plans for the cranial and caudal
irradiation fields were designed, respectively. The overlap of the irradiation fields was set at between 0 and 0.5 mm. We
developed a regression model of the overlap and irradiation dose at the junction. The irradiation dose at the junction was
confirmed from the dose profile determined by using imaging plates.
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Safety
The follow-up period was 2.5–27.3 months (median: 13.7). More
than 1 year follow-up was carried out for three patients. Acute
dermatitis of Grade 1–2 was observed in all patients. An acute adverse
effect of Grade 3 was observed in one patient (hypoalbuminemia), and
irradiation was discontinued in that one patient during their treatment
courses at 7 days. However, all patients completed their planned dose
and number of treatments. A late adverse effect of Grade 3 was
observed in one patient (hepatic abscess). A total of four patients
showed a Child–Pugh score elevation during the follow-up period (+1:
three patients; +2: one patient) and the Child–Pugh class was changed
from A to B in three patients and from B to C in one patient.

Antitumor effectiveness
Of the nine patients, one was still alive 16.5 months later at the final
follow-up. The OS rates at 1 and 2 years were 55 and 14%, respect-
ively, with a median of 13.6 months. No patients showed recurrence
within the PBT field, but six patients showed recurrence outside of
the irradiation field. The most frequent organ affected by recurrence
was the lung (five patients), followed by the liver, bone, spleen,
lymph node, and brain (with a total of ten lesions in five patients)
(Table 2). Four of nine patients had tumor thrombosis. Lung metas-
tasis was observed in two of the four patients who had tumor

thrombosis, and in three of the five patients who did not have tumor
thrombosis. The PFS rates at 1 and 2 years were 33% and 0%,
respectively, with a median of 6.1 months (Fig. 3).

Case presentation
Figure 4 presents an example of a large HCC treated using the
patch-field technique. This patient received PBT of 74 GyE with 37
fractions. The minimum and maximum dosing around the junction
on the TPS was 93 and 117% of the prescription dose, respectively.
The tumor size was reduced from a diameter of 17 cm to 6.7 cm in
14 months, without any severe toxicity. Although the patient died of
cerebral infarction 27 months after treatment, no recurrence or liver
dysfunction was observed at the final follow-up 20 months after
PBT.

DISCUSSION
We previously presented the use of the PBT patch-field technique
in esophageal cancer patients in 2012 and found that the minimum
and maximum doses were 95.9 ± 3.2% and 105.3 ± 4.1%, respect-
ively, around the TPS junction [14]. Because new CT and TPS
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Fig. 2. Irradiation dose at the junction. The
minimum, mean and maximum irradiation
doses in the region of interest (5 cm diameter
circle, located within a range of 2.5 cm up and
down from the center of junction) are displayed
as percentages of the prescription dose.

Table 2. Recurrence

Location number

Lung 5

Liver (out of the irradiation field) 1

Bone 1

Spleen 1

Lymph node 1

Brain 1

Total 10 lesions in 5 patients
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Fig. 3. Survival curve. Straight line: overall survival (OS).
Dotted line: progression-free survival (PFS).
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units were installed after that study, we conducted a preliminary
check of the dose distribution around the junction in recently trea-
ted esophageal cancer patients before this study. The irradiation
dose around the junction of the recently treated 10 esophageal can-
cer patients was a minimum of 90–101% (mean ± SD; 95.3 ± 3.7),
a mean of 103–112% (106.6 ± 3.5) and a maximum of 103–119%
(111.7 ± 4.6) of the TPS. It is important to note that treatment of
esophageal cancer is always finely tuned so that the actual irradi-
ation dose does not exceed 100% of the prescribed dose at the cen-
ter of the junction. As general practice, we have strict safeguards
against excess irradiation, and thus a range of 0–0.5 mm overlap is
comparable with 6–2.6% below the prescription dose (from our
regression model), which complies with our safeguards. We have
considerable institutional experience in treating esophageal cancers.

We then turned our attention to other applications for our patch-
field technique based on the data and results for esophageal cancer
patients. As shown in Fig. 2, a TPS-prescribed minimum, mean and
maximum dosage around the junction for large HCC showed a simi-
lar pattern to that of recently treated esophageal cancer patients men-
tioned above, when planning was performed under the same
conditions. Therefore, we posited that the patch-field technique could
also be applied to liver cancer treatments since the dose distribution
data was similar. Moreover, we routinely modify the junction location
during a treatment course, so as to reduce any inhomogeneous dose
distribution and accomplish safe and efficient treatment.

Although one of nine patients discontinued treatment during
the planned treatment course due to acute adverse effects, it is not
likely that the hypoalbuminemia that patient experienced was
caused by the PBT and the full therapy course was completed.
Given that all patients had exhausted other safe and effective treat-
ment options, we were satisfied that no case was accomplished with

discontinuation. Furthermore, we were confident that liver function
would not be impaired compared with the effects of other treat-
ments because PBT has been established as a modality that causes
less liver damage [1–3]. Our previous report of 150 HCC patients
treated by PBT supports this, since changes in Child–Pugh scores
were elevated in only 11% of patients [19]. Moreover, in another
study for large HCC (10–14 cm diameter), only 1 out of 22
patients treated by PBT without using the patch-field technique
died of liver failure within 6 months, and that was not due to
radiation-induced liver damage, and we thus concluded that large
HCC irradiation would not be lethal [10]. However, in the current
study, Child–Pugh score elevation was observed in 6 out of 9
patients, and Child–Pugh class elevation was also observed in 4
patients. Although severe liver damage was not observed, our cur-
rent findings bring into question the concept that PBT is less toxic
to the liver than photon therapy, as has been previously reported
[5]. One factor that might have affected our results is the size of the
tumors we treated, because tumors that require the patch-field tech-
nique are obviously larger than any of the reported HCCs treated
by PBT. We cannot be certain that the liver damage we saw was dir-
ectly attributable to the beam, or whether large tumors in general
negatively affect the liver due to inflammation from the massive die-
off of tumor cells. Therefore, we must recommend that any large
tumor therapy with patch-field PBT be carefully and closely moni-
tored to allow for rapid response and re-evaluation of treatment.

The prognosis of large HCC is pessimistic. Mok et al. reported
that the OS rate of patients with HCC >10 cm in diameter treated
with multimodality non-surgical therapies was 23.3 and 9.6% at 1 and
3 years, respectively [20]. This may reflect both the incidence of
microscopic vascular invasion being elevated as size increases, and
that the organ hosting the most extrahepatic lesions was the lungs

Fig. 4. Dose distribution and computed tomography (CT) before and after PBT. Left: CT before PBT; middle: dose
distribution; right: CT 14 months after PBT. Upper: axial image; lower: coronal image. Dose lines represent from 105 to 10%
lines relative to the prescription dose from inside to outside. Arrows indicate the clinical target volume (CTV).
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[21–23]. This is in line with our study, in which we found that the
most frequent extrahepatic metastases were in the lungs. Although it
could not be ruled out that microscopic vascular invasion had already
occurred in the patients who developed lung metastasis after PBT, no
obvious relation was observed in our study between the presence of
tumor thrombosis and the occurrence of lung metastasis. Although it
may seem futile to locally treat a large HCC that is likely to metasta-
size, there was serious concern that the growing tumors would cause
high risk of rupture or sudden liver dysfunction due to compression of
the portal vein/bile duct. The therapy was well tolerated and no local
recurrence was observed. This treatment was considerably challenging
either safe and treatment effect point. Under the condition, after treat-
ment with PBT using the patch-field technique, more than half of the
patients were still alive after 1 year, and one patient was still alive after
2 years without severe adverse effects. We believe that PBT using the
patch-field technique is one of the treatment options for large HCC.

There are some limitations to this study, and there is room to
improve the treatment method. First, our follow-up period was
short because of the relatively short survival times. Some patients
could have died before local recurrence happened, thereby making
it difficult to determine local tumor control in long term. Second,
we set a constant ROI around the junction to estimate dose homo-
geneity. Ideally, the dose of the whole CTV should be calculated,
but some patients whose tumors extended beyond the field size
could not receive enough dose at the margin of the large tumors.
The reduced irradiation doses in these cases would not be from the
dose inhomogeneity of the junction, but rather from insufficient field
size. Thus, we set the ROI (5-cm diameter) as around the junction to
remove the bias of the reduced dose at the margin of large tumors.
Regarding the treatment, our patch-field technique covered the CTV
in only the cranial–caudal direction. However, enlarged tumors often
exceed these boundaries along a left–right or anterior–posterior axis,
and such tumors would require a three-dimensional enlarged irradi-
ation field, and would require a considerably different therapeutic
approach such as esophageal cancer therapy or craniospinal irradi-
ation in pediatric patients. Although it is possible to create irradiation
fields that combine the field in the cranial–caudal direction with the
fields in other directions on the TPS, the high complexity raises ques-
tions as to whether or not the PBT can be performed safely when the
further complication of respiratory movement is added. Therefore, we
do not combine the field in the cranial–caudal direction with the fields
in other directions in routine patch-field treatment.

Recent PBT systems can cover larger targets, leading to
increased clinical demands for applications that use the less toxic
proton beams. Therefore, we predict that the demand for the patch-
field technique will further increase as new protocols are established
and verified. Given that situation, more advanced methods for fine
alignment of the patch-field technique in three-dimensions, and to
accommodate respiratory movement, would be highly desirable, and
would probably drive this technology to the next stage.

CONCLUSION
Nine patients with large HCC treated with PBT using the
patch-field technique showed no severe adverse events, while
favorable local control was established in all cases. PBT using

the patch-field technique is one of the treatment options for
large HCC.
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